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Abstract. We study finite-size corrections to the free energy in a two-dimensional random 
tiling model. This model is equivalent to an asymmetric six-vertex model and exhibits 
commensurate-incommensurate phase transitions of the Pokrovsky-Talapov type. We 
calculate finite-size scaling amplitudes of the free energy inside the incommensurate phase, 
analytically and numerically, by employing a transfer matrix method. Both periodic and 
free boundary conditions are considered. These amplitudes are consistent with predictions 
of the theory of conformal invariance with the conformal charge c = 1. 

Tiling models describing quasicrystals have received a considerable amount of attention 
recently [ 1-51. Experimentally some rapidly quenched alloys were found to have 
non-crystallographic symmetries with rather sharp diffraction peaks [ 6 ] .  Recent experi- 
ments on AlCuFe [7,8] revealed diffraction peaks whose width is resolution limited, 
indicating long range quasiperiodic translational order coexisting with icosahedral 
bond orientational order. The Penrose tiling, which consists of two types of rhombi 
tiled together with strong matching rules, is perfectly quasiperiodic and exhibits a 
Bragg diffraction pattern with a non-crystallographic five-fold symmetry [2]. Penrose 
tilings and their three-dimensional generalisations are thought to model the 
quasiperiodic order in quasicrystals. 

Random tilings [ 31 incorporate disorder by loosening the matching rules between 
tiles. In three dimensions they display Bragg diffraction peaks in addition to a diffuse 
background. In two dimensions they exhibit quasi-long-range translational order with 
zero width power law peaks. It is believed that the entropy associated with the random 
tiling stabilises the quasicrystal phase and favours quasiperiodic translational order. 
Thus the random tiling scenario and entropic stabilisation are appropriate descriptions 
of thermodynamically stable quasicrystals. Monte Carlo simulations [9] suggest that 
equilibrium configurations of certain binary atomic systems at low temperatures are 
well described as random packings of tiles decorated by atoms with weak matching 
rules. Experimentally, there are also such strong indications [8, lo]. It is therefore of 
great interest to study the statistical mechanics of random tiling models. 

Recently the transfer matrix method was applied to random tiling models on a 
semi-infinite strip geometry and was successful in estimating entropies and phason 
elastic constants in two-dimensional quasicrystal phases [4]. However such calculations 
suffer from finite-size effects due to the smallness of strip widths attainable with present 
computers. Moreover, quasicrystal phases in random tiling models are incommensurate 
phases where an extra length scale (the domain wall separation) is present besides the 
correlation length (or finite system size) [ 111. So one may not blindly use conventional 
finite-size scaling ( FSS) techniques appropriate to systems with only one relevant length 
scale. 
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Park and Widom investigated finite-size effects in incommensurate phases [ 12,131. 
They showed that the leading finite-size scaling behaviour of the free energy obeys the 
law of conformal invariance but competition between two length scales generates a 
deficit (or excess) of domain walls for finite systems with periodic boundary conditions. 
Due to the presence of this defect, care must be taken in extrapolating finite-size data 
to bulk values and extracting finite-size scaling behaviour of the free energy. Moreover, 
with a small number of finite-size data points, extrapolation itself is difficult in general. 
One principal conclusion of the work presented in this letter is that one can partially 
overcome the domain wall deficit problem by taking free boundary conditions. That 
is, domain walls can annihilate and/or appear at boundaries. But then one must 
endure the appearance of non-universal surface terms in the free energy with free 
boundary conditions. The domain wall deficit problem may still persist in high-order 
finite-size corrections. In this letter we calculate the FSS amplitudes of the free energy 
of a random tiling model with periodic and free boundary conditions. Our study serves 
as the first step towards applying the FSS results to more general random tiling models. 

The tiling model we study consists of squares and distorted rhombi (parallelograms) 
as shown in figure 1. The acute angle of the parallelogram is 45" and lengths of diagonal 
edges are equal to those of squares. Lengths of horizontal edges of the parallelograms 
are times shorter than the others. These tiles can be put together randomly as long 
as they do not overlap with each other and there are no gaps between them (figure 2). 
Then vertices of tiles (including centres of squares) form a square lattice with a lattice 

Figure 1. The tiles and their chemical potentials. 

Figure 2. A typical configuration of the tiling model on a semi-infinite strip with strip 
width N = 9. Periodic boundary conditions are imposed. Dots (vertices of tiles and centres 
of squares) form a square lattice. Bold lines represent domain walls. 
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constant equal to the length of shorter edges of the parallelograms which we take as 
our unit of length. We assign the chemical potential p to a parallelogram and 0 to a 
square. Varying p drives the system from the ordered phase of squares to the incom- 
mensurate phase. This tiling model is an anisotropic limit of the conventional eight-fold 
symmetric tiling model [ 141 for quasicrystals, i.e. 45O-rotated tiles with respect to those 
in figure 1 are frozen out in our tiling model. In addition, diagonal edges of rhombi 
and squares are stretched by a factor of f i  for convenience. This model is also a 
distortion of the six-fold symmetric random tiling model [ 151. 

Our tiling model maps onto an asymmetric six-vertex model [16] by one-to-one 
correspondences between their vertices and edges of tiles (figure 3). Two types of 
vertices (2 and 3) are frozen out. This model exhibits commensurate-incommensurate 
phase transitions of the Pokrovsky-Talapov type [ 171. One can easily identify domain 
walls by lines which connect horizontal edges shared by adjoining parallelograms (see 
figure 2). Note that these domain walls may be recognised as a generalisation of one 
of the de Bruijn paths of the tilings [18]. These domain walls do not meet each other 
and their average directions are parallel. On a semi-infinite strip with periodic boundary 
conditions, the number of parallelograms (or domain walls) per layer n, is conserved. 
With strip width N, the number of squares n, is given by N = nr+2n,. 

( 1 )  ( 2 )  (31 (4) (5) (6)  

Figure 3. Identifications of edges of tiles with vertices of the six-vertex model. The 
Boltzmann weights for vertices are given by w ,  = w4 = exp(F),  w 2  = wj = 0, and w 5  = w6 = 1. 

Employing the Bethe-ansatz method, we find the free energy of the finite system 
under periodic boundary condition, f N ,  with n, squares per layer, is: 

NfN = -pnr-ln 2+-  

for even n,. We rewrite this equation in a form reminiscent of free fermion models 

nr 

j = 1  
NfN = - ln[2 e’’  COS(^,)] 

where kj = (2j - 1 - n,).rr/N’ and N ’ =  N +  n,. The dispersion relation is 8 (k ;  p )  = 
-ln[2 e’’ cos(k)]. The distribution of wavevectors k is uniform, which is characteristic 
of the free fermion model [ 113. However, the spacing between nearest-neighbour 
wavevectors 2 r /  N’ varies with n,. So general thermodynamic and finite-size-scaling 
behaviour must be similar to the free fermion model but certain details are modified. 

In the thermodynamic limit, the free energy takes the form 

where the Fermi wavevector kF = limN+m m , / N ’ .  By minimising the free energy with 
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respect to k F ,  we determine the value of k ,  for a given p through the implicit integral 
equation: 

fm(kF ;  p ) + g ( k F ;  p)=o. (4) 

The thermodynamic behaviour is equivalent to the free fermion model. The dispersion 
relation has a quadratic shape near k = 0 and monotonically increases with Ikl. At 
kF = 0 (or p = -In 2), our model exhibits the Pokrovsky-Talapov transition from the 
crystal phase with purely squares to the incommensurate critical phase with domain 
walls. The domain wall density d, defined by d = limN+m n,/ N, vanishes with critical 
exponent p = 4 as p approaches pc (=-In 2) from the side of the incommensurate 
phase. The specific heat diverges with critical exponent a = -4. The domain wall 
density-density correlation function in the incommensurate phase decays algebraically 
with critical exponent x = 1. 

In this letter, we study finite-size corrections to the free energy inside the incom- 
mensurate phase. Finite-size scaling behaviour near the Pokrovsky-Talapov transition 
will be discussed elsewhere [19]. Finite-size corrections to the free energy may be 
obtained by applying the Euler-Maclaurin formula to (2). When domain wall densities 
of finite systems perfectly match the bulk density, i.e. n,/ N = d, we find for periodic 
boundary conditions 

f N  
7r l+d tan( kF) / N 2 +  . .  

where kF = r d / (  1 + d ) .  Conformal theory [20,21] predicts that at criticality the ampli- 
tude of O( 1/ N 2 )  finite-size corrections to the free energy is - f .rrcl  for periodic boundary 
conditions. c is the conformal charge which governs the universality class and 5 is 
the anisotropy factor equal to the Fermi velocity %'(kF). The FSS amplitude in ( 5 )  
indicates that the conformal charge c = 1 with the modified anisotropy factor, 5 = 
g'( k F ) / (  1 + d ) .  The factor 1/(  1 + d )  = N /  N' results from the unusual wavevector 
spacing 25r/ N' .  Later we confirm c = 1 independently by studying the 90"-rotated 
geometry. 

When domain wall densities of finite systems do not perfectly match the bulk 
density, the FSS amplitude is modified due to the deficit (or excess) of domain walls 
in finite systems. The mismatch parameter K defined by Nd = n + K, where n is the 
integer closest to Nd, represents a deficit of domain walls (see [12]). Perturbation 
calculations near the perfect density enable us to find the efectiue conformal charge 

c = i - 3 [ + ] .  2 

Note that the effective conformal charge c = 1 - 3 ~ *  for the free fermion model [12]. 
Again the factor 1/( 1 + d )  modifies K. 

Now we repeat the calculation with free boundary conditions. There are no 
restrictions on tiles at boundaries of the system. We consider a semi-infinite strip 
geometry with boundaries of not ragged but straight lines. So parts of tiles outside of 
the strip are cut off (see figure 4). The chemical potential for a fractional tile is taken 
to be proportional to its area. Domain walls can disappear or reappear at boundaries. 
The number of domain walls varies layer by layer. So possible values of wavevectors 
in finite systems are continuous, in contrast to those which are quantised with periodic 
boundary conditions. Therefore finite systems with free boundary conditions find a 
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Figure 4. A typical configuration of the tiling model with free boundary conditions. Parts 
of tiles outside of the strip are cut off. Notice that domain walls (bold lines) can disappear 
and/or reappear at boundaries. 

true ground state where there is no excess (or deficit) of domain walls?. Notice that 
these boundary conditions are completely different from the conventional free boundary 
conditions in quantum spin chain models [22], where the number of domain walls is 
still a good quantum number so there are still K effects. 

There are no exact solutions available for finite systems with free boundary condi- 
tions. We calculate the free energy numerically on a semi-infinite strip using transfer 
matrix techniques. As usual the system is divided into layers. A state of a layer is 
determined by positions of squares; X = { x , ,  x 2 , .  . . , x , }  where x i  is the position of 
the centre of the ith square. Except for those closest to boundaries, each square of a 
given layer must be located in between neighbouring squares of the neighbouring layer 

x ,  < y ,  < x2< y,  < . . . or y , < x , < y , < x , <  * . .  (7) 
where Y = { y ,  , y , ,  . . . , ya} represents the positions of centres of squares of the neigh- 
bouring layer. With free boundary conditions the number of centres of squares can 
vary layer by layer and its variance between neighbouring layers is n, - n: = 0, * l .  
Note that centres of squares at the boundaries contribute fully to n, and n: even though 
they only contribute as half squares to the chemical potential. 

The transfer matrix, T ( X ,  Y ) ,  is very sparse. Mostmatrix elements are zero because 
of the above condition (7). Exploiting the sparsity to reduce computer storage, we 
can study a system with a relatively large strip width ( N  = 17). We calculate the largest 
eigenvalue A of the transfer matrix with system sizes N from 1 up to 17. The free 
energy of the system is given b y f =  -(ln A ) / N  We assume that the form of finite-size 
corrections is f N  =fa +A/ N - A '/ N 2  + . . . . Conformal theory predicts A = & T C ~  for 

t With free boundary conditions, the domain wall density in finite systems is not the same as the bulk density 
but has a 0(1/N) correction. This correction results entirely from the surface free energy L,  i.e. df,/dp. 
In contrast, the system with periodic boundary conditions is forced to have a deficit (or excess) of domain 
walls with no surface free energy. So with free boundary conditions the system has no excess (or deficit) 
of domain walls in viewpoint of the true ground state where there are no domain walls forced into (or out 
of) the system. Only these forced ones contribute to the finite-size scaling amplitude of the O( l /NZ)  term 
of the free energy. 
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free (or fixed) boundary conditions [20,21]. The bulk free energy fa is exactly known 
from (3) and (4). Fitting our numerical data into the above form yields a sequence 
of A:, = N ( N +  l ) [ (N+  l)fN+, - NfN -fm] ( N  = 1,2, .  . . , 16). This sequence is then 
extrapolated to the thermodynamic limit using the 8 algorithm [23]. 

We carry out our calculations for -0.6 s p d 0.4 inside the incommensurate phase. 
Table 1 displays a sampling of numerical values of 4AL/Ap at several values of p 
where A P =  ~ [ / 6  is the FSS amplitude for periodic boundary conditions, see ( 5 ) .  
Conformal theory predicts that this ratio is 1 [21]. Extrapolated values of this ratio 
are close to 1 (within 1% error) in most regions. Notice that these ratios change 
drastically near p = pc = -In 2 where anisotropic scaling sets in (the anisotropy factor 
l+ 0) so the conformal invariance disappears [ 113. This anisotropic finite-size scaling 
behaviour will be discussed elsewhere [ 191. 

Table 1. The ratio of finite-size scaling amplitudes of the free energies with free and 
periodic boundary conditions multiplied by a factor of 4; 4A',/AP. We list finite-size data 
for several values of strip width N and chemical potential p. The values in the last row 
are extrapolations to the thermodynamic limit using the 0 algorithm. At p = -0.6 the 8 
algorithm fails and the extrapolated value depends on extrapolation techniques. 

0.0 0.2 0.4 4A',IAP p = -0.6 -0.4 -0.2 

N = 8  1.463 24 1.035 87 0.875 11 0.744 94 0.619 95 0.619 95 
10 1.332 61 1.026 47 0.895 74 0.895 73 0.673 97 0.559 02 
12 1.257 28 1.020 02 0.910 20 0.813 73 0.714 19 0.607 78 
14 1.224 93 1.015 87 0.921 02 0.835 59 0.745 39 0.646 64 
16 1.186 26 1.012 86 0.929 47 0.852 79 0.770 37 0.678 39 
cc 1.210 48 1.010 22 1.005 96 1.005 39 1.011 34 1.015 56 

Finally we present the numerical results on the 90O-rotated geometry with periodic 
boundary conditions. On these strips domain walls lie perpendicular to the direction 
of the infinite dimension. There are no K effects since there is no discreteness in the 
finite-size domain wall density. However, with odd N (strip width), the system cannot 
have equal numbers of right- and left-tilting parallelograms in a layer. This means 
that directions of the domain walls are slightly tilted with respect to the horizontal 
direction. The broken symmetry between two kinds of parallelograms would generate 
an extra term in the FSS amplitude of the free energy. 

When N is even, the symmetry between two kinds of parallelograms is maintained. 
In this letter we study the system with even N only, up to N = 12. We use periodic 
boundary conditions to remove surface terms in finite-size corrections to the free 
energy. Finite-size data for the free energy are fitted into the form; fN = 
fm-Ar/N2+ . . . . As in the previous case, we find a sequence {Ah}. Extrapolated 
values of the FSS amplitudes are obtained again by using the 8 algorithm. The product 
of two FSS amplitudes, APAr, in two orthogonal geometries cancels the anisotropy 
factor and takes the value m/6)* [24]. Table 2 displays a sampling of numerical 

should yield the value of the conformal charge c. In most regions, except near p = p,, 
the conformal charge c is very close to 1 (within 0.2% error). This confirms our previous 
identification of the anisotropy factor [ = S'( kF)/( 1 + d)  and the conformal charge c = 1. 

values of cN = (6/7r) + APA& at several values of p. Extrapolations of cN to the bulk 
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Table 2. Approximations to the conformal charge, c N .  We list finite-size data for several 
values of strip width N and chemical potential k. The values in the last row are extrapola- 
tions to the thermodynamic limit using the 8 algorithm. At p = -0.6 the 8 algorithm fails 
and the extrapolated value depends on extrapolation techniques. 

C N  p = -0.6 -0.4 -0.2 0.0 0.2 0.4 
~ ~ ~ ~~ 

N = 4  0.570 25 0.975 33 1.099 67 1.11501 1.101 73 1.088 27 
6 0.704 58 1.065 40 1.087 96 1.060 95 1.043 30 1.035 56 
8 0.805 96 1.085 22 1.058 17 1.032 47 1.022 52 1.019 04 

10 0.883 25 1.078 53 1.037 12 1.019 40 1.013 84 1.011 94 
12 0.941 90 1.064 60 1.024 53 1.012 88 1.009 42 I .008 2 1 
CO 1.173 82 1.060 70 1.002 22 0.998 75 0.998 32 0.998 07 

In summary, we have studied a random tiling model and found a commensurate- 
incommensurate phase transition between a crystal phase of squares and an incom- 
mensurate critical phase. The finite-size corrections to the free energy inside the 
incommensurate phase are similar to those of the free fermion model. Analytic and 
numerical calculations show that the FSS amplitudes of the free energies are consistent 
with predictions by the conformal theory with the conformal charge c = 1. 

We wish to acknowledge a useful discussion with D Abraham on the use of the 
Euler-Maclaurin formula and with D P Deng on free fermion models with free 
boundary conditions. This work was supported in part by the National Science 
Foundation, grant DMR-89 18810 and by the Donors Petroleum Research Fund. Most 
of the computation was done at Pittsburgh Supercomputer Center and their service is 
gratefully acknowledged. 
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