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Discussion of phasons in quasicrystals and their dynamics
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Phasons are a type of excitation peculiar to quasicrystals and other
incommensurate phases arising as a consequence of their spatial quasiperiodicity.
Phason-related excitations are also observed in complex crystal structures known
as approximants. This article briefly reviews the concepts of phasons with focus
on current issues in their regard. We examine both continuum (hydrodynamic)
and discrete (tiling) descriptions of phasons and review the state of experimental
validation of the basic theoretical notions.
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1. Introduction

Quasicrystals possess excitations known as phasons [1] as an automatic consequence of
their spatial quasiperiodicity. Indeed, phasons were first recognized in other quasiperiodic
forms of matter such as incommensurate phases, spin and charge density waves, etc.
In quasicrystals, phasons appear in a variety of distinct physical forms, all related to
special types of atomic displacements, with associated special names. Some of the terms,
which will be discussed further in the following, include [2] phason mode, phason-shift,
phason-strain, phason-hop, phason-fluctuation, phason-flip, etc. The study of phasons in
quasicrystals has grown into a rich field with extensive theory, simulation and experiments
as outlined below.

A word on nomenclature is needed. Some researchers [3,4] suggest reserving the
term ‘phason’ exclusively for phason-modes. That means patterns of special atomic
displacements that vary in space with a precisely defined wavevector. That seems
unnecessarily restrictive as it excludes, for example, strain fields created by internal defects,
and also misses the essential connection between the phason mode and the localized atomic
rearrangements that comprise it. Localized phenomena such as phason-hops, phason-
fluctuations and phason-flips can be represented as linear superpositions of phason modes
of differing wavevectors in a manner similar to the representation of an atomic vibration as
a superposition of phonons. However, care must be taken to distinguish local degrees of
freedom that are unrelated to phason modes from those that are so related. A rule of
thumb is that motion of atoms is phason-related when it is conveniently described using
either the density wave or perpendicular space descriptions outlined below.
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The following section briefly reviews the formal theory of phasons in quasicrystals.
Following that we survey the status of experimental and simulation study of phasons. We
start with static ‘quenched’ non-equilibrium strains, then address ‘annealed’ equilibrium
phason-fluctuations, followed by studies of phason dynamics. Our discussion initially
focuses on quasicrystals in metal alloys and concludes with a survey of novel
hydrodynamic and metamaterial quasicrystals.

2. Formal theory

The phenomenon of a phason is best understood by representing the actual discrete
atomistic structure as a superposition of density waves [5] (see Figure 1a)

�ðrÞ ¼
XN
k¼1

�
G

k

k
eiG

k

k
�r, ð1Þ

where the set of {Gk} correspond to reciprocal lattice vectors whose dimensionality d
matches the dimensionality of the spatial position variable r. This density could represent,
for example, the spatially varying electron density. To accurately represent a particular
atomistic structure, the density should include rapidly oscillating terms with large jGk

j.
We instead adopt a ‘coarse-grained’ or ‘hydrodynamic’ [6] perspective, in which only
a small set of N distinct wavevectors Gk is considered, that preserves essential features of
the atomistic structure.

The indexing dimension D of a crystal is the minimum number of reciprocal lattice
vectors G

k

k needed to fully generate the reciprocal lattice by linear combinations with
integer coefficients, Gk

¼ h1G1þ h2G2þ � � � þ hDGD. The integers (h1, h2, . . . , hD) are the D
Miller indices of the Bragg peak at wavevector Gk. For a periodic crystal the indexing
dimension D¼ d.

Incommensurate phases differ from periodic crystals in that additional lattice vectors
are needed in order to index all the diffraction peaks, requiring D4 d [7,8]. Ordinary
incommensurate structures may have a single extra lattice vector such as G

k

dþ1 ¼ fGk

1

where f is continuously variable (and usually irrational) representing the incommensur-
ability of two intrinsic lengths, resulting in D¼ dþ 1. Multiple incommensurabilities are
also possible. Quasicrystals differ from ordinary incommensurate crystals in that the
reciprocal lattice vectors belong to a fixed set with the incommensurability constrained
by symmetry. For icosahedral quasicrystals it is common to use either six non-collinear
vertices of an icosahedron [9], or an alternate set related to icosahedron edges [10], with
D¼ 6 in each case.

Overcomplete sets with N4D are sometimes used to better represent an underlying
symmetry (e.g. N¼ 4 Miller indices for hexagonal crystals in dimension d¼ 3) but in
this case there exist integer combinations of fGk

k, k ¼ 1, . . . ,Ng that sum to the zero vector,
causing the Miller indexing to become non-unique. Similarly, a five-fold star
ðG

k

k ¼ ðcos 2�k=5, sin 2�k=5Þ, k ¼ 1, . . . , 5Þ is commonly used for pentagonal or decagonal
symmetry resulting in N¼ 5 even though D¼ 4.

In the hydrodynamic view, phasons and phonons are closely related. Consider the
pattern described by Equation (1). Multiplying each coefficient �

G
k

k
by a phase factor eiG

k

k
�u

is equivalent to shifting the pattern �(r) to �(rþ u), that is, translating the pattern by �u.
Owing to translation symmetry of space, such a shift costs no energy. The pattern can be
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shifted by different amounts in different regions of space by allowing u(r) to be a slowly

varying function of position. Now the shift does raise the energy, by an amount governed

by the spatial gradients ru(r) (phonon strains) and by the elastic constants of the material

under study, such as bulk and shear modulus. If u(r) varies periodically, say as eiq�r,

the energy varies as jqj2 and we term the distortion a phonon mode of wavevector q.

Since the energy vanishes in the limit of long wavelength, phonon excitations are termed

‘Goldstone modes’.
Now instead multiply each coefficient by eiG

?
k �w where the set G?

k corresponds to

the original Gk permuted in a special way governed by the rotational symmetry of

the quasicrystal under study (e.g. G?
k ¼ G

k

ð3k mod 5Þ for pentagonal or decagonal symmetry).

(a)

(b)

Figure 1. (a) Strain-free quasicrystalline density wave according to Equation (1). (b) Quenched
phason strain (view at glancing angles to see zig-zags in rows of contrast).
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If w is uniform throughout space, we term such a transformation a ‘phason shift’. It can be

shown that a phason shift is equivalent to a rigid spatial translation u, but the translation u

depends on w in such a way that it is usually infinite in magnitude. Again, spatial

homogeneity assures the energy cost vanishes, so this phason shift is another Goldstone

mode. As was the case for the phonon shift, we can introduce a slow spatial variation into

w(r) in which case the energy cost grows by an amount governed by the spatial

gradients rw(r) (phason strains) and corresponding phason elastic constants. If w(r) varies

periodically, say as eiq�r, the energy varies as jqj2 and we term the distortion a phason

mode of wavevector q. Notably, a coupling exists between phonon and phason degrees

of freedom.
The extra dimensions needed for indexing lie at the origin of the popular

higher-dimensional space representations of quasicrystals and tilings [11–13]. For example,

taking tile edges as vectors belonging to Gk, a tiling vertex located at r¼
P

NkGk may be

represented as the point z(r)¼ (N1,N2, . . . ,ND) in the D-dimensional hypercubic lattice

and the Nk can be evaluated simply by following the edges connecting r to the origin.

Connectivity of the tiling implies that the D-dimensional coordinates lie on a continuous

hypersurface of dimension d5D. Idealized atomic positions in real d¼ 3-dimensional

space are found by intersecting real space with a set of ‘atomic surfaces’ located at

D-dimensional lattice positions [14].

3. Quenched phason strain

Unlike phonons, which correspond to small atomic displacements and are easily relaxed,

phasons involve discrete atomic displacements (see below) and are presumed to be difficult

to relax. This allows observation of phason strain as a semi-permanent property of

a sample, though it can be annealed out through careful heat treatment in some cases.
Strong phason strain was observed in many early quasicrystal-forming compounds.

The experimental signatures of phason strain include: shifting of selected-area electron

diffraction peak positions in an unusual pattern of alternating signs [15]; zig-zags in rows

of contrast in high resolution electron microscope images [16]; broadening of X-ray

diffraction peaks [17]. Figure 1(b) illustrates a density wave pattern in which the strain

field wðrÞ ¼ x̂ tanhð y=10Þ has been imposed causing zig-zags in rows of contrast similar to

those seen in electron microscope images.
Phason strain occurs in the vicinity of many defects, notably dislocations. Dislocations

are characterized by their Burgers vector b, a topological property that can be calculated

by counting the number of forward or backward steps taken in each independent direction

on a path encircling the dislocation. Consequently, the Burgers vector is an integer

combination of translation vectors of the lattice. In quasicrystals the Burgers vector has

dimension D, with both parallel and perpendicular space components bk and b? [18].

The energy of a dislocation is a sum of parallel and perpendicular space contributions,

each term being quadratic in the parallel and perpendicular parts of the Burgers vector

and proportional to corresponding elastic constants. Interestingly, mechanical

deformation of the quasicrystal tends to drive the population of dislocations towards

Burgers vectors with small bk and large b? components, suggesting that the phason elastic

constants are small compared to the ordinary phonon elastic constants (i.e. bulk and shear

moduli) [19].
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4. Annealed phason strain

Since phonon and phason strains are gradients of the displacement fields u and w, and the
elastic energy is quadratic in the strains [5], the elastic energy can be written in reciprocal
space as

F½uðrÞ,wðrÞ� ¼

Z
dqKijðqÞviðqÞvjðqÞ ð2Þ

where the vector v¼ (u,w) has D components, the first d of which are usual spatial
variables corresponding to phonons and the remaining D� d correspond to phasons.
The matrix Kij(q) is quadratic in q and has a complicated orientational dependence.
From equipartition we find that the mean-square fluctuations in v are

hviðqÞvjð�qÞi ¼ kBTK
�1
ij : ð3Þ

Thus we expect phason fields to fluctuate in thermal equilibrium, as is the case for
phonons. One of the expected consequences of phason fluctuations is a Debye–Waller
factor reducing diffraction peak intensities according to

e�2W ¼ e�GiGjhvivji ð4Þ

where G¼ (Gk,G?). Such Debye–Waller effects related to the G? values have been
observed [20]. A second consequence of the fluctuations is to create patterns of diffuse
scattering whose orientational behaviour reflects the complex orientational dependence of
K(q) [21–23]. These patterns have been observed in many important quasicrystal-forming
compounds [24–27].

Both the Debye–Waller and diffuse scattering effects depend on composition
and temperature because the elastic constant matrix K(q) should vary according to
these physical parameters. In particular it can become singular as phase transitions
are approached and the material loses elastic stability (a necessary criterion for

Figure 2. Predicted diffuse scattering pattern along icosahedral two-fold axis [26]. Range of plot is
�4 Å�1 in horizontal direction and 0-4 Å�1 in vertical direction.
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thermodynamic stability). Indeed, enhanced Debye–Waller and diffuse scattering effects

arise in such circumstances. A curious feature is that the stable quasicrystal phase
appears to be the high temperature phase, which indicates the phason elastic constants

contain terms proportional to temperature and the state is stabilized by configurational
entropy [22,28].

5. Dynamic phason strain

Assuming the elastic free energy given in Equation (2), the hydrodynamic theory of
quasicrystals [6] predicts a relaxation-type dynamics for phasons described by

@wðr, tÞ

@t
¼ ��

�F

�wðr, tÞ
ð5Þ

where �w is a kinetic coefficient. Fourier transforming this equation yields a solution
decaying exponentially in time with an exponential decay rate !(q)¼�wKw(q) (here Kw

represents the phason part of K(q) and we neglect phonon–phason coupling). Recalling

that Kw(q)� q2, we see that short wavelength, high q modes decay quickly, while long
wavelength, small q modes decay slowly in time. Experiments on dynamics of X-ray

speckle patterns in icosahedral AlPdMn [29] observe the expected q-dependent decay with
decay times ranging from 20–70 seconds over the observed q range of 1.5–6� 107m�1 at

temperature T¼ 6504�C.
Dynamics of dislocations provide further insight into the dynamics of phason strain

fields. Long range strain fields surround the dislocation line with phonon and phason

components proportional to the magnitude of the parallel and perpendicular components
of the Burgers vector. Motion of the dislocation line demands that the strain fields also

must move. While the phonon strain field can relax quickly through small atomic

displacements, relaxation of the phason strain field requires discrete and correlated atomic
jumps that may be difficult to achieve. Consequently the dislocation leaves behind a trail

of phason flips in the form of a planar fault known as a ‘phason wall’ or ‘phason trail’ [30].
In i-AlPdMn the phason field of this defect decays over temperature-dependent time scales

ranging from 1 to 105 seconds, obeying an Arrhenius temperature dependence with

activation energy of 4eV [31]. The temperature and time scales in phason wall relaxation
are consistent with those seen in X-ray speckle patterns [29].

Since the D-dimensional coordinates are integers, local deformations of the phason

coordinate w cause discontinuous jumps in the hypercubic lattice position z(r). This, in
turn, has the effect of flipping the configuration of tiles in the vicinity of the point r.

The tiling shown in Figure 3 consists of fat and thin Penrose rhombi and has been
decorated with atoms as appropriate for decagonal AlNiCo [32]. An alternate description

in terms of hexagons, boats and stars is indicated using heavy edges. In the original tiling
(left) the boat is upright, while it is overturned in the flipped tiling (right). The central

region of the figures illustrate the famous decagonal cluster with 20 Å diameter and

symmetry-broken interior. The particular tile flip illustrated here leaves the entire cluster
intact, but rotates the symmetry-breaking feature in the interior. Other flips (not shown)

are able to create or destroy the clusters.
Notice that the flip has interchanged the positions of two fat and one thin Penrose

rhombus, leaving all other tiles unaffected. Since the tile flip is localized, only a few
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atomic positions change, even though the result is a rotation of the entire 20 Å cluster.
Further, the atoms in the vicinity of the tile flip are in highly symmetric positions so that
no change in interatomic distances occurs out to a considerable distance, and the energies
before and after the flip are nearly equal. Counting the possible orientations of the cluster

(a)

(b)

Figure 3. HBS tilings of d-AlCoNi (a) boat upright (b) boat flipped. Atomic positions are indicated
as Al¼white, Co¼ blue, Ni¼ black. Large/small circles indicate vertical position. Tile edge length
is 6.5 Å.
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center and the symmetry-breaking within the hexagon tiles yields a total of 40 distinct

configurations simply within the 20 Å cluster. The combination of near-degeneracy with

high multiplicity motivates the proposal of entropic stabilization of the quasicrystal state

[28,33] in the random tiling scenario [11,34].
Creation and destruction of 20 Å clusters has been directly observed in high resolution

electron microscopy performed in situ at elevated temperature on decagonal d-AlCuCo

[35,36]. The structure of d-AlCuCo is expected [37] to resemble that shown in Figure 3 for

d-AlNiCo, and the observed cluster dynamics is believed to be related to flips such as those

illustrated here. The flips occur more frequently in thin regions of the sample (on a time

scale of order 1 second) than in thick regions. Presumably it takes longer for the flip to

propagate through a thick region of the sample than for a thin region. Recall that

HRTEM observed projected structures, so if a flip extends only part way through the

sample, it might not be observed.
The smallest scale atomic motion that can be considered as phason-related is the

hopping of a single atom between ideal positions. In Figure 3 this corresponds to the

reversal of Penrose rhombi comprising a Hexagon tile, and involves the displacement of

a single Al atom by 2.2 Å. In models with higher densities of ideal sites the minimum

displacements can be even smaller.
Single- and multiple-atom jumps have been observed experimentally in several

contexts. The first direct reports came from quasielastic neutron scattering experiments on

i-AlCuFe [38] and i-AlPdMn [39]. These experiments reported hopping over length scales

around 4 Å and time scales of hundreds of picoseconds ( �h/E with E in the range 2–200meV)
[40]. Less direct evidence comes from the observation of enhanced Debye–Waller factors

in electron microscopy studies of d-AlNiCo [41], interpreted as 0.95 Å jumps between

ideal sites. Significantly, these highly mobile atomic positions occur on atoms

projected from the edges of higher dimensional atomic surfaces, where phason hopping

is expected to be most prevalent. Unfortunately the time scale for hopping is not resolved

in this experiment.
Since localized phason hops involve displacements of atoms a natural question is the

role of phason in long-range atomic diffusion. Phason-assisted diffusion was first

proposed by Kalugin and Katz [42] and has been observed in computer simulation [43].

Experimental NMR studies initially found only short-ranged phason assisted diffusion [44]

and this occurred on kilohertz time scales at rather low temperatures T�160 K. Later

studies found evidence for percolating diffusion pathways [45], still at low temperatures

and on fast time scales. Tracer diffusion studies of 103Pd and 195Au in i-AlPdMn observe

conventional vacancy controlled diffusion at high temperature while diffusion below

T¼ 450�C is tentatively identified as phason-assisted [46].

6. Phason-like behaviour in approximants

Approximants are periodic crystals with large unit cells that contain quasicrystal-like

structure within the unit cell. They can be described as tilings of space using the basic tile

building blocks found in quasicrystals of similar chemical composition, but the tiles are

arranged in a spatially periodic manner rather than quasiperiodically.
Owing to the crystal periodicity the phason loses its status as a Goldstone mode arising

from a continuous symmetry. Still, local manifestations of phasons such as localized tile
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flips and atomic hopping may occur as a type of atomic disorder in the crystal.

Such localized atomic jumps actually appear in an order-disorder transition in the 1/1

cubic approximants of Zn- and Cd-based icosahedral phases [47]. This transition occurs at

a surprisingly low temperature of T¼ 80K indicating a very nearly perfect degeneracy of

differing configurations and low barriers separating them. The energy differences are

probably so low because the transition occurs in the orientations of symmetry-breaking

clusters buried near the center of a large highly symmetric cluster, and the coupling

between centers of adjacent clusters is weak [48].
Since approximants are periodic crystals they have ordinary dislocations with Burgers

vectors containing only a parallel space component bk. However, the large unit cells of the

approximants create large strain energies even for the smallest possible Burgers vector

dislocations. Dislocation energy can be reduced by splitting into partials, each carrying

a portion of the full Burgers vector bk but acquiring at the same time a phason component

b? [49]. The dislocation core spreads into a broad region known as a metadislocation that

bounds on one edge a wall of stacking faults. The stacking faults consist of phason-flipped

regions of the tiling corresponding to the approximant phase. Interestingly, the flipped

region can yield a new periodic tiling corresponding to other known approximant crystal

structures, such as conversion of the orthorhombic Al13Co4 structure into a monoclinic

variant [50].

7. Phasons in metamaterials

Metamaterials are an emerging area of quasicrystal research. In these materials patterns

emerge at length scales greater than atomic dimensions and can be observed with optical

microscopy and in some cases even with the naked eye. Quasicrystalline patterns have been

observed in such diverse contexts as Faraday wave hydrodynamics [51–53], nonlinear

photonic structures [54,55] and soft-matter systems such as lyotropic liquid crystals and

ABC star polymers [56–58]. The origins of stability of quasicrystals in these metamaterials

may differ from the origin in metal alloys [59].
Phason strain has been directly observed in Faraday wave experiments perturbed with

an additional frequency of forcing [60]. In this case the strain achieves a conversion of

a periodic triangular pattern into a hexagonal pattern, in a manner reminiscent of the

conversion between alternative crystal structures by a metadislocation. Hydrodynamic

phason dynamics can also be simulated using the Lifshitz–Petrich equation with the

phason field arising from a dislocation [61].
Phasons have been deliberately introduced in nonlinear photonic materials [55].

Their relaxation times are slower than phonon relaxation times, and strain-relaxing tile

flips have been directly visualized.
Observed patterns in both dendritic liquid crystals and ABC star polymers

correspond to tilings of triangles and squares. The dodecagonal quasicrystal state of

this tiling is known to be a maximal entropy intermediate between a six-fold

symmetric triangular tiling and a four-fold symmetric square tiling [62]. For dendritic

liquid crystals, intrinsic phason disorder is apparent in the observed electron diffraction

pattern [56] which exhibits peak shifts and broadening. The dodecagonal quasicrystal

phase observed in ABC star polymers has the appearance of a random tiling with strong

phason fluctuations [58].
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8. Future outlook

Study of phasons and phason-related phenomena in quasicrystals and their approximants
has a rich and promising future [2]. It is heartening that qualitative agreement is found

between differing experimental probes, especially the consistent time and energy scales
found in i-AlPdMn where equilibrium fluctuations observed by X-ray speckle patterns [29]

qualitatively match with non-equilibrium relaxation of phason wall defects created by
dislocation line motion [31]. Still unresolved is the precise link of these large-scale and

slowly evolving phasons to the highly localized single- or few-atom hops such as those
observed in quasielastic neutron scattering [40] and electron microscopy [36,41].

Presumably the large scale behaviour can be explained through a series of distinct small
scale events, but this has not yet been achieved.

Also lacking is a precise quantitative link between equilibrium phason fluctuations
and thermodynamic stability. It is now possible to estimate the energies of some phason

flips using first-principles calculations [63] and predict their contribution to heat capacity
and other thermodynamic properties which can be compared with experiment.

Ultimately the phason elastic constants can be estimated and compared with experimental
diffuse scattering data [24], though this will require simultaneous improvements in total

energy calculation and structure modelling. Pursuing the influence of phasons
on thermodynamic stability can help resolve the long-standing question of energetic vs.

entropic stabilization [64].
The study of phasons in metamaterials offers great possibilities, because phason can be

deliberately introduced in controlled fashion [55,61] and directly observed. Although the

behaviours of phasons in these novel quasicrystalline materials may not shed direct light
on phasons in metal alloy quasicrystals, similar concepts apply and similar questions

(e.g. elasticity and hydrodynamics) may be asked.
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