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Abstract. This paper reviews the theoretical and experimental evidence concerning the 91-1.

gins of thermodynamic stability of quasicrystalline structures. Random tiling models provide
a compelling model of long range quasiperiodic order arising from tiling entropy. Theomicai
predictions of this model are examined and contrasted with the quasiperiodic crystal and

icosahedral glass models. Several experiments have been perfonned capable, in principle, of
testing these models. The results have included a few surprises and in general tend to sup-

port the theory of random tilings.

1. Introduction
Shortly after the discovery by Shechtman, et. al. [1] of icosahedral order in rapidly quenched

metal alloys, theories of the nature and origin of the non-crystalline structures began to be

proposed. Chief among these are the quasiperiodic crystal models [2], and the icosahedral
glass models [3]. For reasons to be discussed, neither model proves entirely satisfactory as

a description of real, theimodynamically stable, quasicrystalline alloys. Rather, there is a

third type of model [4-6], based on random tilings, which shows great promise.

The three models differ both qualitatively and quantitatively in ways which are experi-
mentally testable. Ciiudely speaking, the quasiperiodic crystal model makes sense when the

quasicrystal forms the ground state of a system. The random tiling model is expected to ap-
ply when the quasicrystal is an equilibrium state at intermediate temperatures but not abso-

lute zero. The icosahedral glass model is expected to apply when the quasicrystal phase is
metastable. Many types of experimental tests of these models are possible. Scattering stud-
ies offer perhaps the most decisive tests. Thermodynamic measurements and microscopy are

other types of experiments that could distinguish between the models as well. The remainder
of this introduction describes the random tiling model. Then theoretical comparisons ‘are
made with the icosahedral glass and quasiperiodic crystal models in the following section.

Section 3 discusses experimental tests which can distinguish between the models.

The random tiling models of quasicrystals are inspired in part by microscopic models
of both real quasicrystal forming materials [7] and by theoretical -systems which have been

shown to have a quasicrystalline equilibrium state [8-9]. Let us consider this theoretical
model. Figure la shows a pair of rhombic tiles. On each vertex of the tiles are.placed atoms.
either large or small. One can consider a few versions of this model with varying degrees Of

complexity. The most realistic version of this model ignores the rhombic tiles and allows long
range interactions between the atoms, which move in the continuum. It may be observed.
however, that low temperature states (figure 2a) are always sufficiently well Otdcrcd that
the atoms form a well defined tiling (figure 2b). A cruder version of this model replaces the
atoms with rigid tiles, and truncates the bonds at nearest neighbors. _

These models are distinguished by a large entropy associated with the variety of
ways the tiles can fill the plane. In the simplest truncated rigid tiling model the entropy re-
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Figure 1. Large and small atoms decorate verticcs of fat (720)
and thin (.360) rhombi K . /\~. . .-

Penrose tiling (D). (i) llows 0” tile edges must match to form

 
Figure 2. Atomic system in equilibrium at low temperature (a).

Nearest neighbor large-small bonds define rhombus tiling (b).

fleets an exact degeneracy. But even when the degeneracy is not exact the entropy can be
large and significant. The entropy is made manifest in computer simulations [8,9] in which
the structure is constantly fluctuating from one arrangement of atoms to another.

It is helpful to describe this model in the higher dimensional space projection lan-
guage. Any rigid tiling of space can be thought of as a set of points in a fictitious space of fi-
nite but high dimensionality projected down into a lower dimensional physical space. Tilings
of the plane by the rhombi shown in figure la correspond to a two dimensional surface of
points in a five dimensional hypercubic lattice. Fluctuations between degenerate structures
in the tiling correspond to fluctuations of this surface, which are also known as phasons. Lo-
cal rearrangements of the tiles create a localized bump on the surface. Long wavelength pha-
sons, which correspond to periodic undulations of the surface, require coherent rearrange-
ment of tiles of large distances.

Defining the manner in which the system is quasicrystalline is somewhat problematic
since the ordering is not perfect and there is no unique structure at all. Henley [4] suggested,

that if the entropy density of the tiling were to have a quadratic extremum as a function of
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phason strain, with a maximum at zero strain, the tiling would have quasiperiodic long range

order in three dimensions but only quasi-long range order in two dimensions In the projection

language. perpendicular space heights are bounded in three dimensions but diverge logarith-
mically in two dimensions. Subsequent transfer matrix [5] and Monte Carlo [6] calculations
have confirmed that for short truncated rigid tiling models all these assertions are correct
The entropy density has a quadratic maximum at zero, and the curvatures of the entropy
yield phason elastic constants. That follows because the phason part of the elastic free ener-

gy is given by

F = —TS.

Thus the curvatures of entropy density multiplied by temperature are phason elastic con-

stants.

2. Theoretical Models

This section contrasts the random tiling model with the icosahedral glass and the quasiperi-
odic crystal models. These two models stand at opposite extremes from one another, with
the random tiling model in some sense a compromise between the two. The icosahedral
glass model offers hope of desciibing metastable quasicrystalline structures. The quasiperi-
odic crystal model presents the most exciting new physics of these models, but it appears
unlikely to describe real materials correctly.

2.1 Icosahedral glass models

The name "icosahedral glass" was introduced to describe a particular model of quasicrystal-
line order [3] but, for the purposes of this paper, I will use it as a name for a family of models.
The unifying feature of these models is that they seek not to describe a precise atomic struc-
ture in thermodynamic equilibrium, but rather a growth process which could lead to structures
with diffraction patterns and certain physical properties similar to real quasicrystalline mate-
rials. Because the models are defined by nonequilibrium growth processes, it is unreasonable
to expect them to describe stable structures such as A1CuFe. Rather, these models create
metastable states and are more appropriately applied to growth out of equilibrium.

Broadly speaking these models create a quasicrystal by randomly aggregating icosa-
hedral or other shaped clusters [10] along axes of high symmetry: The clusters may be

thought of as groups of atoms which clump together in the liquid phase. Or else one may con-

sider them to be individual atoms for which the equilibrium structure would have a large de-
gree of icosahedral order so that the icosahedral cluster formation is a part of the aggregation
process. The most important success of this model is it showed how one could obtain long
range orientational order and fairly sharp peaks without requiring long range translational or-
der.‘By invoking the Hendricks - Teller mechanism it was understood why many diffraction
peaks appeared superficially to be sharp even though the range of translational order was
limited. In the projection picture of quasicrystals, the icosahedral glass model corresponds to
a wildly fluctuating and torn surface. The fluctuations provide entropy, but the tears raise the
energy to a pointwhere the model is unlikely to be in equilibrium.

Much attention has focussed on the dependence of the peak width on_ phason momen-
tum [11]. Icosahedral glass models tend to show peak widths depending quadratically on

phason momentum q_L. Models in which there is basically a well ordered quasicrlystall struc-

ture with frozen in dislocations and phason strains, in contrast, show widths growing linearly
in q_L. Experiments on AlMn have tended to find a linear dependence at least for q_L not too

large But this should not be taken as discrediting the icosahedral glass scenario. because
there is surely some improved growth rule for which the proper dependence can be obtained
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over the ran e of wh‘ ' - -- - . . .8 q_1_ ich is measured. That assertion is, in a sense, tautology since it is

certain that the quasicrystal state of AlMn is metastable an ‘

. . . ‘ d th bt blnoneqmhbnum growth process. us 0 aina e through some

It is reasonable to put into the category of icosahedral la
algorithms devised by Onoda, et al. [12]. These algorithms §ensei'a'tTeo(zii:iiiogiep:a‘i-(i::ltt

rystalline order via local growth rules. They naturally fall into the icosahedral glass category
because they grow the stnicture out of equilibrium. There are no rearrangements allowed
once a tile is attached. The existence of such rules clearly shows that, icosahedral glass mod.
els can cover a wide spectrum of degrees of disorder.

2.2 Quasiperiodic crystal models

The Quasiperiodic crystal model [2] is the most prominent model of quasicrystalline order. I
will argue shortly that it is unlikely to be correct in certain important respects. But, because
this model captures the essence of the structure of thermodynamically stable quasicrystals,
and provides an especially simple description of atomic locations in infinite structures, the
model is probably a sensible starting point for calculating physical properties of quasicrystal-
line materials.

In general the quasiperiodic crystal model states that the arrangement of atoms is
similar in nature to that of a crystal - a superposition of a small number of periodic mass den-
sity waves - but that the periods may be incommensurate and the symmetry noncrystal1o-
graphic [13]. In ordinary crystals the existence of an underlying crystal lattice leads to the
recognition of a unit cell. The entire crystal structure may be described by a tiling of space

with the unit cell once the atomic decoration of a single unit cell is found. Quasiperiodic crys-
tals may be similarly described, but the space to be tiled is of a higher dimension than physi-
cal space.

In physical space it is natural to consider tiling models of quasicrystals such as the

Penrose tiling model which fills the plane with two packing units. But as soon as we try to
pack these units in physical space we are faced with a problem tiling quasiperiodically. There
must be rules which guarantee that our tiling will be quasiperiodic. Such rifles were found by
Penrose and are shown in figure 1b by arrows along the edges of the tiles. The result of
the plane by these rules is a tiling which is every bit as ordered as an ordinary crystal. but is

quasiperiodic instead of periodic. The diffraction pattem of such a structure contains delta
function peaks and no diffuse scattering [2].

An implicit assumption in such a model is that the tiling rules implemented in I631
he atoms which decorate the tiles. Violations of the rulesmaterials by interactions among t V . _ d 0 f the

should raise the system energy so that the Penrose tiling forms a groun state. ne 0

failures of the quasiperiodic crystal model is that no simple, physically plausible, system is
known which forces Penrose or other similar tiling rules. Indeed there is someh reasonhto
question whether such a feat is possible in principal. In an aperiodic structure eaed ggmmii
an environment distinct from every other atom it‘ far enough neighbors are C0331] ehav; low
suggests that the binding energy of each atom should vary, Somelfatomsbl the 5 Stem

(favorable) energies and others will have Slightly high“ °“°’3‘°s' 9°53’ ° 3'

would like to minimize its energy by removing the sites of higher energy, leaving behind the
' ' ' 'od' tr ctures can all sites, or a subset of sites, be absolutely

low. e;l1::1gtyil:1::i:d,€?,‘;l};;::r;;nThi: is ilhe basis of arguments suggesting that ground states of
equiv - V

matter may always 130 Spafiany P°l’i°di° [141
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A further assumption is that the ground state is stable a

low temperatures. That is,there could be a phase transition ou

state at T = 0 into some other phase. In the projection language
odic crystal corresponds to a perfectly flat surface. Thermally e

surfacento fluctuate, but as long as the height remains bounded
1S still in the quasiperiodic crystal phase. If the surface roughens so that the hei ht d‘
logarithmically the system changes phase into a random tiling state. Penrose tilisgs vcyirges

row rules have been studied and it appears that the toughening temperature is at T H at.

that the Penrose tiling is unstable at all finite temperatures [15].

gainst thermal fluctuations at

t °f the quasiperiodic crystal
a_two dimensional quasiperi.

xcited phasons can Cause this

(in a probabilistic sense) om»,

=0so

In three dimensions the issue is somewhat less clear because both the Penrose tilin
and the random tiling have bounded fluctuations. One possible difference lies in their elasficf
ty. The energy of a Penrose tiling (in 2-D)‘ is known to grow linearly with phason strain

leading to a breakdown of conventional elasticity at absolute zero. If this is also true of 3-D,

tilings one could use the form of the elastic free energy as a distinguishing tool. If, on the oth-

er hand, the 3-D tiling does have ordinary quadratic dependence of energy on phason strain
the elastic constants should be determined from the matching rule energy. In particular they

must be independent of temperature. Random tiling models, on the other hand acquire their
stability against phason strain from entropy. Therefore their phason elastic constants grow
linearly with temperature. For the remainder of this paper I will assume that the quasiperiod-

ic crystal model is stable at finite temperature and does possess conventional elasticity.

3. Experimental Tests

It is of great interest to test experimentally whether real equilibrium quasicrystals are better

described by the random tiling model, the quasiperiodic crystal model, or perhaps neither.
Several tests are conceivable. This section describes tests involving x—ray scattering, mi-
croscopy, and thermodynamic measurements. Many of the experiments have been performed
already. The results generally support the random tiling model or lack sufficient resolution to
be sure. What stands out most clearly is the need for further experimentation.

3.1 X-Ray diffraction

High resolution x—ray scattering probes long range order in a material. Such experiments pro-
vided the first evidence of the lack of long range order in rapidly quenched A1Mn, as well as

the presence of such order in AlCuFe. That is, the scattering peaks appeared to be delta

functions to within instrumental resolution suggesting translational correlation lengths of
more than 30000 Angstroms [16]. Diffuse scattering tails on the delta functions reveal that

the ordering is not perfect despite being of infinite range.

Let us remind ourselves of the predictions of the models. The VDebye-Waller effect
leads to temperature dependent peak intensities

{<%>t%%+%l.1}

where K" and KJ_ are combinations of elastic constants. The intensity lost from the peaks

goes into diffuse scattering in qualitative agreement with experiments. At any finite f'1_X€d

temperature the quasiperiodic crystal model and the random tiling model are indistingulslk
able. That is the Debye-Waller effect on peak intensities has identical form in the random til-
ing model and the quasiperiodic crystal model.

To distinguish the models one must vary the temperature. The quasiperiodic crystal
model predicts_simple exponential decay of each peak with temperature because the elastic
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constants are all independent of temperature. The random tiling model, on the other hand pre-
dicts that the phason elastic constants should increase linearly with temperature. This leads

to instability of the quasicrystal state at low temperatures due to either coupling between
phonons and phasons [17] or an instability in the phason elasticity by itself [18]. In any case

the system should enter the quasicrystal phase through a first order phase transition as tem-
perature is increased, followed by monotonic increase of intensity -for peaks with large qi. At
high temperatures K_L becomes proportional to temperature (within the harmonic approxima-

tion) so that peaks with large q_L will level off at constant intensity.

Such remarkable behavior has indeed been seen in experiments by P. Bancel [16].
One note of caution is in order. Several other researchers have been unable to confirm this re-

sult, and Bancel finds it in only four out of five samples studied. Or course, to observe the ef-
fect it is essential that equilibrium be maintained throughout the experiment. Otherwise the
phasons will be frozen and the large qJ_ peaks will have constant intensity. In fact, perhaps

the most remarkable finding of Bancel’s experiment is the discovery that phasons can relax
on laboratory time scales far below the melting temperature. Another important point is that
the quasicrystal cohcentration regime is rather small and many attempts at confirmation
have not been at precisely the correct concentration.

X-ray scattering has not yet been exploited to its fullest. In particular the diffuse scat-

tering has not been studied. All eigenvalues of the hydrodynamic matrix can be measured, in
principle, fromthe diffuse scattering lineshapes [19]. This information would allow unambigu-
ous identification of an elastic instability. Perhaps it would even be possible to determine
whether the instability is driven by phonon-phason coupling or is instead intrinsic to the pha-
son degrees of freedom. '

3.2 Microscopy

Microscopy attempts to image the structure and thereby give direct structural information. So

far, however, these techniques have not been able to resolve the quasicrystal model issue. In
particular, distinguishing between models requires observing the temperature dependence of
the short wavelength phason fluctuations. But these fluctuations have not.been observed at
all through microscopic techniques. It is possible that they are not present in any appreciable
numbers which would be a certain vindication of the quasiperiodic crystal-model. But it
seems far more likely that resolution and interpretation problems plague the experiments.

Lattice imaging such as perfonned by Hiraga [20], show beautiful patterns with es-

sentially no phason strain evident. But the phason strains which can be imaged clearly by
th' t hni ue are long wavelength strains which show up regardless of resolution. Recall
th: ti: lodlalized phason fluctuations do not destroy long range translational order. Therefore
it is necessary to clearly resolve local atomic arrangements to observe these strains. High
resolution imaging has been done, but here there is still .a problem. The high resolution image

- is not actually a picture of atoms and is actually rather difficult to interpret.

Three effects make interpretation difficult. First of all, not all the scattered electrons
are used in forming the image. Rather a ring of bright spots is recombined, excluding much of
the diffuse scattering. It is well known that simply 5“PC1’P°Sin8 P1335 W3V*’-Swith 5Ymm°“’i'
cally arranged wave vectors yields pictures which greatly resemble the electron micrographs
[13]. Secondly, the sample is of finite thickness ‘so that the image is the result of averaging a
structure ovcr many atomic layers. Such averaging will tend to cancel strains of wavelength
less than‘ [hg sample thickness [20]. Finally, the problem of multiple scattering ‘obscures the

connection between the observed image and the real structure so that sophisticated image

117



L.
..

Electron microsc ' ' - .

[21] has perfomied Sll‘I1lCll:I)‘, f)‘ll."/(‘h(liCtlloF(f“.:t:l]l);l3l€:fisflglllzilfilgllis t0f6(l3atefia.|s' M‘ Audie‘
gest that the structure is not quasicrystalline at all, but rather mi:l:roc 15 mmts Sug--

cell of 8.9 Angstroms, This result is consistent with the observation Of‘-yBSa?l Hie hwnh a “M
sicrystal peaks disappear at 670C, and the observation of broadened x-ray Cecak; it the qua-

annealed at 600C by Goldman [22]. 'l‘liesc results tend to support the randgm tiliggszizffiig
by showing that the quasicrystal is it high temperature phase while the ground state is a co

ventional crystal. "'

Scanning tunneling microscopy overcomes the problems faced by electron microscopy
of connecting the atomic locations to the image. That is, the technique really does give direct
information about the spatial variation of surface height with resolution adequate to locate in-
dividual atoms. So far the technique has been used [23] to demonstrate the existence of long
range order, and to identify certain local atomic arrangements, but a serious search for pha-

son fluctuations has not been made.

3.3 Thermodynamic measurements ’

The random tiling model predicts a few effects of a thermodynamic nature. One of these is

that the system should transform from a crystal into a quasicrystal as temperature is in-
creased. The other is that the quasicrystal phase should have an entropy significantly en-

hanced by tiling fluctuations. The quasiperiodic crystal model also makes a novel prediction.
That is, the nonelectronic contribution to the specific heat should be enhanced by the pres-

ence of phason excitations leading to a T3 term of twice the amplitude one would expect from
phonons alone.

These predictions of the random tiling model have been confirmed by Sheild and Gold-
man [24]. A sample of AlCuFe was annealed at 60l)C then quenched to room temperature.
Upon heating, a DTA scan revealed an endothermic peak at 670C. Thus the quasicrystal
(high temperature) phase has a higher energy than the low temperature phase. Since the free
energies must be equal at the point of phase change, the quasicrystal has a higher entropy.
Of course it is not certain that the higher entropy is the result of tiling fluctuations rather
than, say, ,vacancies. It will be of great interest to measure the entropy change and compare
to the entropies of three dimensional binary random tiling models.

4. Conclusions

. . . . - - ° . Th ‘ sa-
This paper dlSCUSSCS three qualitatively different models of quasiciystalline order e ico '-

hedral glass model is essentially by definition, an appropriate m0d€l for describing nonegiiili, _ _ _ . . .c

librium quasiciystals. The other two models, the random tilingcggggl ci:lIilgfill1)ir€;u:lr:1‘;3t1rl:l::‘ures.

crystal model, share much in common. They both ‘attempt 0‘ S But they ‘are diStinguish_
They both predict similar types of ordering at finite tempera urc .

able and have a very different physical basis.

. . . . - _ ' 'odi ‘t . The

The
ground state is 8 P°Ff°°‘ ‘i““‘°‘>’5““' A‘ ’7‘"'° wgperiirmraladom tiling model suggests that
but they fail to destroy long range translational or er. e
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quasiperiodicity is favored by entropy. Phason fluctuations provide a source of entropy, with
film" WaVf'19"8l:hflPh3'S0f1 fluctuations actually providing the mechanism for eliminating the
ong wave engt uctuattons and guaranteeing long range translational order.

Experirnetttally the models can be distinguished by x-ray diffraction, microscopy, and

éhermodynamtc measurements. Matty of these experiments ‘have been performed. Where ef-
ects are seen the expenments tend to favor the random tiling model. But duplication of re-

sults among reseanclt groups has provcn difficult and further work is needed. Experiments
need to be repeated in different laboratories to ensure reproducibility. And some types of ex-

periment, such as a study of diffuse scattering, are still needed.
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