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Abstract

We calculate the configurational entropy of codimension-one three-dimensional random rhombus tilings. We use three-

dimensional integer partitions to represent these tilings. We apply transition matrix Monte Carlo simulations to evaluate their

entropy with high precision. We explore free- as well as fixed-boundary conditions and our numerical results suggest that the ratio of

free- and fixed-boundary entropies is rfree=rfixed ¼ 3=2, and can be interpreted as the ratio of the volumes of two simple, nested,

polyhedra. This ratio confirms a conjecture by Linde et al. concerning the �arctic octahedron phenomenon’ in three-dimensional

codimension-one random tilings.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

After the discovery of quasicrystals in 1984 [1], qua-

siperiodic and random rhombus tilings [2,3] have been

extensively studied as models of quasicrystal structure.
When tiles are appropriately decorated with atoms,

random tilings become excellent candidates for model-

ing real quasicrystalline materials [4]. Therefore the

statistical mechanics of random tilings is of fundamental

interest for quasicrystal science. The relation between

random tilings and integer partitions provides an

important tool for the calculation of random tilings

entropy [5–9]. Integer partitions are arrays of integers,
together with suitable inequalities between these inte-

gers. One-to-one correspondences can be established

between integer partitions and tilings of rhombi filling

specified polyhedra. However, such strictly controlled

�fixed’ boundary conditions inflict a non-trivial macro-

scopic effect on random tilings [5], even in the large-size

limit, lowering the entropy per tile below the entropy
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with free or periodic boundary conditions. This effect a

priori makes difficult a calculation of free-boundary

entropies via the partition method. This boundary sen-

sitivity is well described, for the simple case of hexagonal

tilings [10,11], in terms of the spectacular �arctic circle
phenomenon’: the constraint imposed by the boundary

effectively freezes macroscopic regions near the bound-

ary, where the tiling is periodic and has a vanishing

entropy density. Outside these �frozen’ regions the en-

tropy density is finite and we call the tiling �unfrozen’.
The boundary of the unfrozen region is a perfect circle

inscribed in the hexagonal boundary. The entropy den-

sity varies smoothly within the unfrozen region, reach-
ing a maximum equal to the free boundary entropy

density at the center.

It was therefore tempting to analyze the 3d case.

Since no exact solution is known for the free boundary

case, one has to rely on numerical simulations. It has

recently been conjectured by Linde et al. [12] that in

dimensions higher than 2, the corresponding arctic re-

gion should be a polyhedron itself at the large size limit.
It was further conjectured [13] that in this case the en-

tropy density should be spatially uniform and maximal

in the unfrozen region. These conjectures renew the
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interest for the partition method since the relation be-
tween both entropies becomes amazingly simple in this

case. Note that, except for an early Ansatz [6] and some

exact numerical results for small tilings [8], almost

nothing is known about the entropy of codimension-one

tilings of dimension d > 2.

The present paper proposes a numerical investigation

of codimension-one three-dimensional tilings. A power-

ful transition matrix Monte Carlo algorithm enables
us to achieve accurate estimates of both fixed- and free-

boundary entropies. The latter is calculated via a mod-

ified partition method, which produces tilings with fixed

boundaries that do not impose any strain to the tilings,

thus generalizing a former two-dimensional approach

[11]. Comparing both entropies, we support the above

conjecture with good confidence. This paper is a short-

ened version of a more detailed one [14].
2. Partitions and tilings

Solid partitions are defined inside a three-dimensional

array of sides k1 � k2 � k3. Fix an integer p > 0, called

the height of the partition problem. Put non-negative

integers nijk in the array, no larger than p, with the
constraint that these integers decrease in each of the

three directions of space. Four-dimensional hypercubes

are stacked above the three-dimensional partition array,

with the heights of the stacks equal to the corresponding

parts. Then project into three dimensions along the

(1,1,1,1) direction of the hypercubic lattice. The so-ob-

tained tilings fill a polyhedron, a �rhombic dodecahe-

dron’ (RD) of integral sides k1, k2, k3 and p (see the outer
frame in Fig. 1). The total number of tiles is Nt ¼
Fig. 1. The puckered octahedral boundary conditions nested inside the

outer rhombic dodecahedron (RD).
k1k2k3 þ k1k2p þ k1k3p þ k2k3p. We call tilings with
rhombic dodecahedron boundaries �RDB-tilings’ and

denote their configurational entropy per tile by rfixed.
Polyhedral boundary conditions, such as in the RDB

tilings, have macroscopic effects on random tilings. In

the �thermodynamic limit’ of large system size, the sta-

tistical ensemble is dominated by tilings which are fully

random only inside a finite fraction of the full volume

and are frozen in macroscopic domains. By frozen, we
mean they exhibit simple periodic tilings in these do-

mains with a vanishing contribution to the entropy.

Therefore such boundary conditions are not very phys-

ical. Consequently, it is desirable to relate fixed

boundary condition entropies to the more physical free

boundary ones. To exploit the calculational advantages

of a partition representation, while achieving the phys-

ical free-boundary entropy in the thermodynamic limit,
we adapt the partition method so that the corresponding

tilings exhibit no frozen regions. The new boundary,

even though fixed, has no macroscopic effect on tiling

entropy in the thermodynamic limit. The tilings become

homogeneous, displaying the free-boundary entropy

density throughout. The idea is to consider tilings (we

focus on �diagonal’ tilings with k1 ¼ k2 ¼ k3 ¼ p) that

fill a regular octahedron O instead of the rhombic
dodecahedron RD. Eight vertices of the RD must be

truncated to produce the O. We call tilings with octa-

hedron boundaries OB-tilings. Such an octahedron is

displayed in Fig. 1. It is inscribed in an RD and has

puckered boundaries instead of flat ones. Despite this

puckering, the boundaries are effectively flat in the

thermodynamic limit. These OB-tilings are easily shown

to have free boundary entropy. In terms of solid parti-
tions, they are obtained by changing the boundary

constraints [14]. The partition array is no longer a cube,

but two opposite pyramidal corners have been trun-

cated, leaving a slab of D3d symmetry. This slab contains

Np ¼ p3 � ðp � 1Þpðp þ 1Þ=3 parts. For an original par-

tition cube of sides k1 ¼ k2 ¼ k3 ¼ p, the full RD con-

tains Nt ¼ 4p3 tiles. The O contains only Nt ¼ 4p3 �
4ðp � 1Þpðp þ 1Þ=3 tiles.

In three dimensions, Linde et al. have recently ex-

plored numerically the typical shape of a RDB-tiling [12]

and have been led to conjecture that the boundary of the

frozen region is a regular octahedron, inscribed in RD

like in Fig. 1. More precisely, the unfrozen region is not

exactly an octahedron but tends to such a shape at the

large size limit. This conjecture has a crucial conse-

quence [13,14]: the statistical ensemble of RDB-tilings is
dominated by tilings periodic outside O and random

inside O, equivalently OB-tilings like in the previous

section completed by eight periodically tiled pyramids to

fill RD. Taking into account the tiles in the frozen re-

gions to calculate an entropy per tile, one finally gets

rfixed ¼ ðNO=NRDÞrfree ¼ 2rfree=3, since the ratio of the

numbers of tiles in RD and O is 3/2.



Table 1

Finite-size entropies in function of p

p rfree rfixed rfree=rfixed

1 0.1732868 0.1732868 1.000

2 0.1732868 0.1601239 1.080

3 0.17947(2) 0.1545769 1.161

4 0.18455(6) 0.1517949 1.216

5 0.18829(3) 0.15017(2) 1.254

6 0.19108(4) 0.14918(6) 1.281

7 0.19320(4) 0.14848(1) 1.301

8 0.19486(2) 0.14780(1) 1.318

9 0.19618(1) 0.14762(2) 1.329

10 0.19727(4) 0.14735(5) 1.339

1 0.214(2) 0.145(3) 1.48(3)

Values in parentheses are uncertainties in final digit. Values without

uncertainties are exact.
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3. Monte carlo simulations

In this section, we calculate the above ratio via Monte

Carlo simulations. We develop a variant of the transi-

tion matrix method [15] that couples a conventional

Metropolis simulation with a novel data collection

scheme to construct a numerical approximation of the

transition matrix: For any legal partition P ¼ fnijkg, we
define its �energy’ as its total height, EðP Þ ¼

P
i;j;k nijk .

Single vertex flips increases or decreases by one unit a

single variable nijk , resulting in an energy change

DE ¼ �1. For the boundary conditions employed here,

the ground state (resp. the maximum energy state) is

unique and we denote its energy as Emin (resp. Emax).

Our aim is to calculate W ðEÞ, the total number of par-

titions with energy E, and to sum up on all energies to

get the total number of partitions Z ¼
P

E W ðEÞ (see
Ref. [14]). Detailed balance requires that the total

number of forward transitions from energy E to energy

E þ 1 must equal the total number of backwards tran-

sitions, hence xþðEÞW ðEÞ ¼ x�ðE þ 1ÞW ðE þ 1Þ where

xþðEÞ and x�ðEÞ are respectively the average numbers

of backward and forward transitions per tiling of the

energy level E. It is useful to rearrange the detailed

balance equation to find W ðE þ 1Þ ¼ W ðEÞxþðEÞ=
x�ðE þ 1Þ. If the transitions xþ and x� are estimated

numerically, we can iteratively extract the full density of

states W ðEÞ using the uniqueness of the ground state,

W ðEminÞ ¼ 1. Finally, the total entropy is S ¼ ln Z, and
the entropy density is r ¼ S=Nt.

To ensure that all energy levels are (almost) uni-

formly visited, we perform sweeps over temperature (for

both negative and positive temperatures). Fig. 2 shows
a plot of the number of partitions sampled as a function

of E during the longest runs for the p ¼ 4 case, the

number of hits exceeds 106 uniformly for each energy

06E6 256. The density of states W ðEÞ shown in Fig. 2

(center), is nearly a Gaussian. It reaches a peak value of

1.7 · 1015 states at energy E ¼ 128, and has a width of
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Fig. 2. Numerical data for p ¼ 4 fixed boundary conditions. From top

to bottom: number of sampled configurations; density of states;

entropy.
DE ¼ 40. As the system size grows this width grows
more slowly than the number of tiles, so the density of

states asymptotically approaches a delta function. The

microcanonical entropy SðEÞ ¼ logW ðEÞ is plotted in

the lower panel of Fig. 2.

In Table 1 are displayed our data for the system sizes

studied. For both fixed and free boundary tilings, the

data fit quite well to

rfixedðpÞ ’ 0:145� 0:0049
logðpÞ

p
þ 0:034

p
; ð1Þ

rfreeðpÞ ’ 0:214� 0:052
logðpÞ

p
� 0:046

p
; ð2Þ

from which we conclude that rfixed ¼ 0:145ð3Þ and

rfree ¼ 0:214ð2Þ. The presence and consequences of log-

arithmic corrections are discussed in Ref. [14]. The

limiting ratio fits to rfree=rfixed ¼ 1:48ð3Þ.
4. Conclusion

Returning to the arctic octahedron conjecture, we

recall that a ratio rfree=rfixed ¼ 3=2 was expected. This

fits our numerical results and supports the previous

conjectures. This result emphasizes the important
dimensional dependence of the spatial transition be-

tween the frozen and unfrozen regions. In 2d, the tran-

sition is continuous, since the entropy density is 0 by the

arctic circle and then continuously varies to reach its

maximum value near the center of the hexagon, with a

non-zero gradient everywhere except near the center. By

contrast, the situation seems to be radically different in

3d, where the entropy density is constant in the arctic
octahedron O, with a vanishing gradient everywhere and

a discontinuous transition at the boundary of O. This

result (as well as its possible generalization to higher

dimensions) is a strong support of the partition method,

of which it was formerly believed that it could not easily
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provide relevant results about free boundary entropies.
Indeed, provided the arctic region is polyhedral with a

strain-free boundary, the ratio of both entropies is

simply the ratio of the volumes of polytopes.
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