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Abstract. Analytic maps of the form f(z) = e2πιΩz + Θ(z2) display quasiperiod-
icity when Ω satisfies a diophantine condition. Quasiperiodic motion is
confined to a neighborhood of the origin known as a Siegel domain. The
boundary of this domain obeys universal scaling relations. In this paper we
investigate these scaling relations through a renormalization group analysis,
and we discuss singularities and asymptotic form of the scaling function.

Introduction

The discovery of scaling laws associated with the transition from quasiperiodic to
chaotic behavior is an exciting development in the theory of dynamical systems.
Shenker and Kadanoff [1], following Greene's [2] methodology, found that
K. A.M. tori in area preserving maps disappear by becoming nondifferentiable in a
scale invariant fashion. Shenker [3] studied the analogous phenomenon in
dissipative systems and found scaling behavior in maps of a circle.

These transitions lie in universality classes; many different mappings show
identical scaling behavior. Thus one can use simple models to analyze the scaling
behavior of complicated dynamical systems. Provided a dynamical system satisfies
a few constraints, the scaling laws are independent of all other details.
Renormalization group arguments, introduced into the theory of mappings by
Feigenbaum [4], explain this universality. Collet and Eckmann [5] discussed this
application of the renormalization group.

In a previous application of the renormalization group to quasiperiodic
systems, Kadanoff [6, 7] explored universal scaling functions for K.A.M. tori.
Escande and Doveil [8] implemented the renormalization group on Hamiltonians
instead of maps. MacKay [9] obtained a numerical solution of the renormal-
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ization group equations for area preserving maps. Feigenbaum et al. [10] and
Rand et al. [11] solved the renormalization group equations for circle maps.

In this paper we employ renormalization group techniques to study the
boundaries of Siegel domains [12, 13] in analytic maps. Siegel domains occur in
maps of the form f(z) = e2πiΩz + Θ{z2) for special values of Ω. Inside the Siegel
domain trajectories execute quasiperiodic motion on "Siegel curves" which are
analogous to K.A.M. tori in area preserving maps. Manton and Nauenberg [14]
found that the boundary of the Siegel domain is nondifferentiable and obeys a
universal scaling law similar to that obeyed by critical K.A.M. tori. Section 1 of
this paper describes Siegel curves and the scaling laws they obey. In Sect. 2 we
introduce the renormalization group, derive a set of equations which the scaling
function must obey, and solve these equations numerically. In Sect. 3 we linearize
the renormalization group equations to explore universality. Finally, in Sect. 4 we
examine a family of singularities in the universal scaling function and address the
question [15]: Is the critical point really on the boundary of the Siegel domain?
We derive an analytic expression for the universal scaling function which should
be valid only if the critical point lies on the boundary of the Siegel domain, and
find that the scaling function fits this expression with great accuracy.

1. Siegel Curves and Scaling

Siegel considered mappings of the complex plane of the form

00

z' = f(z) = e2πiΩz+ Σ anz", (1.1)
« = 2

where the sum in Eq. (1.1) converges to an analytic function. Siegel proved that
when Ω satisfies the diophantine condition

\Ω-m/n\>λn-μ (1.2)

for all integers m, n ^ l , and some λ9 μ>0, there is a neighborhood U containing
the origin in which / is conjugate to a pure rotation. This means there is a
coordinate transformation z = φ(w), smooth and invertible for ze U, which trans-
forms / into multiplication by e

2πίΩ, i.e.:

) = φ(eMΩw). (1.3)

Hence, in terms of the variable w,

w' = φ-1ofoφ(w) = e

2πiΩw. (1.4)

Equation (1.3) is known as the Schroder equation [16].
When zoe U we can use Eqs. (1.3) and (1.4) to simplify the process of iterating

the mapping / If we write

Z n = /<">(z0) = /o/o...o/(z 0 ), (1.5)

n-times
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Fig. 1. Trajectories of a quadratic mapping with /(1)= 1, f\ΐ) = e2πiΩ, and //(0) = 0. The bumpy curve
is generated by the critical point zc = 0

and define wn by

then by Eq. (1.4)

v0 .

(1.6)

(1.7)

The wn densely fill the circle {w : |w| = |wo|}, so the zn densely fill the image of this
circle under φ. This image is a smooth, closed, invariant curve of / known as a
Siegel curve. The neighborhood U is known as a Siegel domain. Every point in the
Siegel domain lies on a Siegel curve.

Siegel curves have a winding number W = Ω. To see this consider the rotation
in the w-plane. After n iterations the phase of w increases by 2πnΩ. Thus we can
think of the trajectory {wk :fc = 0,1,...,n} as having wound around the origin

m(ή) = [nΩ~] (1.8)

times, where [α] denotes the integer part of a. We define the winding number W as
the average number of rotations per iteration, thus

W= lim
m(n)

(1.9)

From Eq. (1.8) we see that the winding number in the w-plane is just Ω. By the
conjugacy φ we find that in the z-plane also we have

W=Ω. (1.10)

Manton and Nauenberg studied the boundary d U at which φ x ceases to exist
(see Fig. 1). They found that for a class of mappings of the form (1.1), dU has the
following properties:

1) dU is a Siegel curve with winding number Ω.
2) dU is nowhere differentiable.
3) dU has universal scale invariant structure.
4)
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where zc is the critical point of / (/'(zc) = 0) closest to the origin. For the remainder
of this section we discuss the scale invariance of dU. We address the observation
zcedU in Sect. 4.

Smooth curves in the interior U possess a trivial scaling simply related to the

winding number Ω. We choose the value Ω = ̂ ——— because it is especially simple

to analyze. Ω satisfies the inequality

\Ω-m/n\>^X^-. (1.11)
n

We analyze trajectories contained in U in the w-plane instead of the z-plane.
Consider the Fibonacci iterates zQN = f{QN\z0) of a point zoeU, where the Nth

Fibonacci number QN is defined by

and the initial conditions

ρ o = 0 , Qx = l. (1.13)

Fibonacci numbers satisfy

QNΩ = QN_1-(-Ω)N. (1.14)

Thus for large N

wQN~wo(l-2πί(-Ω)N) (1.15)

or, inside the Siegel domain in the z-plane,

Ω?9 C=-2πίwoφ'(wo). (1.16)

Equation (1.16) is the trivial scaling for smooth invariant curves in the interior
of U. Fibonacci iterates approach the starting point z0 at the rate β = Ω~1. Note
that β is universal. Provided that z o e I/, β depends on no details of / other than Ω.
Equation (1.16) cannot be applied for zoedU because φ~x is nondifferentiable on
dU.

The nontrivial scaling associated with δU found by Manton and Nauenberg
resembles Eq. (1.16). They found that for functions of the form

Vλz\ (1.17)

the scaling law takes the form

z =pQN^z) = z -\-c{λ)a~NeίθN, (1-18)

n Ω

where α = 1.34783 and θ= - ^ ^ - =0.93611 are independent of λ for all but

isolated values of λ.
Equations (1.16) and (1.18) can assume a form which suggests more general

scaling properties. First translate coordinates so that the starting point is at the
origin, then rotate so that ΘN+1 = —ΘN. Equations (1.16) and (1.18) take on the
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standard form

zQN~β-Ne±iπl\ (1.16a)

where the + (—) sign holds for N even (odd). Defining fN(z) = f(QN\z) and noting
ZQN = fN(0\ we obtain

fN(0)~β-Ne±ίπ/\ (1.16b)

M0)~*~Ne±iθ. (1.18b)

We can try to generalize Eqs. (1.16b) and (1.18b) to include nonzero values of the
argument z. From the work of Manton and Nauenberg it appears that the limits

lim βNf$N(β~Nz) = Fi(z), (1.16c)
N-*ao

lim <xNf*N{<χ-Nz) = Fc{z), (1.18c)

exist and that Ft and Fc are universal functions associated, respectively, with the
interior of U and the critical point zc. The values of F (0) and Fc(0) are eίπ/2 and eiθ.
We define the operation * by

/*(z) = /(z), (1.19)

where " - " denotes conjugation, and *N denotes * performed N times. Note that *N

is the identity when N is even, and that F* is analytic if F is analytic. In the next
section we employ renormalization group techniques to investigate the validity of
Eqs. (1.16c) and (1.18c).

2. Renormalization Group

The renormalization group is a set of transformations of a space of functions onto
itself. We define a sequence of transformations with the universal functions F{ and
Fc as fixed points. A preliminary transformation translates the origin to some
point z0 we wish to study. If zoeU, then our subsequent transformations will
generate F.(z). If z0 = zc, then our subsequent transformations will generate Fc(z).
Define

g1(z) = z o + - (2.1)

where we choose s = s [/ ] so that 16̂ (0)1 = 1. Let g2(z) = g1{z) and s2

 = s1 = ί.
Generate the sequence gN(z) recursively by

1lsN

1gN(sΰl1z)~], (2.2)

and choose real % + 1 > 0 to make | ^ + 1 ( 0 ) | = l. If the scaling conjectures (1.16c)
and (1.18c) are correct, then the sequence {gN} will alternate between two limiting
functions: one function when N is even and another function when iV is odd.
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Define

θφ)= lim arg[0w(O)], (2.3)
o

even (odd)

let Δ = θ-^-^, and define

(2.4)

Conjectures (1.16c) and (1.18c) yield

hm G*\z) = FUc{z). (2.5)

When zoe U these transformations can be carried out analytically. Using the
scaling relation (1.16) we find

lim sN = β = Ω~ί, (2.6)
iV-^oo

Fί(z) = eiπl2 + z. (2.7)

To study scaling at zc we start with f(z) = e2πiΩz + z2 and change coordinates so
that

#i(z)= -z2 + sp, (2.8)

where

and choose s as in (2.1) so that 1 (̂0)1 = 1. Equation (2.8) has a critical point at the
origin, and a fixed point with derivative e

2πιΩ. Composition of nonlinear functions
generates higher powers of z. Thus we must carry out the transformation (2.2) on a
computer, keeping many terms in the power series expansion

gN(z)= Σ AfJ,z2m. (2.10)
m = 0

After many iterations of the transformation (2.2), errors introduced by the
truncation of the power series in (2.10) will ruin the convergence of {gN} to the
limiting functions. We have carried out this calculation with M = 38. We get the
best convergence for N ~ 28 subsequent transformations drive the sequence away
from the limiting functions. Taking g27(z) and g28(

z) a s t n e t> e s t °dd and even
limiting functions, we compute the angle A and obtain an approximation to Fc(z)
(Table 1). Comparing g26(z) and g28i

z) w e estimate the accuracy of our approxi-
mation as 10" 5 inside the unit disk.

By generalizing Newton's method to function spaces we can obtain greater
accuracy in Fc without repeating the calculation (2.2) with larger M. First we
derive a pair of equations which Fc must obey. From the definition of Fibonacci
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Table 1. Coefficients in power series expansion of Fc, Eq. (2.10)

m 0 1 2 3 4 5 6

J 0.593 0.622 -0.160 0.056 -0.015 -0.001 0.006

A2tJ 0.805 -0.365 0.240 -0.148 0.084 -0.045 0.023

numbers (1.12), we find two recursion relations which fN obeys,

/*(*) = /*-2o/*-iU)> (2-Ha)

/*(z) = /tf-i°/tf-2(z). (2 l l b )

Equations (2.11a) and (2.11b) are equivalent because

/i°/o(*) = /o°/i(*)> (2-12)

where

fo(z) = z. (2.13)

In other words, all fN are iterates of the function / and hence commute.

Combining Eqs. (2.11) with the scaling hypothesis (1.16c) and (1.18c), we find that

F (z) must satisfy

Fi(z) = β2Filβ-iFΐ(β-iz)-], (2.14a)

Flz) = βF*[βFβ-2z)}, (2.14b)

and that Fc must satisfy

Fc(z) = α 2 F c [α- 1 [F c *(α- 1 z)], (2.15a)

- 2 z ) ] . (2.15b)

It is easy to check that Eqs. (2.14) are satisfied by the function Ft(z) given by Eq.
(2.7). Note that while the distinction between forms a and b of Eq. (2.11) is
apparently trivial, it has nontrivial consequences in Eqs. (2.14) and (2.15).

To apply Newton's method to improve the solution of Eqs. (2.15), we introduce
the operators yKs

fl and Jf*

^ β [ F ( z ) ] = s 2 F[5- 1 F*(5- 1 z)], (2.16a)

Λ?[fM] = sF*\_sF{s-2z)] . (2.16b)

The solution of Eqs. (2.15) is a fixed point of both Jf" and JΓ* with s = α. The
solution of Eqs. (2.14) is a fixed point of both JΓ" and Jr

s

b with s = β. We show
explicitly how to locate the fixed point of Jίβ because difficulties appear in this
"trivial" case which we must understand before we can solve the nontrivial
equations.

Assume that G(0)(z) is close to a fixed point of JV£9 and let DΛ^α[G] be the
Jacobian of Jίβ evaluated at the function G(z). The sequence G(N\z) defined by

G(N\z) = G^-'Xz) - (1 - DΛ7[G ( *- 1 } ] Γ ι ' (GiN~ υ(z) - ̂ aΛG^~ 1}(z)]) (2.17)
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converges quadratically to a fixed point, provided the Jacobian has no unit
eigenvalues. To compute the Jacobian we introduce a basis for the space of
analytic functions by the coefficients in the power series expansion

M

Σ { m+1^zm. (2.18)
m= 0

Define the (m, n) element of DyΓ [F] by

dψ^dψ^K (2.19)

Both B Λ ^ F J and D Λ ^ F J are upper triangular with diagonal blocks corre-
sponding to coefficients of zm taking the form

0 β2(ί-m)_βl-m

ΏJff differs from DΛ^* in off-diagonal blocks.
The Jacobian D Λ ^ F J has two unit eigenvalues. The eigenvalue β2 — β = l,

associated with \pF

ι\ is a consequence of the dilation symmetry of Eqs. (2.14). We
can remove this symmetry by defining a new transformation on the space of
functions with |F(0)[ = 1. This transformation is Na

s[F] with s[F] chosen so that

| t f^[F(0)] | = l . (2.21)

The second unit eigenvalue β~2 + β~1 = 1 has no obvious interpretation. The
corresponding perturbation violates Eq. (2.14b). Any function which is obtained
by iteration of a single function / must obey Eq. (2.14b) if it obeys (2.14a). Thus
this perturbation has no physical relevance. Thus the fixed point of Na

β is not
locally unique in the space of functions with |F(0)| = 1. A commutativity condition

<g(z) = N%F(z)-] - N%F{z)] = 0 (2.22)

is required to isolate the physical solution of Eqs. (2.14).
With these considerations we can apply Newton's method to determine Fc. Just

as in the trivial case, Kλ/K^FJ has two unit eigenvalues. The restriction to a space
of normalized functions (2.21) removes one of these. Holding θ = Arg[F(0)] fixed
removes the other. Thus we define a new transformation N'θ on the set

ΨF = {ψ?\ψ?\-}, (2.23)

where
M

ω X < 2 ) < 2 + 1 ) ] z 2 m . (2.24)

N'θ is identical to N" except that F(0) is held constant. Newton's method locates
fixed points Ψθ of Nf

0 which are locally unique solutions of

As we vary θ, a line of such solutions is generated.
The condition ^(z) = 0 for some z determines the physically relevant solution of

(2.25). We choose, somewhat arbitrarily, to evaluate # at ̂  = 0.5978-0.9016/, and
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Table 2. Approach to universal values of θ and α as the number
of coefficients in Fc is increased. Note that the error is pro-
portional to |Im[^(z f)]|

M θ

20
30
40
50

0.9356
0.9361096
0.936110819
0.9361107980

1.3477
1.3478327
1.347831985
1.3478319950

1.2xlO~
3

3.7x 10~
6

5.7 xlO-
8

2.1xlO-
10

vary θ until I R e j j ^ z J ^ l O 1 2 . We gauge the accuracy of our solution by
Table 2 lists values of a and θ obtained as we increase the number M

of coefficients in our power series representation (2.24).

3. Universality

We have now checked the scaling hypothesis (1.18c) numerically for the special
case (2.8). How can we test the hypothesis for an entire family of mappings? We
find the answer by analyzing transformations in function space. In the previous
section we defined a transformation (2.2)-(2.5) with the universal function Fc as a
fixed point. In this section we study the evolution of perturbations on this function.
Perturbations with eigenvalue \λ\ < 1 vanish under repeated transformations and
are called "irrelevant" because their presence does not affect scaling. Perturbations
with eigenvalue \λ\>l grow under repeated transformations and are called
"relevant" because they correspond to physical parameters which must be
controlled to observe scaling. We call perturbations with eigenvalue \λ\ = ί
"marginal." As we have seen in the previous section it is desirable to understand
the effect of marginal perturbations.

Note that the transformation (2.2) is of second order. It takes a pair of
functions and produces a third. The corresponding eigenvalue problem is non-
linear and difficult to solve directly. Feigenbaum, Kadanoff, and Shenker show
how to avoid this problem by defining a new transformation on a space of pairs of
functions

U(z) =

V(z\

U(z)]

V(z)\

U(z)

sU*{sV(s"2z))

U(z)

(3.1a)

(3.1b)

The transformations (3.1) are fully equivalent to the transformations (2.16). When
\F 1 \F.

s = a the pair c is a fixed point, whereas ' is a fixed point when s = β.

To evaluate the growth or decay of perturbations we must linearize (3.1)
around Ft or Fc. Assume F + φλ is a fixed point function plus an eigenperturbation
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Table 3. Leading eigenvalues of Eq. (3.2). R = "relevant," M = "marginal,"
and N = "noncommuting"

Physical

Winding number
Dissipation

Rotation

Dilation

Relevance

R
R
N
N
M
N
M
N

Eigenvalue

Interior

-Ω~2

Ω~2

~β
β

- 1
- i

1
1

Critical

-Ω"2

— 7.

y

- 1
- 1

1

1

with eigenvalue λ. Eigenperturbations of R have the form

F + λφλ

when μ = a or b and

U(z)

V(z\

[V(z)\

λφλ

Φλ

U(z)

s2F*{sF{s'2z))V(s'2z)

U(z)

(3.2)

(3.3a)

(3.3b)

We introduce a power series basis {ψm} with

= (Re[C/J,Im[t/J ,Re[7 m ] , Im[KJ) . (3.4)

In this basis the Jacobian at the trivial fixed point, D ^ [ F J , is block upper
triangular with diagonal blocks corresponding to coefficients of zm taking the form

(3.5)

\

are

differs from Ό3tb

β in off diagonal blocks. The four eigenvalues of the mth block

λ=±β2~m, ±β~m. (3.6)

Table 3 summarizes the interpretations of the marginal and relevant per-
turbations. The eigenvalues +β2 and — β2 correspond, respectively, to adding a
real or imaginary constant to Ft. A real constant destroys the Siegel domain by
making the function (1.1) expanding or contracting at its fixed point. An imaginary
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constant changes the winding number of the Siegel domain. We can think of these
perturbations as adding a constant to Ω in Eq. (1.1). A real constant changes the
winding number, whereas an imaginary constant changes |/'(0)|. Perturbations
with eigenvalue ±β2~m with m ^ 1 violate Eq. (2.22) and hence are not contained
in the physical spectrum. Perturbations with eigenvalues ±β~m correspond to
coordinate changes. To see this let

(3.7)

and let

From Eqs. (3.1), (3.2), and (3.8) we have

(3.9a)

(3.9b)

Comparing Eqs. (3.9) with Eqs. (2.14) we see that

Φε m(β~1Φλε~m(Z)) = β~lz> (3.10a)

and

Using the facts that

we find that φε m is indeed an eigenperturbation with eigenvalue λ = ± β m. Thus ε
grows at the rate β~m when ε is real and at the rate — β~m when ε is imaginary.
When m = 0 these perturbations are marginal and correspond, respectively, to
dilation and rotation of coordinates.

We numerically computed the spectrum of perturbations on the nontrivial
fixed point Fc. Table 3 lists eigenvalues of perturbations which are analytic
functions of z2. Note that the two relevant commuting eigenvalues reproduce their
trivial values. This is a consequence of Eq. (1.10); winding number is not
renormalized in the Siegel theory.
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Generalizing the space of perturbations on Fc leads to relevant eigenvalues not
included in Table 3. One such perturbation translates the coordinate system,

φ(z) = z + ε. (3.12)

The eigenvalue of the perturbation is α when ε is real and — α when ε is imaginary.
We have now outlined the extent of universality. In order to observe trivial scaling
in U, we need to fix the magnitude and argument of /'(0). In order to observe
nontrivial scaling, we need the additional condition

zo = zc. (3.13)

Relaxing (3.13) yields either trivial scaling or chaos. We discuss this question
further in the following section.

4. Properties of Fc

A. Asymptotic Behavior

In Sect. 2, we established, numerically, that Fibonacci iterates of the function (2.8)
converge to a limit. In Sect. 3 we showed that this limit is universal for functions
with quadratic extrema at zc, and a fixed point nearby with derivative e

2πiΩ. We
have not yet tested Manton and Nauenberg's conjecture that dU passes through
zc. If zcφdU, the scaling laws we have obtained have no relevance to dU. The
following argument provides strong evidence that zcGδU.

If zcedU, then in any neighborhood of zc there are points that lie on smooth
Siegel curves. Consider a function in the universality class of Fc in a coordinate
system such that

lim «Nf*N(0L-Nz) = Fc(z), (4.1)
iV->-oo

and Re[F(0)]>0. We wish to show that in this coordinate system there is an
interval (0, λ), along the positive real axis, which is entirely contained in U. For
zeί/we have

fN(z) = z+ Σ (-ΩTNCn(z), (4.2)
n= 1

where Cn are smooth functions obtained by differentiating the conjugacy function
φ(w). In a generalization of a calculation performed by Manton and Nauenberg,
we combine Eqs. (4.1) and (4.2) to get

lim ίz+ Σ (-ΩyNaNCf(u-Nz)\ =Fc(z). (4.3)

n = 1
Assuming that the functions Cn(z) behave like power laws for small z, and
requiring that ( — Ω)nN at,N C*N (<x~ N z) be independent of N for each n, we find that
Fc(z) has the formal expansion for Re(z)-> + oo

Fc(z) = z Σ ΛA~ m v > (4.4)
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Table 4. Asymptotic behavior of Fc compared with Eq. (4.8)

1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

FJtz)

1.36077 + 0.517668/
1.45260 + 0.497852/
1.54582 + 0.479609/
1.64016 + 0.462807/
1.73542 + 0.447310/
1.83141+0.432989/
1.92802 + 0.419724/
2.02512 + 0.407405/

z(l+/yz~ v)1 / v

1.36072 + 0.517603/
1.45254 + 0.497834/
1.54577 + 0.479620/
1.64013 + 0.462830/
1.73541+0.447334/
1.83142 + 0.433006/
1.92803 + 0.419732/
2.02513 + 0.407405/

where

v = ^ = 1.6121... (4.5)
lnα

and Am are real constants, Λ0 = ί. Fc should take the form (4.4) if zcedU.
Conversely, if Fc is of this form, then it is likely (though not proven) that zcedU.

We checked this result numerically. We cannot directly evaluate our power
series expansion of Ft for z> 1.35 because of singularities which are discussed in
Part B of this section. Instead we use the fixed point equations (2.15) to
analytically continue Fc beyond its radius of convergence. We can find an analytic
expression for Fc which is in very good agreement with the numerical data.
Assume we can write

Fc(z) = h-ί/v(z-v), (4.6)

where h is analytic and h(z) ~ z for small z. Requiring that Fc be a fixed point of Jίμ

with s = α, we find that h must be a fixed point of jVs

μ with s = Ω. Note that the scale
factor s = Ω is the inverse of the trivial scale factor s = β. Thus we can obtain a fixed
point of Jί^ from the trivial fixed point of Jfj{ by the coordinate change φ(z) = 1/z.
Thus

^ (4.7)
1 + iyz

where γ is an arbitrary real constant, and

Fc(z) = z(l + iγz~v)ll\ (4.8)

We find Eq. (4.8) fits the numerical data best for γ = 1.013205 (Table 4). We
speculate that Eq. (4.8) is exact up to corrections which vanish faster than any
power of z~v as Re(z)-> + oo.

B. Singularities of Fc

Examination of ratios of Taylor series coefficients of Fc (Table 1) suggests that the
series has a radius of convergence roughly equal to α. We determine the precise
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location of singularities in Fc in the following manner. Define the functions

P(z) = α" 1 F*(α~ 1 z), (4.9a)

β(z) = αFc(oΓ2z). (4.9b)

If a point z is a fixed point of either P or Q, then Eqs. (2.15) require that Fc must
vanish or have a singularity at z. Note that if z is the singularity closest to the
origin, then the power series (4.9) are evaluated within their circle of convergence
for z in a neighborhood of z. We find

z = 0.14377-1.3437i (4.10)

is a fixed point of both (4.9a) and (4.9b). For z close to z we have

Fc(z) = α2F c[z + P\z) ( z - z)] , (4.1 la)

Fc(z) = aF£z + β'(z) (7=T)] . (4.1 lb)

Evaluating the derivatives, we find that both P'(z) and β'(z) are real. Thus as we
approach z from a region where Fc(z) is analytic, we expect

Fc(z)~(z-zΓ0-89099- (4.12)

where the exponent is computed from the magnitude of the derivatives.
Equation (2.15) allows us to analytically continue Fc beyond its radius of

convergence. In this way we find a family of singularities in Fc, each with the same
power law behavior as z. Let z be some point of singularity of Fc. Any point w
satisfying

z = P(w) (4.13a)

or

z = Q(w) (4.13b)

acquires the same singularity as z, provided P or Q is analytic at w.
Figure 2 shows the locations of some singularities determined in this manner.

In Fig. 2a the points Λo and BQ are defined by

-z = P(A0), (4.14a)

- z = β(B 0). (4.14b)

We obtain the points Λn and Bn by repeated application of P " 1 . Note that the
sequences Λn and Bn converge to z creating a sharp point. We apply Eqs. (4.14)
with the sets An and Bn on the left hand side to get Co and Do,

, (4.15a)

. (4.15b)

Repeated application of P'1 generates Cn and Dn. Each Cn and Dπ is a conformal
image of {An,Bn} (Fig. 2b). We could continue this process indefinitely. Each
singularity lies at the point of a scaled-down version of the entire set of
singularities (Fig. 2c).
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Fig. 2a-c. Singularities of Fc. a-c show the first, second, and third generation of singularities

In this way Epstein and Lascoux [17] proved the existence of a natural
boundary for Feigenbaum's universal period doubling function. From Fig. 2c we
cannot see whether or not the set of singularities in Fc forms a continuous wall.
The existence of a natural boundary in Fc and its relationship to the Julia set [18]
of the original mapping / are unresolved questions.
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