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Quasicrystal Structure Prediction: A Review
Michael Widom[a] and Marek Mihalkovič[b]

Abstract: Predicting quasicrystal structures is a multifaceted
problem that can involve predicting a previously unknown
phase, predicting the structure of an experimentally observed
phase, or predicting the thermodynamic stability of a given
structure. We survey the history and current state of these
prediction efforts with a focus on methods that have
improved our understanding of the structure and stability of

known metallic quasicrystal phases. Advances in the struc-
tural modeling of quasicrystals, along with first principles
total energy calculation and statistical mechanical methods
that enable the calculation of quasicrystal thermodynamic
stability, are illustrated by means of cited examples of recent
work.

1. Introduction

This review surveys the past and present state of quasicrystal
structure prediction. We address several aspects of this
problem. First, we consider how the very existence of a
quasicrystal could be anticipated, in the absence of prior
experimental observation. Second, restricting our attention to
metallic alloys, we address methods to predict the structure of
a specific quasicrystalline phase given basic information
concerning composition and lattice parameters. The problem is
complicated by the likelihood that the quasicrystal is only
stable at high T, hence, we finally address the problem of free
energy calculation including various entropy contributions. We
frame our discussion in the context of several specific
examples from our own work and many others.

2. Predicting the Existence of Quasicrystal Phases

Consider the problem of predicting formation of a quasicrystal
in a novel alloy or soft-matter system; how can one proceed?
The discovery by Penrose[1,2] of quasiperiodic tilings general-
ized the notion of a crystal lattice[3] but provided no guidance
for how to form such a structure in the laboratory. By chance,
Shechtman and co-workers[4] discovered icosahedral symmetry
in an Aluminum-rich alloy, Al86Mn14, and its quasiperiodicity
was quickly identified.[5] Given that initial hint, within a year
additional quasicrystals were discovered by chemical analogy
in Al86Cr14 and Al86Fe14,[6] stepping one column of the periodic
table to the left and right, respectively, from Mn. One can also
move from binary to ternary through averaging of the valence
electron count, hence replacing Mn with a Cr� Fe mixture also
yields a quasicrystal.[7] With the multiplicative effect of
additional elements increasing the size of the composition
space,[8] such substitution practices greatly increased the
number of known quasicrystal-forming alloy systems, with the
majority remaining Al-rich. One may question whether those
successes represent prediction of quasicrystal formation, as
opposed to educated guesswork.

Another approach, also based on guesswork, could be to
mine existing knowledge of phase diagrams for unknown
structures. In the case of Al-Cu-Fe, the Y-phase of Al6Cu2Fe,
identified in 1939 with unknown structure,[9] was likely the
icosahedral quasicrystal. The same is true of the T2 phase of
Al-Cu-Li.[10,11] Similarly, the Cd5.7Yb[12] alloy possessed an
unknown phase that turned out to be an example of the first
thermodynamically stable binary quasicrystal.[13] In practice,
the approach can be more systematic, by searching for solved
structures that contain quasicrystalline motifs, known as
approximants,[14] hoping that a genuine quasicrystal may lie
nearby. Examples of this approach include the search for
boron-based icosahedral phases,[15] the discovery of Frank-
Kasper-type quasicrystals,[16] and the binary icosahedral Sc-Zn
phase.[17] The logical extension of this strategy is to enhance
the search with methods of machine learning. Models can be
trained on existing knowledge then new predictions can be
tested experimentally.[18]

True ab-initio prediction would mean choosing an alloy
system based on chemical knowledge or intuition, curiosity, or
random guess, then searching the space of structures and
(genetic algorithms, basin hopping, Monte Carlo, etc.) compar-
ing energies or free energies with known existing phases. This
has not been done to-date for a real quasicrystal; the closest
example is decagonal B-Ti-Ru[19] which was discovered
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experimentally following a chemical substitution on a fully
first principles prediction.[20]

Several artificial interatomic interaction models are known
to produce quasicrystals, such as binary Lennard-Jones
systems,[21,22] double-well potentials,[23,24] polyhedral hard
cores,[25] and oscillating soft-core particles.[26] The extreme
case is to specifically design a system to encourage a certain
symmetry, or even to force quasiperiodicity. This has been
achieved in colloidal systems using patchy interactions[27] and
may be possible using designed proteins or DNA molecules in
the future.[28]

An emerging area is the creation of artificial quasicrystals
through the superposition of density waves. Early examples
include the hydrodynamic patterns arising from Faraday
instabilities in shaken fluids.[29] Quasiperiodic patterns can be
generated either by superposing density waves with a
crystallographically forbidden symmetry or by forcing waves
of incommensurate frequencies.[30,31] Recently optical quasilat-
tices have been used to trap cold atoms in quasicrystalline
arrays[32,33] and electrons have been subjected to quasiperiodic
moiré potentials in twisted trilayer graphene.[34] These last
cases achieve seemingly perfect quasiperiodicity with near
certainty, as the experiment itself directly follows a mathemat-
ical prescription to create quasiperiodicity.

3. Predicting the Structures of Known
Quasicrystal Phases

Following the initial quasicrystal discovery, multiple structural
models were quickly proposed. These included generalized
Penrose tilings,[5] that could explain quasiperiodicity but
lacked atomistic detail, and the icosahedral glass model[35,36]
that explained the propagation of orientational order but failed
to explain quasiperiodicity. Linus Pauling[37,38] famously, but
incorrectly, proposed models for decagonal and icosahedral
quasicrystals based on multiple twinning of cubic crystals.

It proves profitable to represent crystal and quasicrystal
structures in a higher dimensional space.[39] Pointlike atomic
distributions in ordinary three-dimensional space become
higher dimensional “atomic surfaces”, and the original atomic
positions are obtained using a cut through the atomic surfaces.
Successful atomistic models have been obtained by utilizing

solved approximant structures and large icosahedral clusters
that they contained in order to propose model atomic surfaces
that reproduce the approximant structure when cut at a rational
angle but extend to true quasiperiodicity when cut at irrational
angles.[40–42] Alternatively, Katz and Gratias[43] used theoretical
arguments (closeness and hard core conditions) to create
atomic surfaces that maximize the density while being
bounded by atomic surfaces on 2-fold planes (see Figure 1).
Quiquandon and Gratias designed a precise chemical-ordering
model for the Katz-Gratias quasilattice by atomic surface
decomposition.[44]

The remainder of this section focuses on structure
prediction through computer simulation. We will describe our
computational techniques and present selected results together
with extensive citations.

3.1 Empirical Oscillating Pair Potentials

Computer simulations require a model for interatomic inter-
actions. While electronic density functional theory[46,47] (DFT)
provides the most accurate practical method for total energy
and force calculation, it scales poorly with system size and
hence is too slow to allow for simulations of large quasicrystal
approximants. Machinelearning of DFT energies and
forces[48,49] is an emerging method that offers hope to provide
near-DFT accuracy at lower computational cost. Unfortunately,
the diversity of atomic environments in quasicrystals dimin-
ishes its applicability in the absence of algorithmic improve-
ments. Instead we turn to model interatomic interaction
potentials, which are functions that can be quickly evaluated
to yield either the energy of a configuration or the forces
acting on the atoms.

Many of the most widely studied quasicrystal-forming
compounds are either Al-rich (Mackay-type), or rich in Cd or
Zn (Tsai-type). Their interactions are mediated by nearly free
electrons and their interaction potentials can be derived
perturbatively. An ion placed into an otherwise uniform
electron gas creates Friedel oscillations[50] in the density at a
frequency of 2kF, with kF the Fermi wavenumber. A second ion
then feels an oscillating potential dependent on the local
electron density. Ashcroft[51] and Hafner[52] calculated inter-
actions for metals with s and p valence electrons. Moriarty[53]
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generalized the calculations to include the d electrons of
transition metals and extended the theory to include many-
body Pair potentials for quasicrystal-forming compounds have
been derived for Al-Co,[54] Al-Mn,[55] and several other Al-TM
binaries[56] and Al-Co-(Cu,Ni) ternaries.[57] All of these
potentials were found[58] to be wellapproximated by a simple
functional form (Eq. (1)) combining Friedel-like long-range
oscillations with shortrange repulsion arising from overlapping
ionic cores (see Figure 2),

VðRÞ ¼
C1

Rh1
þ

C2

Rh2
cos ðkRþ �Þ, (1)

hence the name empirical oscillating pair potential (EOPP). In
practice, instead of deriving the interactions for each com-
pound of interest, the six parameters (set independently for
each chemical species pair) can be fit to a database of DFT-
based energies and forces. Potentials obtained in this manner
have been applied to simulations of ternary i-AlCuFe,[45]
i-AlMnPd,[59] i-AlCuSc[58,60] and d-MgYZn.[61] EOPP were also
developed for many binaries. They were applied to model
phonons[62] and low-temperature tetrahedron reshuffling[63] in i-
ScZn and were used to resolve the vacancy distribution and
identify the ground state of ß-Al3Mg2.[64] Low temperature
phase transitions in orientational order were modeled in the
quasicrystal-related Al11Ir4 phase.[65]

3.2 Simulation Methods

Given the interaction potentials, we need a method to explore
the ensemble of possible structures. Because quasicrystals are
aperiodic, an infinite system is required to capture the
complete structure. In practice, we impose periodic boundary
conditions, but the precise sizes and shapes are selected to
impose only small deviations from quasiperiodicity, and to
converge as quickly as possible. Taking inspiration from the
optimal approximations to the golden mean provided by ratios
of successive Fibonacci numbers, we follow the lead of Elser
and Henley[14] and construct a sequence of approximants
whose lattice parameters scale by powers of the golden mean,
t, and label them according to Fibonacci number ratios.

For small simulation cell sizes, the special approximant
cell geometries can assist in formation of quasicrystalline
motifs that perfectly obey the geometrical cell constraints.[66]
For larger cell sizes, the high entropy of random liquid
configurations can inhibit the solidification into the quasicrys-
tal structure. In this case, it proves effective to seed the larger
structure with a fragment of a smaller approximant that can
nucleate the growth of quasicrystal throughout the larger
cell.[45]

Substitutional disorder, in which pairs of atoms swap their
chemical identities, is common in many quasicrystal-forming
alloys. In d-AlCoNi, for example, Ni atoms are able to
substitute for Al at many sites, and also Ni can substitute for
Co. This is consistent with the location of Ni between Co and
Al on the simulated atomic surface[68] and in the periodic table.
Unfortunately, diffusion rates in the solid state can be quite
low, preventing conventional molecular dynamics from sam-
pling the full equilibrium ensemble of structures. Thus we
supplement the conventional molecular dynamics simulation
with Monte Carlo steps that attempt to swap pairs of atoms of
differing species. The swaps are accepted according to their
Boltzmann probabilities (exp (� ΔE/kBT) with ΔE the change

Figure 1. (top) Simulated atomic surface (see text) occupation for
i-AlCuFe[45] at T=1242 K; color bars for chemical species occupancy.
Mixed chemical occupation is represented by adding the RGB color
values. Green lines are Katz-Gratias atomic surface boundaries.[43]

(bottom) pseudo-Mackay and t-scaled pseudo-Mackay icosahedral
clusters showing sites of mixed Cu/Fe occupation in purple.

Figure 2. Fitting data (energies E and forces F) and the resulting
empirical oscillating pair potentials V(R) for Sc-Zn.
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in energy), in order to maintain thermodynamic equilibrium.
In this way a given atom can migrate over large distances
without the need to cross energy barriers to diffusion.

Phasons are a source of disorder that is unique to
incommensurate structures such as quasicrystals. It is impor-
tant to distinguish between phason modes, which generate
long wavelength deviations from quasiperiodicity through
correlated displacements of atoms[69,70] and localized phason
flips[67] that can be a thermodynamically stabilizing source of
entropy but need not disrupt the long-range quasiperiodicity.
Special Monte Carlo moves can sometimes be designed to
enable barrier-free phason flips.[22] However, if tilings are
defined by connecting atoms of certain species, then chemical
species swaps followed by small relaxations are sometimes
able to implement phason flips without the need to design
special Monte Carlo moves. Figure 3 illustrates a phason flip
in a model of d-AlCoNi.[67] The phason flip swaps the
positions of a boat tile and a hexagon tile that together
comprise 81 atoms. However, only four pairs of species swaps
are required (two Al/Ni and two Co/Ni) along with minor
relaxation of a few Al atoms. These sites of atomic species
swaps are sites of mixed chemical occupancy, as indicated by
their coloring in Figure 3 part (b).

Tile-Hamiltonians[55,71–75] provide an efficient way to
simulate quasicrystal structures based on the assumption that a
quasicrystal structure is in one-to-one relationship with a tiling
geometry. Energetic optimization of the tile decoration is
followed by fitting a Hamiltonian that assigns energy
coefficients to occurrences of preselected tiling objects. A tile-
reshuffling Monte Carlo simulation then explores the tiling
ensemble. For example, the tile decoration of decagonal
MgZnY[61] follows the well established Frank-Kasper decora-
tion of the Rectangle-Triangle tiling.[76] The tile-Hamiltonian

was fit using EOPP potentials and then applied in a Monte
Carlo “zipper”-reshuffling simulation that revealed the ground
state tiling configurations in very large decagonal approxim-
ants.

We wish to carry out simulations over a range of temper-
atures, however equilibration is difficult to achieve at low
temperature owing to the reduced swap acceptance rates. The
method of replica exchange[77] provides a solution. Ensemble
diversity is enhanced at every temperature by carrying out
simulations in parallel at multiple temperatures, and swapping
the configurations between temperatures using a Boltzmann-
like probability exp (ΔßΔE). Here Δß is the difference in 1/kBT
and ΔE is the difference in energies of two configurations.[78]
A given low temperature configuration can migrate up to
higher temperatures where swapping is accelerated, then
migrate back down to bring a fresh structure to the low
temperature.

Simulations can even be combined with diffraction refine-
ment by augmenting the diffraction R-factor with a term
dependent on the calculated total energy. The R-factor
measures the disagreement between experimental diffraction
intensities and predictions of a model. A correct structure
should possess a low R-factor and also a low calculated total
energy. This approach has been demonstrated for d-AlCoNi[79]
but has not been widely adopted in its full potential. A
simplified version, in which diffraction is employed to
generate a list of potentially occupied sites and then an
energy-based simulation is used to resolve site occupation and
chemical preferences, has been highly successful![72,80,81]

Figure 3. Species swaps and atomic displacements during phason flip in a model of d-AlCoNi.[67] Tile edge length is 6.5 Å. Atom colors are:
Al (yellow), Co (blue) and Ni (red). Atom size indicates depth. Parts (a)–(c) correspond, respectively to initial HBS tiling, bowtie flip, and final
tiling. In (b) orange sites correspond to swap of Al and Ni, pink corresponds to swap of Co and Ni. Dashed lines in (b) show initial tile edges
and atomic positions prior to flip.
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4. Predicting Thermodynamic Stability of
Quasicrystals

Given an accurate structure model, we calculate enthalpy of
formation (in the T!0K limit) by subtracting the relaxed DFT
total energy from the composition-weighted average of the
constituent element energies. For a structure with concentra-
tions {xα} for different species α, the formation enthalpy:

DH ¼ E �
X

a

xaEa (2)

where E is the relaxed energy per atom of the given structure
and {Eα} are the relaxed energies per atom of the pure
elements. Consider a scatter plot of ΔH vs. composition such
as Figure 4a. The convex hull of this plot consists of vertices
connected by facets (in this case, line segments). The vertices
are predicted to be stable pure phases, while the facets identify
compositions at which the adjacent pure phases coexist.

Structures whose enthalpies lie above the convex hull are
predicted to be thermodynamically unstable at low temper-
ature, however they may be mechanically stable and hence
thermodynamically metastable. In some cases they may
become thermodynamically stable at elevated temperatures
owing to the reduction in free energy ΔG=ΔH� TΔS through
entropic effects. Given the ability to simulate the temperature-
dependent ensemble averaged enthalpy H(T), the free energy
can be calculated by thermodynamic integration. First, the heat
capacity may be obtained from enthalpy either by differ-
entiation or from the averaged fluctuations,

CpðTÞ ¼
@H

@T
¼

1

kBT2
ð H2
� �

� Hh i2Þ: (3)

Then the entropy is obtained, up to an unknown constant
Sref, by integrating,

SðTÞ ¼ Sref þ

Z
T

Tref

dT 0
Cp

T 0
: (4)

Finally, we integrate once more to obtain:

FðTÞ ¼ Fref �

Z
T

Tref

dT 0 SðT 0Þ (5)

where Fref=Href� TSref is an unknown linear function of T. A
trick to determine Fref is presented at the end of this section.

This approach can be generalized[82] to yield the free
energy of a parameter-dependent Hamiltonian H(l),

FðlÞ ¼ F0 þ

Z
l

0

dl0 @Hðl0Þ=@l0h i (6)

with F0 the free energy for l=0 and brackets hi represent a
simulated average. For example, the free energy of a hard

sphere solid may be derived from a harmonic solid by this
method. In the context of quasicrystals, this method was
applied to calculate the phonon entropy of a Tubingen-
Triangle random tiling model with Lennard–Jones–Gauss
potential.[24] It was also applied to compute the phase diagram
for a patchy particle system[83] and for a hard disk system with
soft corona that leads to a random square-triangle tiling.[84]
The free energy of phason fluctuations could in principle be
derived by relaxing a constraint of perfect quasiperiodicity.

Many entropy sources contribute to the free energy. The
largest in magnitude is usually the vibrational entropy,[85] and
it is often capable of stabilizing structures that would be

Figure 4. Convex hulls of (a) the Al-Mn binary and (b) the Al-rich
region of the Al-Mn-Pd ternary.[59] Stable binaries are labeled by
structure type. Stable ternaries (ΔH<0) are: 12 and 16 Å decagonal
approximants (labeled 1 and 2) with 156 and 168 atoms, respec-
tively, and the 3/2 icosahedral approximant (labeled 3) with 552
atoms.
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metastable[86] or even mechanically unstable[87] at low temper-
atures. In the harmonic approximation the vibrational free
energy is:

Fvib ¼ kBT

Z

dw gðwÞ ln 2 sinhð�hw=2kBTÞ½ �: (7)

Low frequency modes with �hw!kBT reduce the vibra-
tional free energy by approximately kBT ln (�hw/kBT), while
high frequency modes increase the quantum zero point energy
by �hw/2. As an example of stabilization by vibrational entropy,
elemental tin (Sn) transforms from the diamond structure
(α-Sn.cF8) to body-centered tetragonal (ß-Sn.tI4) at 13 °C
(286 °K, kBT=25 meV). As shown in Figure 5, all the vibra-
tional states of ß are excited by this temperature, and its
relatively low frequencies stabilize ß over α.

Excitations of electrons from occupied states below the
Fermi energy to empty states above also contribute to reducing
the free energy. The free energy reduction is approximately:[88]

FeðTÞ � �
p2

6
DðEFÞðkBTÞ2: (8)

Because of the quadratic dependence on kBT, this effect is
typically quite small at low or moderate temperatures.

For example, a D(EF) of one electronic state/eV/atom
reduces the free energy by only one meV/atom at room
temperature. Like many intermetallics, quasicrystals often
have deep pseudogaps, making the electronic contribution
negligible except at elevated temperatures. In the case of
i-AlCuFe, D(EF)�0.2 states/eV/atom, resulting in

Fe�0.2 meV/atom at room temperature, and � 3.5 meV/atom
at 1200 K.

The unique entropic contribution to quasicrystals comes
from phason fluctuations (see Figure 3). The precise identi-
fication of a phason in a realistic quasicrystal structure is ill-
defined; they are frequently defined in terms of tile flips, but
tilings can be identified on many different length scales. For
example, the idealized d-AlCoNi structure in Figure 3 is
derived from an HBS tiling with a smaller 3 Å edge length,
that can in turn be decomposed into a rhombus tiling with
2.45 Å edges.[72] The tilings themselves are often defined in
terms of specific chemical species, but species swaps are
prevalent. Phasons even create small atomic displacements
and hence are linked with diffusion.

Perhaps the clearest manifestation of phasons is through
the atomic surface occupation densities {1aðr?Þ} that show
mixed and partial occupation of species α as functions of
perpendicular space position r?. In i-AlCuFe (Figure 1),
swapping an individual Fe atom with Cu or Cu with Al
corresponds to a perpendicular space shift of the atomic
surface centers, justifying the link between species swaps and
localized phason flips. In principle the entropy could be
calculated from the densities as:

Sphason ¼ �
X

a

Z

AS

d r? 1aðr?Þ ln 1aðr?Þ (9)

where the densities are normalized so that
P

a 1aðr?Þ reaches
a maximum value of 1. This method has not yet been applied,
although a functional representation of 1aðr?Þ is available.[68]

In our study of i-AlCuFe we took a different approach
based on separating harmonic and anharmonic contributions to
the free energy. We defined an “anharmonic heat capacity”,
Ca(T)=C(T)� 3kB, where C(T) is the heat capacity measured
during our MC/MD simulation and 3kB is the classical
harmonic value of Dulong and Petit. Thermodynamic integra-
tion of the anharmonic heat capacity via Eq. (4) yields an
“anharmonic entropy”, Sa(T), and further integration via
Eq. (5) yields an “anharmonic free energy”, Fa(T). As shown
in Figure 6a, Ca vanishes faster than linearly at low temper-
atures. Assuming that Sa also vanishes at low temperature, we
may set Fa,ref=0. The resulting thermodynamic functions
shown in Figure 6b and 6c can be directly added to the
corresponding harmonic phonon functions. Notice that the
anharmonic contribution reduces the free energy by up to
20 meV/atom at high temperature, which is substantially larger
than the ΔE values of typical quasicrystal approximants
relative to competing phases, although it is an order of
magnitude smaller than the harmonic vibrational free energy
(~300 meV/atom at 1000 K).

5. Summary and Outlook

In the years since their first discovery, tremendous strides have
been made in the prediction of quasicrystal structures. While

Figure 5. Vibrational densities of states of diamond (α-Sn.cF8) and
bct (ß-Sn.tI2) tin.
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true ab-initio prediction of atomistic quasicrystal formation in
a given alloy system has fallen short, new emerging frontiers
creating artificial quasicrystals might greatly expand the array
of systems with quasicrystalline structures. Promising avenues
include the design of interparticle interactions to encourage
either quasiperiodicity, or simply rotational symmetry that is
incompatible with periodicity, in colloids and other soft-matter
systems. Alternatively quasiperiodic potentials can be created
through superpositions of waves, and electrons, atoms, or
colloidal particles follow the imposed potential.

For known quasicrystal-forming metallic alloys, the prob-
lem of predicting their structure is closely tied with the
problem of understanding their formation because the struc-
tures are governed by the same chemical interactions that bind
the elements into a solid. At the same time, detailed structure
models are required in order to calculate accurate energies.
Both tasks are aided by the growing capabilities of total energy
calculation and computer simulation methods. Today, chemi-
cally accurate interaction energies can be calculated directly
from first principles for quasicrystal approximants with
thousands of atoms. Simulations that explore configurational
ensembles require greater speed. Existing interatomic potential
models are often sufficiently accurate for simulation of high
temperature properties, and it is hoped that machine learning
approaches in the future could achieve even more accurate
potentials, enabling ground state searches.

Acknowledgements

M.M. is thankful for the support from the Slovak Grant
Agency VEGA (No. 2/0144/21) and APVV (No. 20-0124,

No. 19-0369). M.W. was supported by the Department of
Energy under Grant No. DE-SC0014506.

Data Availability Statement

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

References

[1] R. Penrose, Bul. Inst. Math. Appl. 1974, 10, 266.
[2] M. Gardner, Sci. Am. 1977, 236, 110.
[3] A. L. Mackay, Physica A: Statistical Mechanics and its Applica-

tions 1982, 114, 609.
[4] D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Phys. Rev. Lett.

1984, 53, 1951.
[5] D. Levine, P. J. Steinhardt, Phys. Rev. Lett. 1984, 53, 2477.
[6] R. A. Dunlap, K. Dini, Can. J. Phys. 1985, 63, 1267.
[7] J. M. Dubois, C. Janot, J. Pannetier, Phys. Lett. A 1986, 115, 177.
[8] M. Widom, J. Stat. Phys. 2017, 167, 726.
[9] A. J. Bradley, H. Goldschmidt, J. Inst. Met. 1939, 65, 403.
[10] H. K. Hardy, J. M. Silcox, J. Inst. Met. 1955, 24, 423.
[11] B. Dubost, J.-M. Lang, M. Tanaka, P. Sainfort, M. Audier, Nature

1986, 324, 48.
[12] A. Palenzona, J. Less-Common Met. 1971, 25, 367.
[13] A.-P. Tsai, J. Guo, E. Abe, H. Takakura, T. J. Sato, Nature 2000,

408, 537.
[14] V. Elser, C. L. Henley, Phys. Rev. Lett. 1985, 55, 2883.
[15] M. Takeda, K. Kimura, A. Hori, H. Yamashita, H. Ino, Phys. Rev.

B 1993, 48, 13159.
[16] P. Ramachandrarao, G. Sastry, Pramana 1985, 25, L225.
[17] P. C. Canfield, M. L. Caudle, C.-S. Ho, A. Kreyssig, S. Nandi,

M. G. Kim, X. Lin, A. Kracher, K. W. Dennis, R. W. McCallum,
A. I. Goldman, Phys. Rev. B 2010, 81, 020201.

[18] C. Liu, E. Fujita, Y. Katsura, Y. Inada, A. Ishikawa, R. Tamura,
K. Kimura, R. Yoshida, Adv. Mater. 2021, 33, 2102507.

[19] Y. Miyazaki, J. Okada, E. Abe, Y. Yokoyama, K. Kimura, J.
Phys. Soc. Jpn. 2010, 79, 073601.

[20] M. Mihalkovič, M. Widom, Phys. Rev. Lett. 2004, 93, 095507.
[21] F. Lancon, L. Billard, P. Chaudhari, Europhys. Lett. 1986, 2, 625.
[22] M. Widom, K. J. Strandburg, R. H. Swendsen, Phys. Rev. Lett.

1987, 58, 706.
[23] M. Dzugutov, Phys. Rev. A 1992, 46, R2984.
[24] A. Kiselev, M. Engel, H.-R. Trebin, Phys. Rev. Lett. 2012, 109,

225502.
[25] A. Haji-Akbari, M. Engel, S. C. Glotzer, Phys. Rev. Lett. 2011,

107, 215702.
[26] K. Barkan, M. Engel, R. Lifshitz, Phys. Rev. Lett. 2014, 113,

098304.
[27] E. Noya, C. K. Wong, P. Llombart, J. P. K. Doye, Nature 2021,

596, 367.
[28] L. Liu, Z. Li, Y. Li, C. Mao, J. Am. Chem. Soc. 2019, 141, 4248.
[29] W. S. Edwards, S. Fauve, J. Fluid Mech. 1994, 278, 123148.
[30] R. Lifshitz, D. M. Petrich, Phys. Rev. Lett. 1997, 79, 1261.
[31] D. J. Ratliff, A. J. Archer, P. Subramanian, A. M. Rucklidge,

Phys. Rev. Lett. 2019, 123, 148004.
[32] N. Mac, A. Jagannathan, M. Duneau, Crystals 2016, 6.
[33] K. Viebahn, M. Sbroscia, E. Carter, J.-C. Yu, U. Schneider, Phys.

Rev. Lett. 2019, 122, 110404.

Figure 6. Anharmonic thermodynamics of i-AlCuFe. (a) Heat capacity
from MC/MD simulation; shaded area is anharmonic part, Ca, in
units of kB/atom. (b) Anharmonic entropy in kB/atom. (c) Anhar-
monic free energy in meV/atom.

Review

Isr. J. Chem. 2023, e202300122 (7 of 8) © 2023 The Authors. Israel Journal of Chemistry published by Wiley-VCH GmbH.

 18695868, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijch.202300122 by C

arnegie M
ellon U

niversity, W
iley O

nline L
ibrary on [17/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/scientificamerican0177-110
https://doi.org/10.1016/0378-4371(82)90359-4
https://doi.org/10.1016/0378-4371(82)90359-4
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1139/p85-208
https://doi.org/10.1016/0375-9601(86)90611-0
https://doi.org/10.1007/s10955-016-1680-z
https://doi.org/10.1038/324048a0
https://doi.org/10.1038/324048a0
https://doi.org/10.1016/0022-5088(71)90179-2
https://doi.org/10.1038/35046202
https://doi.org/10.1038/35046202
https://doi.org/10.1103/PhysRevLett.55.2883
https://doi.org/10.1103/PhysRevB.48.13159
https://doi.org/10.1103/PhysRevB.48.13159
https://doi.org/10.1007/BF02847665
https://doi.org/10.1143/JPSJ.79.073601
https://doi.org/10.1143/JPSJ.79.073601
https://doi.org/10.1103/PhysRevLett.58.706
https://doi.org/10.1103/PhysRevLett.58.706
https://doi.org/10.1103/PhysRevA.46.R2984
https://doi.org/10.1038/s41586-021-03700-2
https://doi.org/10.1038/s41586-021-03700-2
https://doi.org/10.1021/jacs.9b00843
https://doi.org/10.1017/S0022112094003642
https://doi.org/10.1103/PhysRevLett.79.1261


[34] A. Uri, S. C. de la Barrera, M. T. Randeria, D. Rodan-Legrain, T.
Devakul, P. J. D. Crowley, N. Paul, K. Watanabe, T. Taniguchi,
R. Lifshitz, L. Fu, R. C. Ashoori, P. Jarillo-Herrero, Nature 2023,
620, 762–767.

[35] D. Shechtman, I. Blech, Metall. Trans. A 1985, 16, 1005–1012.
[36] P. W. Stephens, A. I. Goldman, Phys. Rev. Lett. 1986, 57, 2331.
[37] L. Pauling, Nature 1985, 317, 512.
[38] L. Pauling, Phys. Rev. Lett. 1987, 58, 365.
[39] P. Bak, Phys. Rev. Lett. 1986, 56, 861.
[40] J. W. Cahn, D. Gratias, B. Mozer, J. de Physique 1988, 49, 1225.
[41] M. Duneau, C. Oguey, J. de Physique 1989, 50, 135.
[42] H. Takakura, C. P. Gomez, A. Yamamoto, M. De Boissieu, A. P.

Tsai, Nat. Mater. 2007, 6, 58.
[43] A. Katz, D. Gratias, J. Non-Cryst. Solids 1993, 153, 187.
[44] M. Quiquandon, D. Gratias, Phys. Rev. B 2006, 74, 214205.
[45] M. Mihalkovič, M. Widom, Phys. Rev. Res. 2020, 2, 013196.
[46] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
[47] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
[48] J. Behler, M. Parrinello, Phys. Rev. Lett. 2007, 98, 146401.
[49] R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse, M. Bokdam,

Phys. Rev. Lett. 2019, 122, 225701.
[50] J. Friedel, Nuovo Cimento Suppl. 1958, 7, 287.
[51] N. W. Ashcroft, J. Lekner, Phys. Rev. 1966, 145, 83.
[52] J. Hafner, From Hamiltonians to Phase Diagrams (Springer-

Verlag, Berlin, 1987).
[53] J. A. Moriarty, Phys. Rev. B 1977, 16, 2537.
[54] R. Phillips, M. Widom, J. Non-Cryst. Solids 1993, 153–154, 416.
[55] M. Mihalkovič, W.-J. Zhu, C. Henley, R. Phillips, Phys. Rev. B

1996, 53, 9021.
[56] J. A. Moriarty, M. Widom, Phys. Rev. B 1997, 56, 7905.
[57] M. Widom, I. Al-Lehyani, J. A. Moriarty, Phys. Rev. B 2000, 62,

3648.
[58] M. Mihalkovič, C. L. Henley, Phys. Rev. B 2012, 85, 092102.
[59] M. Mihalkovič, M. Widom, Rend. Fis. Acc. Lincei 2023.
[60] T. Ishimasa, A. Hirao, T. Honma, M. Mihalkovič, Phil. Mag.

2011, 91, 2594.
[61] M. Mihalkovič, J. Richmond-Decker, C. Henley, M. Oxborrow,

Phil. Mag. 2014, 94, 1529.
[62] M. De Boissieu, S. Francoual, M. Mihalkovič, K. Shibata, A. Q.

Baron, Y. Sidis, T. Ishimasa, D. Wu, T. Lograsso, L.-P. Regnault,
et al., Nat. Mater. 2007, 6, 977.

[63] M. Mihalkovič, C. L. Henley, Phil. Mag. 2011, 91, 2548.
[64] M. Feuerbacher, C. Thomas, J. P. Makongo, S. Hoffmann, W.

Carrillo-Cabrera, R. Cardoso, Y. Grin, G. Kreiner, J.-M. Joubert,
T. Schenk, et al., Zeit. Krist. 2007, 222, 259.

[65] M. Mihalkovič, C. Henley, Phys. Rev. B 2013, 88, 064201.
[66] M. Mihalkovič, M. Widom, C. L. Henley, Phil. Mag. 2011, 91,

2557.
[67] M. Widom, Phil. Mag. 2008, 88, 2339.
[68] S. Naidu, M. Mihalkovič, M. Widom, Phys. Rev. B 2005, 71,

224207.
[69] P. Bak, Phys. Rev. B 1985, 32, 5764.
[70] T. C. Lubensky, S. Ramaswamy, J. Toner, Phys. Rev. B 1985, 32,

7444.
[71] M. Mihalkovič, W.-J. Zhu, C. Henley, M. Oxborrow, Phys. Rev.

B 1996, 53, 9002.
[72] M. Mihalkovič, I. Al-Lehyani, E. Cockayne, C. L. Henley, N.

Moghadam, J. A. Moriarty, Y. Wang, M. Widom, Phys. Rev. B
2002, 65, 104205.

[73] C. Henley, M. Mihalkovič, M. Widom, J. Alloys Compd. 2002,
342, 221.

[74] I. Al-Lehyani, M. Widom, Phys. Rev. B 2003, 67, 014204.
[75] M. Widom, I. Al-Lehyani, M. Mihalkovič, J. Non-Cryst. Solids

2004, 334–335, 86.
[76] J. Roth, C. L. Henley, Phil. Mag. A 1997, 75, 861.
[77] R. H. Swendsen, J.-S. Wang, Phys. Rev. Lett. 1986, 57, 2607.
[78] A. D. Kim, M. Widom, Phys. Rev. Mater. 2023, 7, 063803.
[79] M. Mihalkovič, C. L. Henley, M. Widom, J. Non-Cryst. Solids

2004, 334–335, 177.
[80] E. Cockayne, M. Widom, Phil. Mag. A 1998, 77, 593.
[81] E. Cockayne, M. Widom, Phys. Rev. Lett. 1998, 81, 598.
[82] D. Frenkel, B. Smit, Understanding Molecular Simulation: From

Algorithms to Applications (Elsevier, 2001).
[83] A. Reinhardt, F. Romano, J. P. K. Doye, Phys. Rev. Lett. 2013,

110, 255503.
[84] H. Pattabhiraman, A. P. Gantapara, M. Dijkstra, J. Chem. Phys.

2015, 143, 164905.
[85] B. Fultz, Prog. Mater. Sci. 2010, 55, 247.
[86] C. Wolverton, V. Ozoliņš, Phys. Rev. Lett. 2001, 86, 5518.
[87] Y. Huang, M. Widom, Entropy 2022, 24, 618.
[88] M. Widom, “Prediction of structure and phase transformations”,

(Springer, 2015) Chap. 8 in High Entropy Alloys: fundamentals
and applications, eds. Gao, Yeh, Liaw and Zhang.

Manuscript received: August 17, 2023
Revised manuscript received: September 14, 2023

Version of record online: ■■■, ■■■■

Review

Isr. J. Chem. 2023, e202300122 (8 of 8) © 2023 The Authors. Israel Journal of Chemistry published by Wiley-VCH GmbH.

 18695868, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijch.202300122 by C

arnegie M
ellon U

niversity, W
iley O

nline L
ibrary on [17/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/s41586-023-06294-z
https://doi.org/10.1038/s41586-023-06294-z
https://doi.org/10.1007/BF02811670
https://doi.org/10.1103/PhysRevLett.57.2331.2
https://doi.org/10.1038/317512a0
https://doi.org/10.1103/PhysRevLett.58.365
https://doi.org/10.1103/PhysRevLett.56.861
https://doi.org/10.1051/jphys:019880049070122500
https://doi.org/10.1051/jphys:01989005002013500
https://doi.org/10.1038/nmat1799
https://doi.org/10.1016/0022-3093(93)90340-4
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1007/BF02751483
https://doi.org/10.1103/PhysRev.145.83
https://doi.org/10.1103/PhysRevB.16.2537
https://doi.org/10.1016/0022-3093(93)90386-C
https://doi.org/10.1103/PhysRevB.56.7905
https://doi.org/10.1103/PhysRevB.62.3648
https://doi.org/10.1103/PhysRevB.62.3648
https://doi.org/10.1080/14786435.2010.509287
https://doi.org/10.1080/14786435.2010.509287
https://doi.org/10.1038/nmat2044
https://doi.org/10.1080/14786430802247163
https://doi.org/10.1103/PhysRevB.32.5764
https://doi.org/10.1103/PhysRevB.32.7444
https://doi.org/10.1103/PhysRevB.32.7444
https://doi.org/10.1016/S0925-8388(02)00199-8
https://doi.org/10.1016/S0925-8388(02)00199-8
https://doi.org/10.1016/j.jnoncrysol.2003.11.018
https://doi.org/10.1016/j.jnoncrysol.2003.11.018
https://doi.org/10.1080/01418619708207207
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1080/01418619808224071
https://doi.org/10.1103/PhysRevLett.81.598
https://doi.org/10.1016/j.pmatsci.2009.05.002
https://doi.org/10.1103/PhysRevLett.86.5518
https://doi.org/10.3390/e24050618


REVIEW
M. Widom, M. Mihalkovič

1 – 9

Quasicrystal Structure Prediction:
A Review

 18695868, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijch.202300122 by C

arnegie M
ellon U

niversity, W
iley O

nline L
ibrary on [17/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


