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Mean-field density functional theory of a three-phase contact line
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A three-phase contact line in a three-phase fluid system is modeled by a mean-field density functional theory.
We use a variational approach to find the Euler-Lagrange equations. Analytic solutions are obtained in the
two-phase regions at large distances from the contact line. We employ a triangular grid and use a successive
overrelaxation method to find numerical solutions in the entire domain for the special case of equal interfacial
tensions for the two-phase interfaces. We use the Kerins-Boiteux formula to obtain a line tension associated with
the contact line. This line tension turns out to be negative. We associate line adsorption with the change of line
tension as the governing potentials change.
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I. INTRODUCTION

Studies of contact angle play an important role for the
understanding of wetting phenomena in many systems, such as
adhesives [1], liquid droplet spreading [2], and cell adhesion
[3]. Although contact angles can be measured, their theoretical
computation can be complicated. They are affected by many
factors, such as surface tension, line tension, temperature, com-
position of the system, and impurities, especially surfactants.
Here, we focus our attention on a three-phase fluid system
(Fig. 1), where the three-phase contact line (briefly, contact
line) is the line where three interfaces and bulk phases meet.
In this case, line tension is the excess grand potential per
unit length of the contact line, which is a collective effect
arising from inhomogeneities of intermolecular forces around
the contact line, such as van der Waals, hydration, electrostatic,
and steric forces (see [1]). The relevant forces can be short
range [4–8], or long range, the latter of which have been treated
by the membrane method [9–15] or in terms of interacting
surfaces [16–20]. For a review see [21]. In this paper, we deal
only with short range forces so the problem can be formulated
in terms of local densities.

We model our system containing a three-phase contact line
in the framework of general mean-field density functional
theory by means of a diffuse interface model, where the
imbalance of intermolecular forces is modeled by a potential
function and a gradient energy of the chemical constituents.
Thermodynamic-based functional theories incorporated with
diffuse interfaces were first introduced by Lord Rayleigh [22],
followed by many others [23–26]. They show good agreement
with available experiments (see [21]). For a comprehensive
introduction of density functional methods to problems in-
volving interfaces, see Rowlinson and Widom [27]. Similar
methods, known as phase-field models [28,29], have been
introduced to solve dynamical problems, such as moving
boundary problems [30–32]. Our model relates to a ternary
solution (actually a pseudobinary) and employs a different
potential from that of Widom et al. [7], which is also a
two-density model. Our potential is symmetric in the densities
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and is easy to relate analytically to measurable physical
quantities in the far-field limit.

We consider three bulk fluid phases in a multicomponent
system. As illustrated in Fig. 1, the geometry of the system
is a triangular prism. The three planer interfaces αβ, βγ ,
and γα meet at a three-phase contact line of length L and
divide the system into three bulk phases α, β, and γ , which
subtend dihedral angles θα , θβ , and θγ . Each of the interfaces
is perpendicular to one of the lateral faces of the prism. The
base and the cap of the prism are Neumann triangles, which
are perpendicular to the contact line and the three interfaces.
The distances from the contact line to the lateral boundaries
of the domain are Rαβ , Rβγ , and Rγα . LRij is the area of the
interface ij . We treat this system in a regime where gravity
is negligible. Due to the translational symmetry along L,
the problem is effectively two-dimensional. Ultimately we
consider the limit in which all Rij → ∞.

Classically, the problem is usually treated by regarding the
interfaces to be mathematical planes (zero thickness). Since
the interfacial tension is the excess grand potential per unit
area, the equilibrium angles can be obtained by requiring zero
variation of the excess grand potential for an infinitesimal
variation of the location of the three-phase contact line. The
well-known result is

sin θα

σβγ

= sin θβ

σαγ

= sin θγ

σαβ

, (1)

where σαβ , σβγ , and σαγ are the interfacial tensions. In this way,
the interfacial tensions can be related to a Neumann triangle,
whose three side are proportional the interfacial tensions
and whose three angles are the supplementary angles of the
three dihedral angles. For example, in Fig. 1, φβ = π − θβ .
However, the classical model does not include the diffuse
nature of the interface, nor possible complexity near the contact
line.

II. DENSITY FUNCTIONAL MODEL

We are interested in a thermodynamically based description
of a system which is inhomogeneous because of the interfaces
and the three-phase contact line. We follow the thermodynamic
methods of Gibbs, which amounts to choosing the grand
canonical ensemble [[33], p. 228] in statistical mechanics.
Thus, densities of chemical components as well as entropy
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FIG. 1. Geometry of a system with a three-phase contact line and
three interfaces within a triangular prism. The contact line is a straight
line perpendicular to the base and the cap of the prism, which are
Neumann triangles, and each of the interfaces is also perpendicular
to the lateral boundary of the prism. The regions divided by the three
interfaces contain the three bulk phases, which are labeled by α, β,
and γ . θα , θβ , and θγ are the equilibrium dihedral angles among
the interfaces, and φα , φβ , φγ are the corresponding supplementary
angles. L is the length of the contact line, and Rαβ , Rβγ , and Rγα

are the distances from the contact line to the three lateral faces of the
prism. We assume translational symmetry along L, so the problem is
two-dimensional.

density are allowed to vary, while the conjugate field variables
are held fixed. Assuming that the grand potential of the entire
system exists, the excess grand potential 	xs due to the
inhomogeneity of the system can be defined as

	xs = 	 − 	b, (2)

where 	 is the grand potential of the entire system and 	b

is the sum of the grand potentials of the three bulk phases
as if they shared the entire volume. Due to the homogeneity
of the bulk phases, we have 	b = −pV , where p and V are
the common pressure and the total volume of the bulk phases,
respectively. Thus,

	xs = 	 + pV. (3)

By convention [[27], Chap. 8], 	xs can be regarded as arising
from two kinds of inhomogeneities, one associated with the
contact line and the other associated with the interfaces, i.e.,

	xs = Lτ + LRαβσαβ + LRβγ σβγ + LRγασγα, (4)

where τ is the line tension, and σij is the interfacial tension of
the interface ij far from the contact line. L and Rij are defined
in Fig. 1. According to this convention, τ is defined as if the
interfaces, with their far-field values of σij , extend all the way
to the contact line where they meet. The form (4) of excess
grand potential is to be understood in the limit of all Rij → ∞.

Following Rowlinson and Widom [27] we assume that 	xs

can be expressed as the integral of a density ψ(x) of the excess
grand potential, so

	xs = L

∫
ψ(x)dA. (5)

In mean-field density functional theory, ψ(x) is assumed to be a
functional of the number densities of the chemical components
ρi , i = 1,2, . . . ,c, for a c-component system, and ρc+1 = s,
the entropy density. Symbolically,

ψ(x) = ψ
[{ρi(x)}i=1,...,c+1

]
, (6)

which also depends on the set of conjugate field variables
{μi}i=1,...,c+1, where μ1,μ2, . . . ,μc are chemical potentials
and μc+1 = T , the temperature. ψ(x) is a function of densities
and field variables plus a gradient energy correction,

ψ(x) = F
({ρi(x)}i=1,...,c+1

) + G
({∇ρi(x)}i=1,...,c+1

)
, (7)

where F is a local density of the excess grand potential,
an approximation sometimes called point thermodynamics
[[27], p. 43], and G is the density of gradient energy, which
is usually taken to be a linear function of the |∇ρi(x)|2. The
minimization of 	xs is analogous to the minimization of the
integral of a Lagrangian, whose role here is played by ψ(x).
Then, the terms in |∇ρi(x)|2 play the role of kinetic energies
and F plays the role of the negative of the potential energy.

For a homogeneous bulk phase, there is no gradient energy
and the excess grand potential density ψ(x) = F = 0, where

F = ω + p = e − T s −
c∑

i=1

μiρi + p

= e −
c+1∑
i=1

μiρi + p = 0 (bulk phase). (8)

Here ω is the uniform density of the grand potential, whereas
e, s, and ρi are the densities of the internal energy, the entropy,
and the chemical constituents that are uniform in each bulk
phase. Assuming the densities of the state variables for the
inhomogeneous part of the system have a similar relation to
those in the bulk phases, we approximate F for the entire
system as

F = e −
c∑

i=1

μiρi − T s + p = e −
c+1∑
i=1

μiρi + p, (9)

where e = e({ρi(x)}i=1,...,c+1) is the nonconvexified internal
energy as a function of the nonuniform c + 1 densities.
Since p = p({μi}i=1,...,c+1) is the common pressure of the
bulk phases, it only depends on the set {μi}. In general,
e({ρi(x)}i=1,...,c+1) is a nonconvex function that has three
potential wells and the bulk phases are given by a common
tangent plane construction. Thus, F � 0 because the terms
−T s − ∑c

i=1 μiρi + p represent the subtraction of the com-
mon tangent plane of the bulk phases from the nonconvexified
internal energy. Therefore, the three potential wells that
correspond to the bulk phases are located at F = 0, where
each is locally tangent to that plane. Note that e − T s is
the Helmholtz free energy density, as for a bulk phase. By
means of an approximation discussed by [[27], p. 60] and [34],
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we can reduce this model that depends on c + 1 densities to
an approximate model that depends on only c densities, ρ1,
ρ2, . . . , and ρc. This amounts to assuming that ∂e/∂s = T , as
it would for a bulk phase [35]. Thus, ∂(e − T s)/∂s = 0, so the
form (7) of ψ(x) is approximated by

ψ(x) = F
({ρi(x)}i=1,...,c

) + G
({∇ρi(x)}i=1,...,c

)
, (10)

where G, as a correction of F , is assumed to be only a function
of the gradients of c densities as well. F also depends on the
fields μi and T .

A. Model for uniform molar volume

In this paper, we treat a ternary system under the constraint
of constant and uniform total molar volume. We obtain a
tractable problem by introducing an explicit potential that is
symmetric with respect to the three chemical components.

For a ternary system, c = 3. Under the simplifying con-
straint of constant total molar volume,

ρ1 + ρ2 + ρ3 = ρ = constant. (11)

With this constraint, the system we treat is actually a
pseudobinary system that can be described by two independent
concentrations, say ρ1 and ρ2. Moreover, this constraint means
that the conjugate thermodynamic variables of ρ1 and ρ2

are the chemical potential differences M1 = μ1 − μ3 and
M2 = μ2 − μ3, where the μi would correspond to a system
with variable molar volume. In symmetric form, our potential
is

F (ρ1,ρ2,ρ3) = B

3∑
i=1

(ρi − ρa)2(ρi − ρb)2

ρ4
, (12)

where B is constant with the units of energy per unit volume,
and ρa and ρb are parameters (units of concentration), which
may depend on T and the Mi . By imposing the constraint ρa +
2ρb = ρ, we locate the three wells at symmetric positions.

We introduce the notation Xi ≡ ρi/ρ as the mole fraction
of chemical constituent i ranging from 0 to 1, a = ρa/ρ, and
b = ρb/ρ = (1 − a)/2. The constraint (11) reduces to X1 +
X2 + X3 = 1. The potential (12) can be expressed as

F

B
= f (X1,X2,X3) =

3∑
i=1

(Xi − a)2(Xi − b)2. (13)

The function f (X1,X2,X3) was originally introduced by
Eldred [36]. In terms of independent variables, one has a

FIG. 2. Gibbs triangle. The summation of the distances from any
point (X1,X2,X3) inside the triangle to the three sides of the triangle
is equal to one; i.e., X1 + X2 + X3 = 1.

(a) (b)

FIG. 3. (Color online) The threefold symmetric potential with
contours plotted on the base of the Gibbs triangle. (a) For a = 2/3,
the three minima are located between vertices and the center. There
is a local maximum at the center. (b) For a = 1/6, the three minima
are located between the mid edges and the center.

two-variable function,

f (X1,X2) ≡ f (X1,X2,1 − X1 − X2). (14)

The combination of (X1,X2,X3) can be illustrated by a point
in the Gibbs triangle as shown in Fig. 2. The compositions
of the bulk phases are (a,b,b), (b,a,b), and (b,b,a). When
a > 1/3, the three minima are located between vertices and
the center of the Gibbs triangle, as illustrated in Fig. 3(a).
The potential has a local maximum at X1 = X2 = X3 = 1/3.
For a < 1/3, the three minima are rotated by 30◦ to positions
between mid edges and the center of the Gibbs triangle, as
illustrated in Fig. 3(b).

In the reduced approximation (10) of ψ(x), we assume
that the gradient energy density is a linear function of the
squares of the gradients of the mole fractions of each chemical
component:

G

B
= g(∇X1,∇X2,∇X3) =

3∑
i=1

�2
i

2
|∇Xi |2 , (15)

where �i are positive constants (with dimensions of length)
associated with each chemical component. With the constraint
∇X3 = −∇X1 − ∇X2, the form (15) of gradient energy
density turns into a two-variable function,

g(∇X1,∇X2) ≡ g(∇X1,∇X2, − ∇X1 − ∇X2). (16)

Thus, by inserting the explicit forms of potential (13) and
gradient energy density (15) into the form (10) of ψ(x), the
excess grand potential in our model (5) becomes

	xs = BL

∫
A

[f (X1,X2) + g(∇X1,∇X2)] dA. (17)

B. Euler-Lagrange equations

In equilibrium, we require δ	xs = 0 for infinitesimal
variations of X1 and X2. To constrain total mole number of a
finite system, we could add two Lagrange multipliers for X1

and X2 to the integrand. However, we effectively work on an
open system with infinite domain and fixed parameters μi and
T , so particle conservation is not an issue and the Lagrange
multipliers are effectively zero. From another point of view,
the bulk phase is reached when the distance from the three-
phase contact line to the boundary is large compared to the
diffuse region of the contact line. This implies that the mole
fractions should satisfy the boundary condition ∇Xi · n̂ = 0,
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FIG. 4. Diagram of a transition between two bulk phases at a
distance far from the three-phase contact line. In a far-field limit,
the transition from bulk phase β to bulk phase α is represented by
the transition between two wells from minimum (b,a,b) to minimum
(a,b,b) in the Gibbs triangle. This corresponds to the transition along a
one-dimensional coordinate s perpendicular to the interface in spatial
space. Here, w is the width of an area at a distance far from the contact
line.

where n̂ is the unit outward normal to the physical domain.
Thus, we obtain two coupled Euler-Lagrange equations

∂f

∂X1
− (

�2
1 + �2

3

)∇2X1 − �2
3∇2X2 = 0,

(18)
∂f

∂X2
− (

�2
2 + �2

3

)∇2X2 − �2
3∇2X1 = 0.

C. Asymptotic analysis in far field

In order to make a connection with the sharp interface
limit of our mean-field density model, we consider a transition
from phase β to phase α in the far-field regime, which is far
from the three-phase contact line relative to the interfacial
width. This is illustrated in Fig. 4, which corresponds to the
transition from the minimum of one well to the minimum
of another. Consistent with our potential function, X3 = b is
a constant in this region, which also satisfies the boundary
condition ∇X3 · n̂ = 0. Therefore, the problem is essentially a
one-dimensional problem in a single variable, which we take
to be X1.

With X3 = b, we replace X2 = 1 − b − X1, and substitute
∇2Xi = d2Xi/ds2 in the form of (17) of excess grand
potential, where s is a coordinate perpendicular to the αβ

interface measured from β to α. The excess grand potential in
the far-field regime reduces to

	xs = BLw

∫ [
H (X1) + α12

2

(
dX1

ds

)2 ]
ds, (19)

where w is the width of an area in the far-field regime as
indicated in Fig. 4, H (X1) ≡ 2(X1 − a)2(X1 − b)2, and α12 ≡
�2

1 + �2
2. The limits of integration are effectively from −∞ to

∞.
In equilibrium, we require δ	xs = 0 for an infinitesimal

variation of X1 and obtain the Euler-Lagrange equation in the
far-field limit:

H ′(X1) = α12
d2X1

ds2
. (20)

Then, we multiply by dX1/ds and integrate to obtain

H (X1) = α12

2

(
dX1

ds

)2

, (21)
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FIG. 5. Asymptotic far-field solutions for the mole fractions XI

at the αβ interfaces, for a = 2/3. s is the distance from β to α

perpendicular to the αβ interface.

where the integration constant is zero because H (a) = H (b) =
0 and the slope dX1/ds is zero for X1 = a and X1 = b.

By solving (21), we obtain the far-field solution for X1 at
the αβ interface,

X1(s) = a + b

2
+ a − b

2
tanh

[
s

δint,αβ

]
, (22)

where we choose s = 0 as X1 = (a + b)/2 and define the
interfacial width parameter of the αβ interface as

δint,αβ ≡
√

α12

|a − b| =
√

�2
1 + �2

2

|a − b| . (23)

Of course, X2 = 1 − b − X1. These analytic solutions were
originally found by Eldred [36]. Analytical far-field solutions
for density profiles and interfacial tensions for a symmetric
three-phase contact line but a different potential were obtained
by Szleifer and Widom [7]. Note that when a = b = 1/3,
the interfacial widths diverge. The contact line and the three
interfaces vanish. In this case, the three chemical constituents
have mole fractions of 1/3 distributed uniformly over the entire
system.

As illustrated in Fig. 5, when s is negative infinity, we
have X1 = b and X2 = a, which indicates the β bulk phase.
In contrast, when s is positive infinity, we obtain X1 = a and
X2 = b, which refers to the α bulk phase. Similarly, we can
apply the same analysis for the other two interfaces and obtain
solutions for X1, X2, and X3 in the far-field limit.

The definition of interfacial tension is the excess grand
potential per unit area of interface. Thus, by inserting the
relation (21) that connects potential and gradient density into
the excess grand potential (19), the interfacial tension of the
αβ interface can be expressed as

σαβ = 	xs

Lw
= B

∫ ∞

−∞

[
H (X1) + α12

2

(
dX1

ds

)2 ]
ds

= Bα12

∫ ∞

−∞

(
dX1

ds

)2

ds = B
√

α12

∫ a

b

√
2H (X1)dX1.

(24)

After integration, the interfacial tension of the αβ interface is
found to be

σαβ = |a − b|3
3

B
√

α12 = |3a − 1|3
24

B

√
�2

1 + �2
2. (25)
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The interfacial tensions of the βγ interface and the γα

interface can be obtained similarly. Consistent with the
classical relation of equilibrium angles (1), the equilibrium
angles in our model obey

sin θα√
�2

2 + �2
3

= sin θβ√
�2

1 + �2
3

= sin θγ√
�2

1 + �2
2

. (26)

III. NUMERICAL ANALYSIS FOR SYMMETRIC
THREE-PHASE CONTACT LINE

Due to the nonlinearity of the Euler-Lagrange equa-
tions (18), one cannot obtain an analytic solution for the entire
domain containing the three-phase contact line. We consider
a simplified symmetric contact line centered in an equilateral
triangular prism.

Let �1 = �2 = �3 ≡ �, where � is a characteristic length. For
convenience, we define the dimensionless coordinate r ′ ≡ r/�,
and ∇′2 ≡ �2∇2. Thus, the dimensionless form of the excess
grand potential (17) is given by

	′
xs ≡ 	xs

BL�2
=

∫
A

[f (u,v) + ḡ(∇′u,∇′v)]dA′, (27)

where A′ ≡ A/�2, and, for convenience of writing, we define
u = X1 and v = X2; then f (u,v) is the potential (14), and
ḡ(∇′u,∇′v) is the symmetric version of the gradient energy
density (16), but in the form

ḡ(∇′u,∇′v) ≡ |∇′u|2 + |∇′v|2 + ∇′u · ∇′v. (28)

Similarly, the Euler-Lagrange equations (18) can be diagonal-
ized and take the dimensionless form

∇′2X1 − 2

3

∂f

∂X1
+ 1

3

∂f

∂X2
= 0,

(29)

∇′2X2 + 1

3

∂f

∂X1
− 2

3

∂f

∂X2
= 0.

The dimensionless interfacial width parameter is

δ′
int =

√
2/|a − b|. (30)

Because of the threefold symmetry of our system for a
symmetric three-phase contact line, and the fact that the Lapla-
cian operator is well behaved on a triangular grid, we employ
an equilateral triangular grid to resolve our special geometry.
The computational domain is chosen as an equilateral triangle
with physical dimension large compared to the dimensionless
interfacial width (30), and the grid points are determined by
filling out smaller triangles with nondimensional length d ′ as
shown in Fig. 6. There are N grid points on each domain edge,
which is of length H ′ = (N − 1)d ′ and perpendicular to one of
the interfaces. The distance from the contact line to each of the
outer edges is R′ = (N − 1)d ′/(2

√
3). For convenience, we

make a special choice of grid points to allow the grid points
to lie at important points of our system, such as the center
of the contact line and the transition points of the far-field
interfaces. To do this, the number of grid points on each edge
is chosen to be N = 6m + 1, where m is an integer. Therefore,
the dimensionless size of each edge of the outer triangle is
H ′ = 6md ′ and the dimensionless distance from the contact
line to each edge of the outer triangle is R′ = √

3md ′.

FIG. 6. A small triangular grid. The triangular domain is filled
out by small triangles with dimensionless edge length d ′. For conve-
nience, each edge of the outer triangular domain is perpendicular to
an interface. Also, by specific choice, the geometric center and the
interfacial centers of every edge are on grid points. The triangular
grid follows the rule that the number of grid points on each edge
is N = 6m + 1, where m is an integer. Here we take m = 1 for
illustrative purposes only.

The asymptotic far-field solution approaches an effectively
one-dimensional two-phase problem. The interfacial width is
small compared to the distance from the three-phase contact
line. This setup makes the far-field solutions easy to apply at
the boundary of the domain. Also, the corner regions of the
large triangular domain approach the bulk phases, where our
potential vanishes.

A. Consistent discretization

To discretize the Euler-Lagrange equations (29), for a
symmetric three-phase contact line based on the triangular
grid in Fig. 6, we employ a variation of the discrete form of
the excess grand potential to avoid inconsistent discretization
of the potential of f and the gradient energy g. We approximate
u and v as planer functions in the region of each small triangle
of the triangular grid. Then, the value of u and v at the central
point n is defined as un ≡ ∑

m∈V (n) um/3 and
∑

m∈V (n) vm/3,
where V (n) is the set of vertices of the small triangle denoted
by its center point n [see Fig. 7(a)]. The discrete form of
the dimensionless excess grand potential (17) is approximated
by evaluating the integrand at the central point of each small
triangle,

	′
xs ∼

∑
n∈CP

(fn + ḡn)�, (31)

where CP is the set of the central points of the small triangles
over the entire triangular grid in Fig. 6; � is the area of each
small triangle; fn ≡ f (un,vn) and ḡn ≡ ḡ((∇′u)n,(∇′v)n).
Since u and v are approximated by planer functions, we obtain

ḡn � 2

3d ′2
∑

(j,k)∈PV(n),j �=k

[(uj − uk)2

+ (vj − vk)2 + (uj − uk)(vj − vk)], (32)
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FIG. 7. (a) A small triangle in the grid of the physical domain.
Each equilateral small triangle has edge length d ′ and is denoted by
its center point n. V (n) ≡ {h1,h2,h3} is the set of vertices of the small
triangle denoted by n. (b) The nearest neighbors and the nearest center
points for a site i in a triangular grid. NCP(i) ≡ {n1,n2,n3,n4,n5,n6}
is the set of the nearest center points for the site i, and NN(i) ≡
{m1,m2,m3,m4,m5,m6} is the set of nearest neighbors for the site i.

where PV(n) is the set of pairs of the vertices V (n) [Fig. 7(a)]
of the small triangle n with edge d ′.

At equilibrium, we require δ	′
xs = 0 for the discrete

form (31) of the excess grand potential. From the chain rule,
this is equivalent to the vanishing of the sum of the variations
of all of the unknowns (ui,vi) for each internal site i of the
triangular grid. According to the approximations (32) of the
gradient energy density and requiring the coefficients of δui

and δvi to vanish, we obtain the discrete Euler-Lagrange
equations for each site i (each internal grid point of the
triangular grid),

(∇′2u)i − 2

3

(
∂f

∂u

)
NCP(i)

+ 1

3

(
∂f

∂v

)
NCP(i)

= 0,

(33)

(∇′2v)i + 1

3

(
∂f

∂u

)
NCP(i)

− 2

3

(
∂f

∂v

)
NCP(i)

= 0,

where (∂f/∂u)NCP(i) ≡ ∑
n∈NCP(i) (∂f/∂u)n/6 and

(∂f/∂v)NCP(i) ≡ ∑
n∈NCP(i) (∂f/∂v)n/6 are the averages

of ∂f/∂u and ∂f/∂v over the six nearest center points of each
site i, NCP(i) [Fig. 7(b)]. The approximate Laplacian operators
according to second order Taylor’s series expansions are
(∇′2u)i ≡ 4(uNN(i) − ui)/d ′2 and (∇′2v)i ≡ 4(vNN(i) − vi)/d ′2,
where uNN(i) ≡ ∑

m∈NN(i) um/6 and vNN(i) ≡ ∑
m∈NN(i) vm/6

are the averages of u and v over the six nearest neighbors of
each site i, NN(i) [Fig. 7(b)].

Note that the discrete Euler-Lagrange equations (33) are
similar to the analytic form (29), except ∂f/∂X1 and ∂f/∂X2

are replaced by the average values over the six nearest central
points. After we apply the asymptotic far-field solutions as
the boundary conditions of the system of algebraic equations
for the triangular grid, there are (N − 2)(N − 3) algebraic
equations for the whole domain.

B. Successive overrelaxation method

To solve the system of coupled algebraic equations, we
apply the method of successive overrelaxation (SOR) [37,38].

We define error equations for the diagonalized form of the
discrete Euler-Lagrange equations (33):

(ru)i = (∇′2u)i − λ

3

[
2

(
∂f

∂u

)
NCP(i)

−
(

∂f

∂v

)
NCP(i)

]
,

(34)

(rv)i = (∇′2v)i − λ

3

[
−

(
∂f

∂u

)
NCP(i)

+ 2

(
∂f

∂v

)
NCP(i)

]
,

where 0 � λ � 1 is an adjustable parameter used to implement
our numerical technique, and (ru)i and (rv)i are the residues
that we try to make as small as practical.

In the form (34) of error equations, (∂f/∂u)NCP(i) and
(∂f/∂v)NCP(i) are polynomials of the mole fractions. To avoid
the complexity of numerical calculation due to the nonlinearity
of these terms, at the beginning, λ is set to be zero. After solving
this simplest version of the equation by SOR, we apply that
solution as the initial values of SOR for new equations in which
λ is increased by a small fraction of 1, and solve the equations
again. Then, we gradually enlarge λ and repeat this procedure
until λ reaches one.

In the updating process of SOR, we first input guessed
numbers of ui and vi as initial values into error equations (34)
for every site in the grid. Then, we update ui and vi for each
site by

unew
i = uold

i − q
d ′2

4
(ru)i ,

(35)

vnew
i = vold

i − q
d ′2

4
(rv)i ,

where q = 1.86 [39]. We repeat this procedure until the values
of ui and vi at every site converge.

To check convergence, we study the norm of errors after
every iteration. The norms are defined as

‖ru‖ =
√∑Ntot

i=1(ru)i
Ntot

and ‖rv‖ =
√∑Ntot

i=1(rv)i
Ntot

. (36)

Then the convergence criteria can be defined as ‖ru‖ and ‖rv‖
are simultaneously smaller than ε, where ε is a small number.
Alternatively, this means ‖unew

i − uold
i ‖ and ‖vnew

i − vold
i ‖ are

simultaneously smaller than qd ′2ε/4.

C. Contours and profiles

Here, we present a numerical solution obtained from SOR.
The numerical input is a = 2/3, d ′ = 0.1, and m = 180. The
error tolerance ε is 10−8. Then the domain edge H ′ = 108 is
large compared to the interfacial width parameter δ′

int = 2
√

2.
Solutions for X2 and X3 are just the rotation of the solution of
X1 by 120◦ and 240◦. The solution for X1 in Fig. 8(a) reveals
the nature of diffuse interfaces. There is bending and slight
widening of the diffuse region for X1 near the three-phase
contact line, which is quantified by the interfacial width defined
from 10% to 90% isoconcentration lines. The width at the
boundary, δ′

10−90%,b, is about 6.21 ≈ 2.20δ′
int. For comparison,

the width at the contact line, δ′
10−90%,t ≈ 7.37 ≈ 2.61δ′

int, is
about 20% larger. δ′

10−90%,t is small compared to the distance
from the outer domain boundary to the contact line along
any interface, which is R′ ≈ 31.2 ≈ 11.0δ′

int. Also, the profile
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FIG. 8. (a) Contour plot of the numerical solution of X1 for a =
2/3, m = 180, and d ′ = 0.1. Here, N = 1081 and b = 1/6. x ′ ≡
x/� and y ′ ≡ y/� are the dimensionless Cartesian coordinates. The
domain edge is H ′ = 108, which is large compared to the interfacial
width parameter δ′

int = 2
√

2. The contours are evenly spaced from
10% to 90% of a − b. Note that the interfacial width defined by the
difference between 10% and 90% at the boundary, δ′

10−90%,b, is around
2.20δ′

int, whereas the interfacial width at the three-phase contact line,
δ′

10−90%,t , is around 2.61δ′
int. (b) Profiles of X1 along x ′ = 0 [along

the central vertical line of (a)] and the boundary shared with α and
β phases of the numerical solution of X1 for a = 2/3, m = 180, and
d ′ = 0.1. The diffuse region of the profile along x ′ = 0 is slightly
widened and shifted compared to the profile along the boundary
shared with α and β phases.

at the contact line shifts its center compared to the one at
the boundary, as shown in Fig. 8(b). Close to the boundary,
the nearly parallel isoconcentration lines along the interfaces
show that our domain size is close to the asymptotic regime,
consistent with our intended boundary condition.

IV. LINE TENSION

A. Density functional model for line tension

The numerical results in Sec. III reveal the fact that the
actual interfacial width increases slightly while approaching
the three-phase contact line. This result is different than that

which would be obtained by extrapolation of the far-field
solution. In this section, we study the line tension which
is the excess energy per unit length associated with the
three-phase contact line. By convention, the line tension is
defined in the form (4) of the excess grand potential. For a
symmetric contact line, we let R ≡ Rαβ = Rβγ = Rγα , and
σ ≡ σαβ = σβγ = σγα . In terms of the dimensionless grand
potential (27) with R′ ≡ R/�, the dimensionless line tension
is given by

τ ′ ≡ τ

B�2
= 	′

xs − 3R′σ ′, (37)

where σ ′ is the dimensionless form of the interfacial tension
in the far-field limit (25) for a symmetric contact line; i.e.,

σ ′ ≡ σ

B�
=

√
2

3
|a − b|3 = 1√

2

(
3

2

)2 ∣∣∣∣a − 1

3

∣∣∣∣
3

. (38)

From the symmetry of ψ(x) for a symmetric contact line,
the solutions for the three mole fractions have the property
X1(r,θ ) = X2(r,θ − 2π

3 ) = X3(r,θ + 2π
3 ), which means each

of them are given by only a rotation of 2π/3 or −2π/3 from
the others. Thus, the integration in the form (17) of excess
grand potential can be divided into three equal parts. By
applying the boundary condition ∇′X · n̂ = 0, we find that∫

1
2 |∇′X1|2dA′ = − ∫

1
2X1∇′2X1dA′. Thus, the dimension-

less line tension is given by

τ ′ = 3
∫
A

[
(X1 − a)2(X1 − b)2 − 1

2
X1∇′2X1

]
dA′

−
√

2|a − b|3R′. (39)

We find, however, that evaluation of the form (39) of
dimensionless line tension is sensitive to the choice of
boundary condition, which may result from the inconsistency
between the numerical evaluation of the excess grand potential
and the analytic interfacial tension. Instead, we use a formula
for line tension derived by Kerins and Boiteux [40], which
transfers the second term of the form (39) of line tension
into a surface integral and combines it with the first term. In
this integral form, the integrands will vanish at distances far
from the three-phase contact line, which means it is insensitive
to domain size for a sufficiently large domain. According to
the Kerins-Boiteux formula, the dimensionless line tension in
given by

τ ′ =
∫

A

[−f (u,v) + g(∇′u,∇′v)]dA′. (40)

Numerically, we can discretize the integral in Eq. (40) by
employing a triangular grid as in Fig. 6, so

τ ′ ∼
∑
n∈CP

[−fn + ḡn] �, (41)

where fn and ḡn are defined in the discrete form (31) of
the excess grand potential and the approximation (32) of the
gradient energy density. Then we can utilize the numerical
method developed in Sec. III to obtain the numerical value of
dimensionless line tension in our model.
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FIG. 9. A contour plot on a logarithmic scale at the integrand of
the Kerins-Boiteux formula over a triangular domain with a threshold
of 10−8. The parameters for this calculation are m = 180, d ′ = 0.1,
and a = 2/3. The major contribution of the integrand with values
from 10−2 to 10−5 is confined in a core region with a dimension of
2 to 3 interfacial widths, δ′

int, near the three-phase contact line. The
minor contribution, which has values ranging from 10−5 to 10−8, is
outside the core region and along the three interfaces with width of
about 1.5δ′

int. This shows that the integrands within the bulk phases
are significantly smaller compared to the core region and along the
three interfaces. Also, the nonzero contours along the three interfaces
are nearly parallel near the outer boundary.

B. Evaluation of line tension

We perform a numerical evaluation of the integrand of the
discrete form (41) of the Kerins-Boiteux formula. Figure 9
shows a contour plot of the integrand on a logarithmic scale.
A similar plot on a normal scale can be found in Taylor and
Widom [35]. The integrand decays exponentially for the most
of the domain. The major contribution of the integrand is
approximately within the range from 10−2 to 10−5 at a core
region centered at the three-phase contact line with dimension
of 2 to 3 times δ′

int. The minor contribution, which is considered
to be from 10−5 to 10−8, is distributed outside the core region
and along the three interfaces with a width of about 1.5δ′

int.
The integrand in the rest of the domain is less than 10−8 and is
essentially negligible compared to the one close to the contact
line and along the three interfaces. Theoretically, the potential
and gradient energy density are zero within bulk phases and
−f + g → 0 in the interfaces far from the core, so the small
but nonvanishing values of −f + g along the interfaces results
from numerical errors. Also, we can see that the contours of the
integrand begin to bend at the far-field boundary of the domain,
which may relate to the errors associated with applying the
far-field solution as the boundary condition for a finite domain.
Note that the contours along the three interfaces are nearly
parallel except close to the contact line and the boundary. This
suggests that the numerical evaluation of the Kerins-Boiteux
integral over these areas leads to an error that is approximately
proportional to R′. Our numerical results also show that when
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FIG. 10. Line tension τ ′ as a function of R′ for various d ′ values
calculated by Kerins-Boiteux formula with a = 2/3. τ ′ is calculated
for d ′ = 0.05, 0.1, 0.2, and 0.4 and R′ ≈ 31.2, 41.2, 52.0, and 62.4.
The dashed lines are the linear extrapolations of the line tensions
from various R′ toward R′ = 0 for each d ′.

d ′ is smaller, the distribution of the integrand within the core
region is sharper, with a slightly larger maximum value, and
decays faster, which means that the integrands along the three
interfaces and the boundary decrease when d ′ becomes smaller.
So, we assume that the numerical error of the evaluation of
the Kerins-Boiteux formula is proportional to R′ and depends
on d ′.

To test this, we use the Kerins-Boiteux formula to calculate
values of line tension τ ′. As shown in Fig. 10, the τ ′ value is
nearly proportional to R′ for each d ′. We take grid spacings,
d ′ = 0.05, 0.1, 0.2, and 0.4, and domain sizes, R′ ≈ 31.2,
41.2, 52.0, and 62.4, which are relatively large compared to the
size of the three-phase contact line, roughly 7.37 ≈ 2.61δ′

int.
By linear extrapolation from the results in Fig. 10, we find
that the values of τ ′ for different d ′ roughly meet at R′ = 0.
Moreover, from Fig. 11, we find that the dominant numerical
error of τ ′ comes from a d ′2 term for fixed R′ values because
the calculated τ ′ is almost linear in d ′2.
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FIG. 11. Line tension as a function of d ′2 at various R′ values
calculated by the Kerins-Boiteux formula with a = 2/3. τ ′ is
calculated for d ′ = 0.05, 0.1, 0.2, and 0.4 and R′ ≈ 31.2, 41.2, 52.0,
and 62.4.
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TABLE I. Refinement of line tension τ ′ based on the Kerins-
Boiteux formula. τ ′

0 is the extrapolated line tension at R′ = 0 for
various d ′, where the dominant term is d ′2. τ ′

1 is the first level
correction of τ ′

0 by eliminating the d ′2 term.

d ′ = 0.05 d ′ = 0.1 d ′ = 0.2 d ′ = 0.4

τ ′
0 −0.07216833 −0.07216553 −0.07215562 −0.07211596

τ ′
1 −0.07216926 −0.07216883 −0.07216884 N/A

On the basis of Figs. 10 and 11, we assume that the
numerical value of τ ′ is a function of R′ and d ′ of the form

τ ′(R′,d ′) ∼ τ̄ ′ + c1d
′2 + c2R

′d ′2 + h(d ′2,R′), (42)

where c1 and c2 are constants, τ̄ ′ is the line tension nearly
invariant of the grid spacing d ′ and distance R′, and h(d ′2,R′)
represents terms of higher order than d ′2 and R′. From the
expression (42) of the numerical line tension τ ′(R′,d ′), we can
eliminate approximately the numerical error which depends
on R′ by linear extrapolation of τ ′ from various R′ toward
R′ = 0 as in Fig. 10 and obtain a correction of τ ′ at R′ = 0,
which is given by

τ ′
0(d ′) ≡ τ ′(R′ = 0,d ′) ∼ τ̄ ′ + c1d

′2 + h0(d ′2), (43)

where h0(d ′2) represents terms of higher order than d ′2. The
extrapolated results of τ ′

0 (43) are listed in Table I.
In addition, we can refine our result at R′ = 0 by using

Richardson’s extrapolation [41,42], in which results for two
successive d ′ values are used to eliminate the d ′2 term. The
first level of correction is defined as

τ ′
1(d ′) = 4τ ′

0(d ′) − τ ′
0(2d ′)

3
= τ̄ ′ + h1(d ′2), (44)

where h1(d ′2) represents the terms of higher order than d ′2.
From the calculation of τ ′

1 in Table I, the line tension τ ′ for
a = 2/3 is approximated by

τ̄ ′ ∼ −0.072169, (45)

where the uncertainty is in the final digit. It is well known
both theoretically [27,43] and experimentally [1,21] that line
tensions, unlike interfacial tensions, can be either positive
or negative. Physically, a negative line tension means, for
example, that the line of intersection of a sessile drop with a
substrate would tend to expand [1,44], but is ultimately limited
by positive interfacial tensions.

C. Scaling of the density functional model for line tension

In our original way of scaling, we factored out B�2 from
the excess grand potential and also from the Kerins-Boiteux
formula for line tension. Then, we calculated the integral in a
dimensionless domain. However, our potential is parametrized
by a, which means that solutions of the Euler-Lagrange
equations and the calculation of τ ′ depend on a. Here, to
elucidate the a dependence of our model, we study the problem
in a new framework by defining the following new scaled
variables,

Yi ≡ Xi − b

a − b
= 2Xi − (1 − a)

3a − 1
, (46)

where
∑3

i=1 Yi = 1 and a �= 1/3. In our model, the value of
Xi is limited from b to a, so Yi varies from 0 to 1. In terms
of the new scaling variables, the new dimensionless form of
the excess grand potential (17) for a symmetric three-phase
contact line is given by

	̃xs ≡ 	xs

B̃L�̃2
=

∫
A

[f̃ (Y1,Y2) + g̃(∇̃Y1,∇̃Y2)]dÃ, (47)

where we define the following new scaled constants: B̃ ≡
B(a − b)4, �̃2 ≡ �2/(a − b)2, ∇̃ ≡ �̃∇, and Ã ≡ A/�2. The
scaled potential and gradient energy density are

f̃ (Y1,Y2,Y3) =
3∑

i=1

Y 2
i (Yi − 1)2 (48)

and

g̃(∇̃Y1,∇̃Y2,∇̃Y3) =
3∑

i=1

|∇̃Yi |2. (49)

In terms of independent variables, we define the two-variable
functions

f̃ (Y1,Y2) ≡ f̃ (Y1,Y2,1 − Y1 − Y2) (50)

and

g̃(∇̃Y1,∇̃Y2) ≡ g̃(∇̃Y1,∇̃Y2, − ∇̃Y1 − ∇̃Y2). (51)

Similarly, we obtain a new expression of the dimensionless line
tension (40) in the form of the Kerins-Boiteux formula [40]:

τ̃ ≡ τ

B̃�̃2
=

∫
A

[−f̃ (Y1,Y2) + g̃(∇̃Y1,∇̃Y2)]dÃ. (52)

Note that the integral of 	̃xs and τ̃ are both independent of a

and dimensionless.
Based on the numerical methods presented in Sec. III,

we can compute τ̃ and refine the result by Richardson’s
extrapolation as in Table II. The refined τ̃ is

τ̃ ∼ −0.28868, (53)

where the uncertainty is in the last digit.
According to the new scaled constants, we find that

the dimensionless line tension τ ′ (40) and its new scaled
expression τ̃ (52) obey the following relation,

τ ′ = τ

B�2
=

(
3

2

)2 (
a − 1

3

)2

τ̃ , (54)

which shows that τ ′ is proportional to (a − 1/3)2 as indicated
in Fig. 12, and τ ′ is equal to τ̃ for a = 1. We use the numerical
value of τ̃ (53) and the relation (54) that connects τ ′ and τ̃

to plot a curve in Fig. 12, which agrees with the numerical

TABLE II. Refinement of the scaling line tension τ̃ based on
Kerins-Boiteux formula. τ̃0 is the extrapolated line tension at R̃ = 0
for various d̃ values, where the dominant term is d̃2. τ̃1 is the first
level correction of τ̃0 by eliminating the d̃2 term.

d̃ = 0.05 d̃ = 0.1 d̃ = 0.2 d̃ = 0.4

τ̃0 −0.28866211 −0.28862233 −0.28846449 −0.28781290
τ̃1 −0.28867521 −0.28867560 −0.28868169 N/A
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FIG. 12. τ ′ as a function of a. The little circles indicate the refined
τ ′ results calculated directly from various a values. The curve is a
plot of τ ′ based on a refined calculation of τ̃ as shown in Table II.

values of τ ′ for various values of a in the same figure. These
numerical values of τ ′ were obtained by the same numerical
methods presented in Sec. III and refined by Richardson’s
extrapolation.

Because the temperature-dependent parameter a is pro-
portional to a density, it should approach its critical value
ac = 1/3, as |T − Tc|1/2, according to the predictions of
mean-field theory [[27], p. 251]. Because surface tension
vanishes as |T − Tc|3/2 in mean-field theory, this explains the
factor |a − 1/3|3 in (25) and (38). Moreover, the results of
Varea and Robledo [45] in the mean-field approximation show
that the ratio of critical exponents of line tension and surface
tension is 2/3, consistent with the ratio of τ ′ in (54) and σ ′
in (38); namely,

τ ′

σ ′ ∝ |a − 1
3 |2

|a − 1
3 |3 . (55)

The authors are grateful to one of the reviewers for pointing
out this observation. Thus, when the system approaches a
homogeneous solution, the line tension vanishes more slowly
than the interfacial tension.

We note that a somewhat more general potential, namely,

f ∗(X1,X2,X3) =
3∑

i=1

(Xi − ai)
2(Xi − bi)

2, (56)

containing the six constants 0 � ai � 1 and 0 � bi � 1, can
be mapped onto the potential f̃ in (48). In this case, the minima
are located at the bulk phases α = (a1,b2,b3), β = (b1,a2,b3),
and γ = (b1,b2,a3). The condition

∑3
i=1 Xi = 1 leads to

the three constraints a1 + b2 + b3 = 1, b1 + a2 + b3 = 1,
and b1 + b2 + a3 = 1. Regarding the ai to be independent
variables,

bi = (1/2)[1 + ai − aj − ak] = (1 − Q)/2 + ai, (57)

where i, j , and k are all different and Q = ∑3
�=1 a�. Since

0 � Q � 3, we have bi � ai for 0 � Q � 1 and bi � ai

for 1 � Q � 3. Any choice of the vector (a1,a2,a3) in the
positive unit cube will lead to bi � 1 but the requirement

(a) ai ≥ bi (b) ai ≤ bi

FIG. 13. Examples of the location of bulk phases (α,β,γ ) for the
potential f ∗. (a) For allowed ai and 1 � Q � 3, we have ai � bi

and the phases are at the vertices of equilateral triangles that are
magnifications of the Gibbs triangle. (b) For 0 � Q � 1, the bulk
phases are at the vertices of equilateral triangles that are inverted
with respect to the Gibbs triangle. If Q = 1, we have ai = bi and the
triangles degenerate to points (bulk criticality).

0 � bi restricts (a1,a2,a3) to lie within the positive unit cube
truncated by a pyramid consisting of three planes; the apex of
the pyramid is located at (1,1,1) and the other three vertices are
located at (1,0,0), (0,1,0), and (0,0,1). This truncation only
restricts (a1,a2,a3) if 1 � Q � 3. It turns out that the three
phases α,β,γ are located at the vertices of equilateral triangles
that lie within or on the Gibbs triangle and whose sides are
parallel to the sides of the Gibbs triangle, as depicted in Fig. 13.
For allowed (a1,a2,a3) and 1 � Q � 3, the phases α,β,γ are
located at the vertices of triangles that are magnifications of
the Gibbs triangle, as depicted in Fig. 13(a). For 0 � Q � 1,
the phases lie at the vertices of equilateral triangles that are
inverted with respect to the Gibbs triangle, as depicted in
Fig. 13(b).

By defining the new variables Zi = 2(Xi − ai)/(1 − Q),
which satisfy

∑3
i=1 Zi = 1, the potential f ∗ becomes

f ∗ =
(

1 − Q

2

)4 3∑
i=1

Z2
i (1 − Zi)

2, (58)

which has the same form as f̃ in (48). Thus, the potential
f ∗ is actually a shifted and scaled version of the potential f̃ ,
resulting in τ ′ = τ/(B�2) = [(1 − Q)/2]2τ̃ . The phases merge
(bulk criticality) whenever Q = 1.

V. LINE ADSORPTION

The Gibbs adsorption equation relates the change of inter-
facial tension to the change of field variables, the coefficients
being surface adsorptions. In our case, the Gibbs adsorption
equation for the αβ interface is

dσαβ = −(
�

αβ

1 dM1 + �
αβ

2 dM2 + �
αβ

T dT
)
, (59)

where �i is the adsorption (surface excess per unit area) of
the chemical constituent i, and �T is the adsorption related to
entropy. Notice that each of the surface adsorptions, �αβ

1 , �αβ

2 ,
and �

αβ

T , depends on the choice of dividing surface, but dσαβ

in the Gibbs adsorption equation (59) is independent of this
choice. Independence of location of the dividing surface is one
of the properties of the Gibbs adsorption equation. A similar
relation also works for the βγ and γα interfaces.

011120-10



MEAN-FIELD DENSITY FUNCTIONAL THEORY OF A . . . PHYSICAL REVIEW E 85, 011120 (2012)

The Gibbs adsorption equation for diffuse interface models
has been studied extensively (see Rowlinson and Widom [[27],
pp. 37–38]). As an extension of the Gibbs adsorption equation,
Djikaev and Widom [34] introduce a line adsorption equation,
which depends on the choice of the position of the contact line
�r . The line adsorption equation of Djikaev and Widom is

dτ = −
c+1∑
i=1

�i(�r)dμi

−(�eαβdσαβ + �eβγ dσβγ + �eγαdσγα) · (�r − �r0) , (60)

where �c+1 is the line adsorption corresponding to the entropy
conjugate to T . This shows that an infinitesimal change
of the line tension dτ , for a c-component system, comes
from two parts. The first part is analogous to the Gibbs
adsorption equation, which is a linear combination of the
infinitesimal changes of the field variables μi multiplied
by the line adsorption �i , that depends on the position of
the three-phase contact line. The second part is the inner
product of the difference between �r and �r0, a specific choice of
�r , and the summation of the infinitesimal changes of the three
interfacial tensions dσk multiplied by the corresponding unit
vector �ek along the interface k and perpendicular to the contact
line. For a given value of �r0, the line adsorption equation (60)
does not depend on �r . The second term arises because the
interfaces can change angles as the μi change. As shown
by [34,35,46], the second term can be eliminated if �r0 is chosen
to lie along a special line. In that case, the line adsorption
equation (60) becomes

dτ = −
c+1∑
i=1

�i(�r)dμi. (61)

In our case of a symmetric three-phase contact line, the
second part of the line adsorption equation (60) is zero,
since the three interfacial tensions remain equal as a changes
[see the form (38) of surface tension] and the summation of
the three unit vectors is zero. For our case, the line adsorption
equation (60) becomes

dτ = −[�1(�r)dM1 + �2(�r)dM2 + �T (�r)dT ], (62)

where �i is the line adsorption corresponding to chemical
constituent i and �T is the line adsorption corresponding to
the entropy. From the form (62) of the line adsorption equation,
it appears that τ depends on three variables M1, M2, and T .
However, if we consider the two Clapeyron equations for this
three-phase system,(
ρα

1 − ρ
β

1

)
dM1 + (

ρα
2 − ρ

β

2

)
dM2 + (sα − sβ)dT = 0,

(63)(
ρ

β

1 − ρ
γ

1

)
dM1 + (

ρ
β

2 − ρ
γ

2

)
dM2 + (sβ − sγ )dT = 0,

there is only one independent variable for τ , which could be
M1, M2, or T . For instance, if dτ only depends on T , we have

dτ = −�eff
T dT , (64)

where �eff
T is a linear combination of all �i and is invariant. By

locating our contact line at the center of our triangular domain,
the symmetry of our potential leads to �1 = �2 = 0, so
�eff

T = �T . A similar simplification also applies for the Gibbs
adsorption equation (59). From the Clapeyron equations (63),
dM1, dM2, and dT are linearly related and since (with

B�2 =constant) there is only one variable a in the problem,
we can write

dτ = −�eff
a da, (65)

where �eff
a = �T dT/da is an effective line adsorption corre-

sponding to a. From the relation of τ ′ and τ̃ (54), we calculate

�eff
a = dτ

da
= 2B�2

(
3

2

)2 (
a − 1

3

)
τ̃ . (66)

VI. SUMMARY AND CONCLUSIONS

A three-phase contact line in a three-phase fluid system is
studied by a mean-field density functional model, in which
classical sharp fluid-fluid interfaces are replaced by diffuse
interfaces. The geometry of the system is chosen to be a
prism, where each of its lateral faces is perpendicular to one
of the interfaces and both the cap and bottom are Neumann
triangles. To define a tractable model, we assume that the
intermolecular forces are short range and can be modeled by
local densities. The dimension of the system is large compared
to the interfacial width. The excess grand potential of the
system is modeled by a functional consisting of a highly
symmetric three-well potential and a gradient energy, which
is linear in the squared gradients of the three compositions (in
terms of mole fractions). We assume for simplicity that the
molar volume is a constant, so there are only two independent
densities. We use a variational approach to find the governing
coupled Euler-Lagrange equations. In the far-field limit, where
the distance from the contact line is large compared to the
interfacial width, the transition between two bulk phases
having different chemical compositions is essentially one-
dimensional. Analytically, a far-field asymptotic solution is
obtained and is used to calculate the interfacial tensions. This
connects our phenomenological model to interfacial tensions
and to the equilibrium angles for classical sharp interfaces.

Because of the nonlinearity of our Euler-Lagrange equa-
tions, we cannot find a near-field asymptotic solution. Instead,
we perform a numerical analysis for a symmetric three-phase
contact line. By applying a triangular grid that fills the entire
domain, we implement a consistent discretization to obtain
the discrete Euler-Lagrange equations from the variation of
a discretized excess grand potential. To solve the system
of these coupled algebraic equations for the entire domain,
we apply a successive overrelaxation method and use the
asymptotic far-field solutions as the boundary conditions.
The calculated isoconcentrates (constant mole fractions) bend
and the effective interfacial width increases slightly near the
contact line. Close to the outer boundary, the nearly parallel
isoconcentrates along the diffuse interfaces show that our
domain size is close to the asymptotic regime, so the boundary
conditions are sufficient.

We study the line tension associated with a symmetric
three-phase contact line based on our mean-field density
functional model, which is the excess grand potential over
the entire domain diminished by the energies of the surfaces
extrapolated from the interfacial tensions in the far field.
By using the Kerins-Boiteux formula, which formulates the
expression of the line tension into a single integral, we
calculate the line tension and analyze the corresponding
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integrand. Our results show that the numerical values of the
line tension require a correction proportional to the domain size
and to the square of the grid spacing. To refine our result, we
eliminate approximately the error associated with the domain
size by linear extrapolation of the values of line tension
from finite sizes to zero. Furthermore, we use Richardson’s
method to reduce the error associated with the square of
the grid spacing to obtain the next level of refinement. The
calculation of line tension based on our mean-field density
model shows that the value of line tension is negative and
proportional (a − 1/3)2, where a is a parameter in our model.
We introduce a scaling method to resolve this relation for
our model. The line tension is proportional to (a − 1/3)2

multiplied by an integral (negative and independent of a), in
agreement with independent calculations for various values of
a. In contrast, the far-field interfacial tension is proportional
to (a − 1/3)3. When a = 1/3, both the line tension and
interfacial tension vanish. Physically, this means that the three
chemical constituents share the same value of mole fraction
(1/3) and are equally and uniformly distributed over the entire
system, a single phase. In effect, the interfacial width, which
is reciprocal to (a − 1/3), is infinite. On the other hand,
we can either say that the contact line and three interfaces
vanish or occupy the entire domain. However, when a ap-
proaches 1/3, the interfacial tensions decay faster than the line
tension.

Finally, we relate the change of line tension to the line
adsorptions by [34]. Thermodynamically, we show that there
is only one independent field which could be chosen as
temperature. We are able to link it to the line adsorption
corresponding to a, since a is the only variable in our
model (if other coefficients B and � are treated as constants).

Consequently, we find an analytical expression of the line
adsorption corresponding to a.

In order to link our model to realistic systems, we make
the following numerical estimates. For T ∼ 300 K, typical
values of interfacial tension are a few times of 10−2 N/m, and
interfacial widths are a few Å [27]. We assume a = 1, the
interfacial tension σ ∼ 5 × 10−2 N/m, and the characteristic
length � ∼ 1 Å, corresponding to an interfacial width of 2 ∼
3 Å. Inserting the form (38) for interfacial tension into the
form (54) for line tension yields

τ

σ
=

√
2

|a − 1
3 | τ̃ �. (67)

We obtain τ ∼ −0.3 × 10−11 N. The magnitude of τ is at
the lower end of typical experimental values, which are in
the range 10−11 to 10−9 N [21]. �eff

a ∼ −0.91 × 10−11 N. A
crude estimate gives �T ∼ −τ/T ∼ 10−14 N/K. The units of
�T are entropy per unit length.
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