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Spontaneous magnetic order in strongly coupled ferrofluids 

H. Z h a n g  1 and M. W i d o m  

LASSP, Cornell Unil~ersity, Ithaca, N Y  14853, USA 

Using the dipolar hard-sphere fluid as a model, we study the spontaneous magnetization of ferrofluids. Mean field theory 
suggests magnetic order will occur in a strongly coupled ferrofluid. At fixed low density, the system phase separates at low 
temperature into a dilute nonmagnetic  gas and a dense, magnetically ordered liquid. We focus our study on the effect of 
positional randomness,  which is not included in conventional mean field studies. Our results show that a positionally 
unstructured ferrofluid exhibits magnetic order at low temperatures,  provided its density is high enough. Freezing the 
solvent inhibits phase separation. In this case, positional randomness  prevents magnetic order in a dilute frozen ferrofluid. 

1. Introduction 

Rosensweig [1] discusses the stability of fer- 
rofluids against agglomeration. However, the ag- 
glomerated or condensed phase may itself be a 
useful ferrofluid [2]. In any case, it requires the 
same attention as the dilute phase in our effort to 
understand the phase diagram of ferrofluids. The 
separation of ferrofluids into a dense phase and a 
dilute one could resemble a liquid-gas phase 
coexistence [2-8]. However, the circumstances, if 
any, leading to spontaneous magnetic order in 
the dense phase remain unknown. Bacri et al. [2] 
observed a liquid-gas phase coexistence in ionic 
ferrofluids under zero applied field. They did not 
report that the dense phase was magnetized. 

The complexity of ferrofluids arises from the 
long-range, anisotropic dipole-dipole interaction. 
The dipolar hard-sphere fluid captures this cen- 
tral feature while simplifying the short-range in- 
teraction. Agreement between its predictions and 
experiments on ferrofluids reveals the effects of 
the dipolar interaction and hard-core repulsion, 
while discrepancies yield information on the role 
of other short-range interactions of the dipolar 
particles with each other or with the solvent. 
Remarkably, even within the confines of dipolar 
hard-sphere fluids, the issue of magnetic ordering 
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has not been settled theoretically. In the absence 
of magnetic order, the orientation-averaged inter- 
action between two dipoles amounts to a 1 / r  ~ 

attraction, leading de Gennes and Pincus [3] to 
conjecture a gas-liquid phase coexistence like the 
conventional van der Waals fluid. Later studies 
[4-6] investigated the boundaries between 
isotropic gas and isotropic liquid phases and the 
critical point at which the distinction between gas 
and liquid phases vanish. 

The inclusion of magnetic order changes the 
thermodynamic behavior because now averaging 
orientations fails to remove the l / r  ~ interaction, 
and the sample shape becomes important [3,5,8,9]. 
Indeed, in failing to consider elongated needle- 
shaped samples, one finds [7] no possibility of 
magnetic ordering in unstructured ferrofluids. By 
introducing a magnetic order parameter and 
treating the demagnitizing field correctly, at low 
temperatures one finds phase coexistence be- 
tween an isotropic gas and a magnetic liquid [8]. 
At high temperatures the isotropic gas and mag- 
netic fluid phases meet in a continuous symme- 
try-breaking phase transition. Thus instead of an 
ordinary gas-liquid critical point one finds a tri- 
critical point [9]. 

Computer simulations of strongly coupled hard 
and soft spheres  [10] do observe spontaneous 
magnetization at moderate and high densities. 
But the absence of magnetic order in frozen 
ferrofluids [11] indicates a need for caution. Con- 
ventional mean field theory does not account for 
local fluctuations [5], which tend to suppress mag- 
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netic order [12]. We find the inclusion of such 
fluctuations alters mean field predictions signifi- 
cantly. For example, at zero temperature, where 
mean field theory predicts magnetization at all 
densities [8], our results show that there is a 
critical volume fraction (&c ~ 0.295) below which 
spontaneous magnetization is suppressed, and 
above which magnetic order persists. 

2. Theory and results 

Although the mean field theories [4-8] and 
computer simulations [10] of dipolar hard-sphere 
fluids discussed in the introduction address mo- 
bile particles capable of redistributing themselves 
to accommodate magnetic order, we claim that 
mobility is not essential. Thus, we consider a 
fixed, random, distribution of particles and set 
the pair correlation function g ( r ) =  1 outside the 
hard core diameter. This assumption is consistent 
with the frozen ferrofluid experiments [11] except 
for our neglect of the randomly oriented easy 
axes of real crystalline particles. It may also be 
consistent with the computer simulations in the 
sense that Wei and Patey [10] reported no dra- 
matic change in g(r) associated with the onset of 
magnetic order. To accentuate the point that the 
fluctuations considered arc due to the random 
environment as opposed to thermal randomness, 
we focus our attention on the state at T =  0, 
where thermal fluctuations vanish. 

Klein et al. [13] pioneered a self-consistent 
theory of randomly positioned point dipoles. As- 
sume that each dipole feels a field distribution 
P(H), with mean H(~ and width a. Conventional 
mean field sets a = 0. Since dipole moments tend 
to align with an applied field, P(H) determines 
the distribution of dipole orientation Q(fi). The 
dipole moment distribution, and the dipole posi- 
tions, in turn determine the field distribution 
P(H). The allowed field distributions P(H) may 
thus be determined self-consistently. Vugmeister 
and Glinchuk [12] applied this theory to the study 
of orientational ordering in random point dipoles, 
and concluded that local fluctuations due to posi- 
tional randomness prevent the emergence of 
long-range orientational order even at T = 0. 

However, we note that in real systems, the 

closeness of neighboring dipoles is limited by the 
hard-sphere diameter. Neglecting this minimum 
separation alters the qualitative behavior of the 
system since the dipole-dipole interaction di- 
verges rapidly at zero distance. As a result, in it 
point dipole system, where neighboring dipoles 
can get infinitely close, the field distribution P (H  ) 
is a Lorentzian squared with a spread propor- 
tional to the dipole density. Orientational order 
does not occur. When infinite closeness is not 
allowed, the field distribution P(H) is close to a 
Gaussian with a spread proportional to the square 
root of dipole density. Indeed, when a minimum 
dipole separation a is incorporated, our study 
shows that hmg-range orientational order does 
emerge when the dipole volume fraction exceeds 
a certain critical value O~. 

Following Klein's notation, we let the dipole 
moment of particle i be 

p, =pfii, ( l )  

where p is the magnitude which is fixed and the 
same for all dipoles, and /2 i is the orientation. 
Each dipole is subject to the same field distribu- 
tion P(H), which results in the same orientation 
probability distribution Q(fi). At T =  O, for 
dipoles that can assume arbitrary orientations, fi 
is always parallel to the local field H, so that 

Q(,~) f(, P( Hfx)H 2 dH. (2) 

To study the field felt by a dipolar particle lo- 
cated at the origin, we assume each of the re- 
maining dipoles has zero probability in the region 
r <a ,  and uniform probability 1 / I /  outside the 
region, V being the volume of the system. We 
decouple the contribution of different particles to 
the field at the origin by taking the Fourier 
transform of P(H) :  

F(p) ~ f d 3 U P ( H )  exp( i p .U)  

= e x p ( - n W l ( p )  i~W2(p) ), 

(3) 

(4) 
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where n = 1 /V  is the number density of dipoles, 
and 

w,(o) = f d2f  Q( x) 

× fr>ad3r{1-cos[(P//r3) 

w2(o) = fd2;  Q(fO 

(5) 

× fr>a d3r s i n [ ( p / r 3 ) ( 3 ( p ' r ) ( f  t "~) 

- p " / 2 ) ] .  (6) 

We are interested in the low-order moments of 
P(H), and thus the small p region is most impor- 
tant. We define the long-range magnetic order 
parameter  L as 

L --- fd2 Q(t2)t2. (7) 

Wz(p), which controls the location of the peak in 
P(H), is related to L through the simple relation 

4 v  
w (o) = 5 - p o  .L. (s) 

Note that W2(p) is independent of particle size a 
at fixed p. W1(p) controls the width and shape of 
the peak in P(H). In the absence of orientational 
order, Q(t2)= 1 /4w,  and 

4Trp2 2 {p4p4] 
Wl(p) 9~3 p + O  1 a9 ).  (9) 

The correction in WI(p) due to magnetic order is 
~ L  2. We are interested in the low order mo- 
ments of P(H), and thus the small p region is 
most important, and eq. (9) suffices for examining 
the onset of order. Our result (9) showing WI(p) 
~ p2/a3 contrasts with the result W1(p) ~p  ob- 
tained [12,13] for point particles with a = 0. 

Our expressions (9) and (8) for WI(p) and 
W2(p) define F(p), the Fourier transform of the 
field distribution P(H). For small p, F(p) is 
close to a Gaussian, while it is exponentially small 
for large p. Neglecting deviations from the 

Gaussian, an inverse Fourier transform leads us 
to 

1 
P ( H )  - (2v~-~(3) 3 e x p [ - ( n - n o ) 2 / 4 ( 3 2 ] ,  (10) 

where the peak field H 0 = (4"rr/3)npL is exactly 
equal to the mean field predicted by the mean 
field theory, and the Gaussian spread 

4"rrpzn (11) 
(3 = 9a ~ 

We regain the point dipole result [12,13] by tak- 
ing the nonphysical limit a --* 0 at fixed p. Since 
(3 diverges in the limit a ---) O, P(H) approaches a 
Lorentzian squared. We consider here the physi- 
cal case where p and a are fixed. For small &, H ,  
vanishes more rapidly than & thus the fluctua- 
tions dominate the mean field and there is no 
magnetization. For large (3, H 0 dominates (3 and 
magnetization is possible. We find a criticle vol- 
ume fraction 4'c > 0 at which magnetization be- 
comes nonzero. Now, L determines P(H) 
through eq. (10), which further determines Q(t2) 
through eq. (2), which finally determines L 
through eq. (7). This loop forms the self-con- 
sistent condition which we use to find the critical 
volume fraction 

~r 3v  
dPc =-- 6 nca3 = 3~- = 0.295. (12) 

Note that (bc is a numerical constant, indepen- 
dent of both p and a provided they are nonzero. 

3. Conclusion 

Although mean field theory supports the possi- 
bility of spontaneous magnetization in strongly 
coupled dense ferrofluids [8], studies of local 
fluctuations [12] assert that magnetic order is 
completely prevented even at T =  0 for point 
dipoles. For finite-size dipoles, we show that a 
critical volume fraction separates the isotropic 
and magnetic phases at T = 0. Thus we establish 
the possibility of magnetic order in the presence 
of positional randomness. Mean field theory ap- 
pears reliable at moderate and high volume frac- 



122 H. Zhang, M. Widom / Spontaneous magnetic order in .['errr~tluhl.~' 

tions. At low volume fractions, the particle size 
becomes less relevant, and the field distribution 
approaches a Lorentzian form consistent with 
Vugmeister and Glinchuk [12]. If the particle 
positions are frozen, the system should not mag- 
netize even as T ~ 0. Mobile particles, however, 
will tend to phase separate at low temperatures,  
and magnetization may be possible in the dense 
phase. 

We note, finally, that the frozen ferrofluid 
experiments [11] are conducted in the range & _< 
0.233, which falls in the regime where we predict 
no magnetization, while in the computer  simula- 
tions of dipolar hard spheres [10] the magnetized 
phase was found for & > 0.417, within the regime 
where we predict spontaneous magnetization. Ex- 
plaining the phase separation into dilute and 
dense non-magnetic phases observed by Bacri et 
al. [2] remains a challenge, but is not directly 
addressed by the present study. The challenge 
arises because conventional mean field theory 
[8,9] suggests the isotropic gas-isotropic liquid 
phase transition resulting from the effective 1 / r  ~ 

attraction of dipolar hard spheres is pre-empted 
by the magnetized liquid state. Perhaps random- 
ness in particle positions allows phase separation 
into an isotropic liquid prior to the onset of 
magnetic order [5]. We can test that hypothesis by 
incorporating a density shift [8,9] into the random 
mean field theory presented here. But it is con- 
ceivable that dipolar hard spheres simply do not 
possess a dense isotropic liquid state. If that turns 
out to be the case, then the phase separation 
observed by Bacri et al. [2] may result from the 
van der Waals attraction, or other forces not 
taken into account in our simplified model. 
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