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Random Tilings of High Symmetry: II. Boundary
Conditions and Numerical Studies
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We perform numerical studies including Monte Carlo simulations of high rota-
tional symmetry random tilings. For computational convenience, our tilings
obey fixed boundary conditions in regular polygons. Such tilings are put in cor-
respondence with algorithms for sorting lists in computer science. We obtain
statistics on path counting and vertex coordination which compare well with
predictions of mean-field theory and allow estimation of the configurational
entropy, which tends to the value 0.568 per vertex in the limit of continu-
ous symmetry. Tilings with phason strain appear to share the same entropy as
unstrained tilings, as predicted by mean-field theory. We consider the thermo-
dynamic limit and argue that the limiting fixed boundary entropy equals the
limiting free boundary entropy, although these differ for finite rotational sym-
metry.
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1. INTRODUCTION

A tiling is a filling, without gaps or overlaps, of a given region of a d-
dimensional Euclidean space, with tiles which differ according to their
shapes, sizes, and orientations. In the present paper, the tiles are d-
dimensional rhombohedra, which we will generically call “rhombi” in the
following. Each tile is the projection of a d-dimensional face of a D
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dimensional hypercube (D > d) into d-dimensional space. The difference
D− d is known as the codimension of the tiling, and we say that we are
dealing with D→ d tilings. Details of this construction can be found in
a previous paper,(1) hereafter referred to as “paper I”. We mainly focus
on the case d = 2. A random rhombus tiling can be viewed as a fluctu-
ating membrane in this higher dimensional space,(2) the membrane being
the union of hypercube faces (see paper I(1), Section 2.1).

Rhombus tilings are dual to de Bruijn grids.(1,3) In two dimensions,
these grid lines pass through the midpoints of parallel rhombus edges.
Every rhombus edge orientation defines a family of effectively parallel de
Bruijn grid lines. De Bruijn grid lines within a family never cross. In con-
trast, lines of different families do cross, and their crossing defines a rhom-
bus of the tiling. There are D rhombus edge orientations and hence D
families of de Bruijn grid lines.

Rhombus tilings provide simple models for quasicrystals,(4,5) metal
alloys that exhibit rotational symmetry forbidden by conventional crys-
tallography. One of the key properties of random tilings(6) is their con-
figurational entropy that may play a role in stabilizing the quasicrystal
state. The source of entropy is localized tile rearrangements known as pha-
son flips. Groups of three adjacent rhombi may be permuted so that their
perimeter remains fixed while their shared vertex moves to a nearby point.
Our present focus, as in paper I, is the limit of high rotational symmetry
obtained as D→∞ at fixed d. We examine this limit because of its intrin-
sic interest and because it deepens our understanding of finite D tiling
models relevant for real alloy systems.

As usual in statistical mechanics, tiling systems can have different
boundary conditions, such as free, fixed or periodic. For example, the
tilings in Figs. 1, 2 or 14, have fixed polygonal boundaries. It is believed
that free and periodic boundary tilings reach equal entropies at the ther-
modynamic limit. Fixed boundary tilings, in contrast, exhibit entropies
that are strictly smaller than the free boundary entropy. For example, the
fixed hexagonal-boundary entropy of 3→2 tilings (see Fig. 1, left) equals
0.261,(7) while the free boundary entropy equals 0.323.(8) This phenome-
non can be understood(7,9–11) by inspection of Fig. 1. The local entropy
density displays a gradient between crystalline regions near the bound-
ary, where the entropy density vanishes, and the central region, where
the entropy density reaches a maximum value equal to the free boundary
quasicrystalline value. Only at the very center of the tiling does the influ-
ence of the boundary disappear.

Paper I(1) developed a mean-field theory for free boundary tilings,
applicable to the limit of high rotational symmetry. Two earlier papers(12,13)

presented initial studies of this problem. The first paper(12) proposed an
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Fig. 1. Fixed boundary D→2 tilings with D=3,5 and 7. The side lengths of the polygons
are all p=8.

upper bond on the entropy in the limit of large D and discussed prob-
lems associated with the thermodynamic limit of tiling models. The second
one(13) presented a preliminary mean-field approach of the entropy calcu-
lation. In the present paper we focus on fixed boundary tilings because
they are easy to simulate numerically. We present results of our simula-
tions, including an accurate estimate of the limiting entropy density. We
investigate the role of fixed boundary conditions and argue for a boundary-
condition-independent thermodynamic limit in the limit D→∞. Similarly,
we show that phason strain does not influence the entropy for large D.

The organization of this paper is as follows. We start in Section 2
with a discussion of fixed boundary tilings, and describe their relationship
to interesting problems of pure mathematics. Next, we review the prob-
lem of the thermodynamic limit in Section 3 where we argue that free and
fixed boundary tilings attain the same thermodynamic limit as D→ ∞.
We also explore finite D corrections to the fixed boundary entropy and
their relation to the inhomogeneity of the tilings. Then, Section 4 describes
our Monte Carlo simulations. In that section we explore the entropy, path
counting statistics, vertex coordination statistics and the role of phason
strain. We also confirm numerically the results of Section 3. The paper is
written so that the reader does not need the notations of paper I, except
in the appendices.

2. FIXED BOUNDARY TILINGS

Fixed boundary tilings such as those of Fig. 1 possess the most nat-
ural boundary conditions for tilings coded by combinatorial objects such
as generalized partitions or sorting algorithms. Even though these bound-
ary conditions are unnatural for bulk quasicrystals, this inconvenience
is counter-balanced by the powerful tools provided by such codings in
terms of understanding of tiling set structures and enumeration of tilings.
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Furthermore, we will demonstrate in this paper that fixed and free bound-
ary tilings become equivalent in the large codimension limit, which will
justify a posteriori the use of fixed boundary conditions.

As already described in the introduction, such fixed boundary tilings
lack a proper thermodynamic limit for finite D because the boundary has
a strong macroscopic effect on the whole tiling.(7,9–11,14) This leads to a
spectacular effect known as the “arctic circle phenomenon”(10) in hexag-
onal (D= 3) tilings, where the tiling is periodic (and “frozen”) outside a
perfect circle at the large size limit and random inside this circle. More
generally and for larger D, fixed boundary tilings have an effective codi-
mension that is smaller near the boundary than in the bulk. Very near
the boundary the effective codimension vanishes. The tiling becomes a
crystalline domain comprising a single tile type. The local entropy den-
sity vanishes because no phason flips are possible. In the membrane pic-
ture, this region corresponds to a flat area with large tilt. Further from
the boundary the effective codimension grows. The variable codimension
results in an entropy density gradient, growing from zero at the boundary
to the maximal, free boundary, entropy density at the tiling center. Con-
sequently, fixed boundary tilings have a smaller total entropy per tile than
free boundary tilings.

In contrast, we will show in Section 3 that when D becomes large
(Fig. 2), this heterogeneity diminishes and a thermodynamic limit is
restored. Since fixed boundary tilings are easier to specify and manipu-
late for arbitrary D, they are the appropriate tool to tackle large D entro-
pies or other statistical properties. In the following, the fixed boundary

Fig. 2. A 40→2 fixed boundary tiling with one de Bruijn line in each family.
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entropies per tile will be denoted by σ̄D and their limiting value by σ̄∞.
Corresponding values without the over-bar refer to free boundary tilings.

In terms of de Bruijn dualization, any two lines of two different fami-
lies intersect inside a fixed boundary tiling(15) (the grid is said to be “com-
plete”). Duality associates tile with the intersection of two lines. Therefore
if there are ki lines in each family Fi , the number of tiles is

NT =
∑

1�i<j�D
kikj . (1)

If all ki are set to 1, NT =D(D−1)/2.
The relationship between tilings and partitions has been widely

explored in references refs. 7, 15–17. The idea is to code a random rhom-
bus tiling by an array of integers satisfying certain ordering constraints.
Figure 3 illustrates this point in the simple hexagonal case:(7) there is
a one-to-one correspondence between hexagonal tilings filling a centrally
symmetric hexagon of sides k, l and p on the one hand and sets of inte-
gers arranged in a rectangular array k× l, decreasing in each row and each
column, on the other hand. These integers are bounded between zero and
the side length p. They decrease monotonically. Such a set of integers is
called a plane partition.

This point of view can be extended to any D→d problem(15–17): any
D→d tiling can be coded with a generalized partition on an array related
to a D− 1 → d tiling. This correspondence is also one-to-one. However,
tilings coded by partitions have fixed polytopal boundary conditions. In

Fig. 3. Three-dimensional representation of an hexagonal tiling filling a centrally symmet-
ric hexagon (left). This object can be seen as a staking of cubes. The height of the different
stacks can be arranged in an array (right). They are decreasing in rows and columns. This
array together with these order relations constitutes a plane partition problem.
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two dimensions, the boundaries are centrally symmetric 2D-gons (see
Fig. 1).

We now present an analogy between fixed boundary tilings and
algorithms for sorting lists.(15) Although Computer Science is not our
motivation, we are interested in the same enumeration problem.(18,19)

More generally, the rich topological and combinatorial properties of ran-
dom tilings make them an active field of research in pure mathematics,
combinatorics and computer science.(10,20–22) We shall use results from
these fields throughout this paper.

In the sorting language, a comparator [i; j ] acts on a list (x1, x2, . . . , xD)

of numbers as follows: xi and xj are, respectively, replaced by min(xi, xj )
and max(xi, xj ). Following Knuth,(18) we call a complete sorting algorithm
a sequence of such comparators which sorts in the increasing order any
list of real numbers (x1, x2, . . . , xD). This sorting algorithm will be called
primitive if each comparator can be written [i; i + 1]. We also suppose
that this algorithm is not redundant, that is to say it does not contain
any comparator [i; j ] that could be suppressed because previous compara-
tors already insure that xi �xj . Knuth shows that a sequence of compara-
tors is a sorting algorithm if it correctly sorts the completely reversed list
(D,D−1, . . . ,1). This means that a complete primitive sorting algorithm
is a sequence of comparators [i; i+ 1] that transforms the list (D,D− 1,
. . . ,1) into the list (1,2, . . . ,D).

Such an algorithm has a diagrammatical representation in which the
D variables xi are represented by D horizontal lines. Each comparator
[i; i + 1] is represented by a crossing between lines i and i + 1. Figure 4
illustrates this construction. A continuous line follows a number during
the sorting process. Since every number must be compared to every other
number, and since there is not any redundancy, every line crosses every
other line, only once. There are

(
D
2

)
crossings.

We now establish the link between sorting algorithms and the de
Bruijn representations(1,3) of D → 2 tilings. Each line of the diagram 4

Fig. 4. A diagram associated with a sorting algorithm acting on five element lists. A line
follows a number during the sorting process. Each pair of lines cross, only once. Each cross-
ing represents a comparator [i; i+1].
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represents a de Bruijn line and crosses every other line exactly once. How-
ever, different sorting algorithms sometimes represent the same de Bru-
ijn grid, since only the crossing topology is meaningful. For example, in
Fig. 4, the fourth and the fifth comparator (i.e. [4;5] and [2;3]) are applied
in this order (these comparator are circled in the figure). If they were
applied in the reverse order, the algorithm would be different whereas the
de Bruijn grid would be the same.

Therefore we define equivalence classes of sorting algorithms.(18,21)

We say that two successive comparators [i; i + 1] and [j ; j + 1] commute
if |i− j |>1. Two algorithms are equivalent if they differ by a finite num-
ber of comparator commutations. Equivalence classes of D-element sort-
ing algorithms are in one-to-one correspondence with D-family grids with
one line per family, and therefore with tilings inscribed in polygons of side
1. Following Knuth, we denote by BD this number of equivalence clas-
ses, whereas the number of algorithms is denoted by AD (AD�BD). Since
each pattern of crossings (equivalence class of algorithms) defines a tiling,
the tiling entropy density per tile is

σ̄D = 1
NT

logBD. (2)

Sorting algorithms are easy to manipulate and provide efficient enu-
meration numerical tools. This analogy provides us with the number BD
of D→2 tilings for small values of D�10 from the work of Knuth(18) as
extended by us(12) (see Table I). Unfortunately it is not possible to reach
the next value (D= 11) for the foreseeable future using our current algo-
rithms. Figure 5 suggests that the entropy σ̄∞(p= 1) has a well defined
limit when D tends to infinity. Indeed, Knuth(18) gives lower and upper
bounds on BD from which we get

1
3

log 2� lim
D→∞

σ̄D �2 log 2. (3)

Moreover, Björner (see ref. 19, p. 270) derives a better upper bound:

lim
D→∞

σ̄D �1.44 log 2. (4)

In Section 3, we argue that large D, fixed boundary tilings, have the same
entropy per tile as free boundary ones. Since we demonstrated in paper I(1)
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Fig. 5. Entropy per tile σ̄D of fixed boundary tilings (p=1). We indicate the limiting values
0.568 (full line) and the close upper bound log 2�0.693 (dashed line).

that for free boundary entropies limD→∞ σD� log 2, we finally get a better
bound:

lim
D→∞

σ̄D � log 2. (5)

This point of view generalizes to systems with more than one line
per de Bruijn family,(15) leading to the definition of partial sorting algo-
rithms for merging pre-ordered lists of numbers. Suppose that we have
D families of ki numbers each (i = 1, . . . ,D), and that in each family
the numbers are presorted in increasing order. Algorithms which order
the union of these sets of numbers are called partial sorting algorithms.
The ideas are essentially the same as in the previous case, except that,
since the numbers of a given family are already ordered, the corresponding
lines do not cross within the family. The corresponding diagram is sim-
ilar to a de Bruijn grid with D families of lines, ki lines in each family.
The tilings are equivalence classes of such algorithms. They are inscribed
in polygons of sides k1, . . . , kD. In ref. 15, we derive an analytic expres-
sion for AD(k1, . . . , kD). However, it proves impossible to calculate BD
analytically.

The diagonal case, with k1 = k2 =· · ·= kD =p will be of special inter-
est below. Let BD(p) denote the number of such tilings. Using the sorting
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Table II. Exact data for fixed boundary tilings, p =2 and

D =1,2, . . . ,6

D 1 2 3 4 5 6

BD(p=2) 1 1 20 5,383 16,832,230 570,702,721,864
σ̄D(p=2) 0 0.250 0.358 0.416 0.451

algorithm analogy, we computed the numbers of tilings inscribed in poly-
gons of side 2 (BD(2)) for small values of D (see Table II).

3. THERMODYNAMIC LIMIT

In this section, we argue that the fixed boundary entropy in the large
D limit equals the free boundary entropy and is independent of the pha-
son strain. Proofs are provided in Appendices A and B. Free boundary
and fixed boundary entropies can be compared when both are known.
For hexagonal tilings with D= 3, the free and fixed entropies are, respec-
tively, 0.323(8) and 0.261.(7) For octagonal tilings with D = 4 the values
are 0.434(23) and 0.36(1).(15) Therefore the relative difference (σ − σ̄ )/σ

decreases between D=3 and D=4, consistent with a vanishing difference
at large D. Exact data on p=1 and p=2 tilings (Tables I and II) suggest
that when D becomes large, the entropy becomes independent of p.

A glance at Fig. 1 suggests that when D becomes large, the faceted
regions of fixed boundary tilings, which are caused by the strong influence
of the boundary,(17) occupy a vanishing fraction of the tiling area close
to the boundary. In these regions, few families of de Bruijn lines cross,
so only a small number of tile types are present. The central region of

the tiling, where a large number of de Bruijn line families cross, becomes
dominant as D increases. The coarse-grained entropy density in the central
region approaches the large D free boundary entropy σ∞.

More precisely, let (xi) be any set of numbers 0<α�xi �β, where α
and β are fixed positive real numbers. Consider fixed boundary tilings of
a 2D-gon with edge lengths ki = xip as p→∞. We impose such bounds
on the side lengths in order to be sure that our tilings are effectively large
codimension ones (see also paper I(1) (Section 2.3)). The tile fractions are

n̄ij = kikj

NT
= kikj

k1k2 +· · ·+kD−1kD
, (6)
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owing to Eq. (1). In an unstrained tiling, where all ki are equal,

n̄∗
ij = 2

D(D−1)
. (7)

These quantities differ noticeably from their free boundary counterparts.(1)

The condition 0<α�xi �β imposes

n̄ij � α2

β2
n̄∗
ij = α2

β2

2
D(D−1)

. (8)

This lower bound ensures that no tile fraction is vanishingly small and
therefore that the tiling is really a large codimension one rather than a
small codimension one with few defect lines added in.

Under this condition, Appendix A proves that the sequence σ̄D
reaches a thermodynamic limit σ̄∞ that does not depend on the set (xi).
Furthermore, these tilings are locally equivalent to free boundary high
symmetry tilings. The local entropy density thus approaches σ∞, and σ̄∞ =
limD→∞ σ̄D =σ∞. Moreover, this result remains valid if D becomes large
while p is held fixed (even in the extreme case ki =p= 1). In particular,
the limits D→ ∞ and p→ ∞ commute with each other. The proofs of
all these results are given in Appendix B. This insensitivity of entropy to
boundaries could be anticipated since we know that phason elastic con-
stants vanish at large D(1) and that, because of the regular character of
large D tilings established in Appendix B, the phason gradient E is nearly
everywhere bounded.

We find in Appendix A that large D tilings have a central region
holding half of the tiles, which contains lines of all de Bruijn families and
all tile species and which is nearly homogeneous and strain-free. Away
from this central region, the tiling no longer contains lines of all de Bruijn
families. We define the effective (coarse-grained) dimension Deff as the
number of de Bruijn families present in a small tiling patch, and the effec-
tive codimension ceff =Deff −2. This effective codimension decreases from
D− 2 at the center to 0 at the boundary. For diagonal tilings (xi = 1 so
that ki =p for all i), where the tiling has a circular symmetry at the large
D limit, the effective codimension ceff varies as

ceff (r)= (D−2)γ (r/R) (9)

where r is the distance to the center and R is the radius of the tiling.
The function γ (r/R) varies from the value γ (0)=1 at the tiling center to



848 Widom et al.

γ (1)=0 at the boundary. For large D, ceff (r) diverges for all r <R, so the
local entropy density approaches σ∞ for all r <R.

This dependence of ceff on the location in the tiling can be used to
estimate finite size corrections to σ̄D. Consider a fixed value of D�2, and
find the number of tiles in the regions where ceff � c0, with c0 �D − 2
some fixed value. These outer regions form an annulus Ran � r�R. Inside
the radius Ran, the mean entropy density is nearly σ∞, but in the annulus
the mean entropy density is σan<σ̄D. We can estimate the mean entropy
density on the whole tiling of radius R as

σ̄D �nσan + (1−n)σ∞, (10)

where n is the fraction of tiles in the annulus.
Now it is shown in Appendix A, Eq. (A.16), that the fraction of tiles

in the region of effective codimension ceff =xD is n(x)=ψ(x)/D where ψ
is a regular function tending to 2/3 when x goes to 0. Hence the fraction
of tiles in the annulus

n� 2
3
c0

D
. (11)

Finally, we estimate

σ̄D �σ∞ − B

D
, (12)

where B>0 is a constant related to the entropy difference (σ∞ −σan) and
the chosen value c0, both of which are independent of D.

This result holds only for a large tiling side length p because the
annulus width must be large as compared to a tile edge in order to define
properly an entropy per tile. Appendix A.3 says that the effective codimen-
sion ceff = c0 at Ran if Ran = (1− ε)R where

ε= π2

24

c2
0

(D−2)2
. (13)

The above requirement reads εR�1, that is to say p�D with R=pD/π .
The large p limit must be taken before the large D one. Numerical finite
D corrections in small p tilings turn out to be of order 1/D but positive
(see section 4).

In conclusion, the local structure, and therefore the entropy per tile,
of large D tilings is independent of their size, shape, tile fractions and
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boundary conditions. In all these cases, the local structure of these tilings
is similar to free boundary large D tilings, where one encounters only one
de Bruijn line per family in large tiling patches.(1) In this sense, it is a true
thermodynamic limit. These results will be confirmed by numerical simu-
lations in 4.3.

Henceforth, we concentrate on the study of tilings inscribed in 2D-
gons of sides ki=p=1 as representative of the whole class of high symme-
try tilings. In particular, we focus on p=1 tilings to extract (numerically)
the thermodynamic limit of the entropy density.

4. SIMULATIONS

Monte Carlo numerical simulations(24) are widespread in the fields of
random tilings and quasicrystals where there exist many difficult unsolved
theoretical questions.(25) To check our claims of a thermodynamic limit, to
obtain BD for D>10, and to get more precise numerical values than those
obtained via mean-field arguments,(1) we perform Monte Carlo calculations
on large D tilings. The D→ 2 configuration space is sampled for large D
systems via single-vertex flip dynamics. This method is validated by the con-
nectivity of the space of configurations in two dimensions.(20,21,15)

These simulations utilize fixed boundary tilings for the sake of tech-
nical convenience. It is easier to code a fixed boundary tiling in the mem-
ory of a computer, and the entropy is easier to estimate in this case. We
have established that the central region of a large D tiling is close to a
free boundary tiling. All the statistics related to free boundary tilings will
be collected in such central regions. Note that, as far as unstrained tilings
are concerned, we restrict our study to polygonal boundaries of side p=1
since we establish that such tilings behave like large p ones when D goes
to infinity.

4.1. Monte Carlo Algorithm

The algorithm is implemented as follows: at each Monte Carlo step,
select a vertex at random, with uniform probability; if this vertex is flippa-
ble, then flip it; repeat sufficiently many times. The method is validated by
the ergodicity of the space of configurations via flip dynamics: any config-
uration is reachable from any initial configuration.

A key point is to check that this algorithm samples configurations
with uniform probability, since we are only interested in configurational
entropy in which all configurations play the same role. Thus we need to
establish that this algorithm defines a Markovian process which satisfies
the detailed balance condition.(24)
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w(C1 →C2)=w(C2 →C1), (14)

where w(C1 →C2) denotes the transition probability from configuration C1
to configuration C2. When two configurations differ by a single flip, there
is only one way to go from one of them to the other one by a single flip.
Therefore w=1/NV where NV is the number of vertices. Since NV is inde-
pendent of the tiling, relation (14) is established.

Note that the flip acceptance rate equals the fraction (about 31% as
reported in Section 4.3) of vertices with threefold coordination. Vertices
with more than threefold coordination cannot be flipped by an “elemen-
tary” phason flip. An alternative Monte Carlo dynamics, in which a three-
fold vertex is flipped in every step, does not obey detailed balance because
the number of flippable vertices is not conserved, and hence Eq. (14) is
violated.

Another point to consider in Monte Carlo simulations is the corre-
lation time t0 (in units of Monte Carlo steps per vertex) which measures
how many steps are necessary between samples to avoid excessive sample-
to-sample correlations. Even though some recent work brought new results
for small D (see ref. 26 and references therein), this question has no rigor-
ous definitive answer for large D. However, our numerical estimations of
t0 are all in agreement with the conjecture t0 �NV /2.

4.2. Path Counting and Entropy Estimate

To estimate the entropy σD of fixed boundary tilings, we shall use
a path-counting algorithm based upon de Bruijn line enumeration(12)

directly derived from the general method described in Section 2.2 of paper
I(1). Figure 6 illustrates the method. At each step, we build a D+1→2 til-
ing from a D→ 2 one. Starting from any D→ 2 tiling, we choose a path
of length D along tile edges, going from bottom to top. We cut the til-
ing along this path, separating the two parts by length 1, then draw new
bonds connecting previously identical vertices. Finally, we adjust all edge
orientations to match the set of symmetry D+1.

Fig. 6. Iterative construction of fixed boundary tilings (D→2, p=1).
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Let P̄D denote the mean number of bottom-to-top paths on the D→
2 tilings:

P̄D = 1
BD

BD∑

τ=1

PD(τ), (15)

where PD(τ) is the exact number of paths on the tiling τ , and BD is the
number of such tilings. Then

BD+1 = P̄DBD. (16)

Iterating relation (16), and taking the logarithm yields

logBD =
D−1∑

k=2

log P̄k. (17)

For large D, the ratio 1
D

log P̄D approaches a finite limiting value. Taking
the limit of (17) as D→∞, and noting Eqs. (1) and (2), we find

lim
D→∞

σ̄D = lim
D→∞

1
D

log P̄D. (18)

Hence, by accumulating statistics on the number of paths allowed on
tilings, we may evaluate the entropy.

We use Monte Carlo sampling to generate an ensemble of D → 2
tilings. On each tiling τ we can quickly evaluate PD(τ) using a generaliza-
tion of the Pascal Triangle construction: starting at the bottom of the til-
ing, assign each vertex an integer value equal to the number of paths that
reach it from the bottom. The value at any vertex is iteratively the sum of
the values at each prior vertex to which it is connected (see Fig. 7). At the
end of the process, the value of the top vertex is PD(τ).

We tested this algorithm on small D systems, where numerical values
are in good agreement with the exactly known mean number of paths P̄D=
BD+1/BD (Table I). For example, Table III shows the convergence towards
the exact value for D= 9 tilings. For large D systems, simulations are our
only means of obtaining information about path count statistics, which are
displayed in Fig. 8. In this figure, error bars are calculated as follows: the
standard deviation 	 is measured numerically. The error is estimated by
	/

√
I , where I is the number of independent measures in the simulation

(that is(24) its total length divided by twice the correlation time t0). Note
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Fig. 7. Path count construction, as described in the text.

Table III. Convergence of D =9 path count data for increasing run

length. Measured numerical errors on the latter quantity (Num.

err.) are always smaller than estimated error bars (Estim. err.).

The latter are calculated using numerically measured standard

deviations and conjectured auto-correlation times (Section 4.1(24))

NMC 103 104 105 106 107 exact

P̄9 159.264 164.176 164.411 164.371 164.344 164.35
log P̄9/9 0.563396 0.566771 0.566930 0.566903 0.566884 0.566891
Num. err. 3.5 10−3 1.2 10−4 3.9 10−5 1.2 10−5 6 10−6

Estim. err. 8.5 10−3 2.7 10−3 8.5 10−4 2.7 10−4 8.5 10−5

that the actual errors calculated in Table III are compatible with the previ-
ous error bar.

This graph presents a maximum near D = 20 which is related to
finite D and finite size corrections. Paper I(1) shows that for free boundary
systems, finite D corrections to log P̄D/D are of order 1/D2. Section 3 of
the present paper argues for negative 1/D finite size corrections with fixed
boundary conditions in the large p limit. Here, though, we examine p=1
systems with one de Bruijn line per family. Our numerical results indicate
that corrections also fall off as 1/D to the first power. Combining these
corrections suggests

log P̄D
D

= σ̄∞ + A

D
− B

D2
+O

(
1
D3

)
. (19)
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Fig. 8. Value of log P̄D/D as a function of D up to D= 120; inset: large D behavior as a
function of 1/D and quadratic fit. The numerical values (symbols) as well as the fitted ones
(lines) present a maximum near D=20.

The numerical results in Fig. 8 reproduce this behavior. All numerical
data beyond D=15 coincide with the fitted ones up to error bars. In par-
ticular, the maximum observed near D=20 is reproduced. We estimate the
limiting value of log P̄D/D=0.5676±0.0001. The uncertainty estimate on
this last limit comes from excluding the data with D= 120. These obser-
vations provide the first order correction to the entropy at p = 1: rela-
tion (17) reads

logBD(1)�
D−1∑

k=2

k

(
σ∞ + A

k

)
� D(D−1)

2
σ∞ +A(D−2) (20)

and

σ̄D(p=1)= 2
D(D−1)

logBD(1)�σ∞ + 2A
D
. (21)

Note that our simulations yield A>0 which means that these correc-
tions of order 1/D are positive. By contrast, corrections to σ∞ in relation
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(12) are also of order 1/D but negative. The sign of these large p cor-
rections is the combination of two effects: the paths visit low codimen-
sion regions near the boundary, which should increase the entropy (e.g., a
path running on a square grid of codimension 0 has an entropy density of
log 2>σ∞); the entropic repulsion between paths near the top and bottom
vertices, where they are crowded, decreases the entropy. In the p=1 case,
paths are not subject to entropic repulsion. Presumably the coefficient A
in Eq. (19) is a function of p and changes its sign when p grows.

4.3. Thermodynamic Limit Revisited

Here we test the results of Section 3 where it was demonstrated that
the local structure and the entropy per tile of tilings becomes indepen-
dent of boundary conditions when D becomes large. We compare relevant
numerical quantities both in the whole tiling and in the central region,
that is supposed to be close to a free boundary tiling. We concentrate
on vertex coordination numbers which are indicators of the local struc-
ture and on path counting which is related to entropy. In Section 4.3.3,
we focus on strained fixed boundary tilings.

4.3.1. Vertex Statistics

Other pertinent information available from Monte Carlo simula-
tions concerns vertex statistics. They are indicators of the tiling’s local
“microscopic” structure. They also are a fundamental ingredient of the
mean-field approach of paper I.(1) We focus on quantities which can be
computed in the mean-field theory, especially coordination numbers and
related quantities. We gather statistics both in the whole tiling (exclud-
ing vertices actually on the boundaries) and in a central region containing
about 20% of the vertices. Presumably, the central region is only weakly
influenced by the fixed boundaries, and we take that data as representa-
tive of free boundary tilings.

We have run Monte Carlo simulations up to D = 100. After plot-
ting the data as functions of 1/D, we extrapolate the limiting values via
quadratic fits. Figure 9 illustrates two examples of coordination number
statistics. We find the fractions of vertices (in the whole tiling and in the
central region) whose coordination numbers Z=3 and the fractions whose
coordination numbers Z=5. For finite D we see the central region has a
relatively small fraction of tiles with Z= 3 in comparison with the whole
tiling, and a relatively large fraction with Z = 5. The boundary regions
are thus more likely to have Z = 3 and less likely to have Z = 5 than a
free boundary tiling. However, the extrapolated values for D→ ∞ agree
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Fig. 9. Fractions of Z= 3 and Z= 5 vertices in D→ 2 vertices as a function of 1/D, and
quadratic fits. Diamonds concern the central region (20% vertices), whereas circles concern
the whole tiling. The extrapolated large D values coincide.

to within the accuracy of the extrapolation. The same conclusion holds for
Z=4 (not represented here). For larger values of Z, the fractions of verti-
ces are too small and we did not obtain relevant measures. Recall that the
mean value of Z is exactly four in an infinite tiling, according to Euler’s
theorem.

Hence, in the limit D→∞ the whole tiling exhibits coordination sta-
tistics similar to a free boundary tiling. This point supports the existence
of a thermodynamic limit – the local structure becomes uniform through-
out the tiling, independent of proximity to the boundaries and the local
strain they create.

Other quantities we examined relate directly to mean-field theory and
were reported in paper I(1). Our mean-field theory was based upon the
number of choices to be made while inscribing directed paths on tilings.
The number of choices Nc(v) at a vertex v is the number p of “arms”
emerging from a vertex. The number q of “legs” leading into a vertex
together with the number of arms obey p + q = Z. Paper I reports the
simulated probability distribution for p and mean value of pq, and shows
these agree well with mean-field theory. Here, we display in Table IV the
probability distribution for Z, and compare it with the predictions of
mean-field theory. The agreement is also satisfactory.

An intriguing feature of the fixed boundary tilings is the divergence
of tile vertex density near the boundaries,

d(r/R)� 1√
6(1− r/R), (22)
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Table IV. The first values of the limiting dis-

tribution of coordination numbers Z , obtained

both in the mean-field approximation and

numerically, by Monte Carlo simulations

Z 3 4 5 6 7

Mean-field 0.33 0.41 0.20 0.05 0.009
Numerical 0.31 0.43 0.21 0.04 0.005

caused by the vanishing of tile area, and established in Appendix (A.3) for
a particular tiling. This effect is plainly visible in Fig. 1. Given this spatial
nonuniformity it is natural to worry about the path counting arguments
because the choice statistics might vary among different portions of the
whole tiling. It turns out this does not happen. Figure 10 illustrates this
point by plotting vertex statistics averaged over different portions of the
tiling. We divided tilings into 20 concentric circular bins and evaluated
in each bin the average vertex density and the average fractions of ver-
tex with each coordination number Z. The results are illustrated for the
cases D= 60,92,120. Clearly the vertex density converges to a non-con-
stant function which diverges at the tiling boundary according to the pre-
diction of Eq. (22). However, the fractions of each vertex type rapidly

Fig. 10. Radial variation of vertex statistics from tiling center to edge. Only the vertex den-
sity shows spatial variation. Inset: vertex density for D=200 (points) matches the function
1/

√
6(1− r/R) (line) as r/R→1.
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converge to their large D limit independent of position within the tiling.
Consequently the entropy per vertex should be uniform, even though the
entropy per area diverges due to the diverging vertex density.

4.3.2. Path Counting in the Central Region

To confirm that the entropy per tile (or vertex) is independent of
boundary conditions, we repeat calculations like Section 4.2, but we
concentrate on the central region. It is reasonable to suppose that statistics
in the central region should match the statistics inside free boundary
tilings.

On a D→2 tiling we define D+1 layers of vertices as follows: layer
0 contains only the bottommost vertex v0, layer 1 contains the vertices
at distance 1 from v0, layer k contains the vertices at distance k from v0
when one follows bottom-to-top paths. Layer D contains only the topmost
vertex vD. Let P̄ ′

D denote the mean number of length D/2 paths from
a given vertex vstart of layer D/4 to any vertex of layer 3D/4. For con-
venience, we take D a multiple of 4, and also require that vstart is close
to the vertical diameter (see Fig. 11). Most paths stay close to this cen-
tral diameter because their typical deviation from this diameter grows like√
D whereas the size of the tiling grows like D. Consequently, P̄ ′

D counts
paths in the central region. Data is averaged over many independent
tilings.

Fitting finite D data as in Section 4.2, we find the limiting value

lim
D→∞

log P̄ ′
D

D/2
=0.5670±0.0005. (23)

Fig. 11. Paths in the central region going from a vertex in layer D/4 close to the vertical
diameter to any vertex in layer 3D/4.



858 Widom et al.

This value coincides with its fixed boundary counterpart up to error bars.
If the path counting statistics in large D fixed boundary tilings were
influenced by boundary conditions, we would have expected the central
value to differ from the value over the entire tiling. We conclude that the
fixed boundary entropy per tile matches the free boundary entropy in the
D→∞ limit.

4.3.3. Phason Strained Tilings

The data just reported in Section 4.3.1 suggests that the tiling struc-
ture does not depend on the phason strain, since statistics are identical in
the central region and in the boundary vicinity. We want to test this point
directly by performing simulations on phason strained fixed boundary
tilings.

We consider three different forms of phason strain in our numerical
simulations: low frequency strain in which D/2 consecutive line families
occur with ki=1 (i=1, . . . ,D/2), the remaining D/2 consecutive line fam-
ilies occur with ki =2 (i=D/2+1, . . . ,D); the same low frequency with a
larger amplitude so that ki=3(i=D/2+1, . . . ,D) replaces ki=2; high fre-
quency strain with ki = 1 (i odd) and ki = 2 (i even). Figure 12 illustrates
an equilibrated tiling with applied phason strain. The tiling has D = 30
and the strain is low frequency and large amplitude.

Computer simulations of path count statistics for D = 10, . . . ,50
reveal no significant dependence of path count on phason strain amplitude

Fig. 12. Phason strained large D tiling. The added paths still go from bottom to top.
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Table V. Path count statistics for strained tilings

D p=1,1, . . . p=1,1, . . . ,2,2, . . . p=1,1, . . . ,3,3, . . . p=1,2,1,2, . . .

10 0.569 0.572 0.572 0.573
20 0.573 0.572 0.571 0.574
30 0.572 0.571 0.570 0.572
40 0.572 0.570 0.570 0.571
50 0.571 0.571 0.570 0.570

Fig. 13. Fractions of Z=3 and Z=5 vertices in strained tilings (p=1,1, . . . ,3,3, . . . ) (tri-
angles), together with previous data on fixed boundary unstrained tilings (circles) and free
boundary ones (diamonds). The limiting values coincide with the previous one, up to statis-
tical errors. Lines are quadratic fits.

or frequency. The small variations seen (see Table V) cannot be separated
from finite size effects. Thus entropy does not depend on phason strain,
supporting a posteriori arguments developed for free boundary tilings.(1)

Recall that strain-independence of entropy in fixed boundary tilings relies
upon strain-independence in free boundary tilings (see Section 3).

The same conclusion holds concerning vertex statistics on coordina-
tion number and choice distributions. No significant differences are found
in comparison to unstrained fixed boundary tilings or free boundary tilings
(see Fig. 13). These data support the existence of a universal local structure,
independent of strain and boundary conditions in the limit D→∞.

5. CONCLUSION

This paper tackles random tilings of high symmetry with fixed bound-
ary conditions. In random tiling theory, boundary conditions are crucial
because finite codimension fixed boundary tilings have a lower entropy
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than free boundary ones. However, we argue that boundaries become irrel-
evant when the codimension becomes large. We also demonstrate that
p=1 tilings with one de Bruijn line per family have the same entropy per
tile as tilings with p large and even infinite, for sufficiently large D.

As a consequence, the numerical study of the entropy of large codi-
mension random tilings can be concentrated on fixed boundary tilings fill-
ing a 2D-gon of side lengths set to 1. We perform exact enumeration for
D � 10, thanks to an analogy between fixed boundary tilings and some
class of sorting algorithms. We use Monte Carlo simulations for larger
tilings, up to D = 120. In both cases, the fact that tilings have a fixed
polygonal boundary greatly simplifies their encoding and their manipu-
lation in the memory of a computer. Our Monte Carlo data analysis is
based on the same iterative process (i.e. concentrating on values of P̄D) as
our mean-field theory in paper I.(1) We obtain a very accurate estimate of
the entropy per tile, σ̄∞ = 0.5676 ± 0.0001, compared to the approximate
mean-field value σMF∞ �0.598.

Insensitivity of the entropy per tile and vertex statistics to boundary
conditions at large D restores a thermodynamic limit which does not exist
at finite D. However, caution is required. Even if “topological” quantities
such as entropy and vertex statistics become homogeneous in the tiling,
its “metric” properties remain heterogeneous, as discussed in Section 4.3.1.
Consequently we find the entropy per vertex is homogeneous while the
entropy density per area diverges near the tiling boundary.

Many of our methods and results can be generalized to higher dimen-
sional tilings. However, the generalization may not be simple to implement
in practice. Indeed the de Bruijn directed paths become directed surfaces
built of faces of rhombohedra. The description of these surfaces in terms
of successive choices must be generalized, which highly complicates their
enumeration.

The restoration of the thermodynamic limit in the high symmetry
limit should remain valid in three- or higher-dimensions, because the
vision of large regions with at most one de Bruijn surface per family still
holds. The explicit proof should be similar to the Appendix A, with only
minor changes to account for the possible spontaneous decomposition into
regions of lower effective codimension (as in the “arctic octahedron”, see
ref. 14). Presumably, the effective codimension still goes to infinity for
almost all tiles.

One of the main motivations for the study of high codimension ran-
dom tilings was the hope that mean-field theory might become exact in the
high codimension limit. The principal conclusion of this numerical study,
together with the mean-field results of paper I, is that the mean-field the-
ory does not become exact, at least in the simplest version which neglects
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vertex correlations. Rather, the high codimension limit is quite nontrivial,
and an exact analytic solution is yet to be found.

APPENDIX A: THERMODYNAMIC LIMIT OF TWO-DIMENSIONAL

FIXED BOUNDARY TILINGS

In this technical appendix, we demonstrate that the fixed boundary
entropy σ̄D attains a finite limit σ̄∞ when D→∞, and that this limit coin-
cides with the free boundary entropy σ∞. Moreover, we argue that this
limit is shared with finite side polygonal boundaries as well as non-diago-
nal tilings.

Our demonstration relies on the variational principle introduced in
refs. 10, 11 to characterize the entropy gradient between the center and the
boundary in typical tilings with given fixed boundaries. Typical tilings are
those which maximize an entropy functional defined as the integral over
the tiling of a local entropy per tile; This local entropy is the free-bound-
ary entropy calculated with the local fractions of tiles. The entropy per tile
of fixed boundary tilings is the maximum of this functional.

We show below that, given any domain in the tiling, when D goes to
infinity, the tiling in this domain is a piece of (free) D′ →2 tiling, such that
D′ goes to infinity as D does. Hence the local entropy per tile tends to the
large D free boundary entropy σ∞ (nearly) everywhere and fixed boundary
tilings have the same entropy as free boundary ones.

We first consider the case where the sides of the polygonal bound-
ary share the same length p (diagonal tilings), and take the large p limit
before taking the large D limit. Second, we consider the case were D

becomes large at fixed p. We also discuss the non-diagonal case where
these side lengths might be different. Our presentation is heuristic but can
be made rigorous. Finally, we examine scaling laws for several quantities
studied in the paper, such as the effective codimension, when they are writ-
ten as functions of the radius r from the tiling center.

A.1. Diagonal Tilings

Our demonstration uses a particular tiling denoted as T0. It is the
dual of a particular de Bruijn grid,(1,3) consisting of D families of p
straight lines equally spaced out and forming a regular fan(27) (see Fig. 14,
left). The de Bruijn families are denoted by F1, F2, . . . , FD, and are labeled
counterclockwise so Fk makes an angle kπ/D with an arbitrary reference
direction. Figure 14 displays such a grid and its dual tiling. For finite D,
such a tiling is known(11) not to maximize the entropy functional among
the tilings with the same boundary (see below). By construction, the tiling
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T0 is divided into domains where only a fraction of the de Bruijn families
intersect. In each domain, the tiling is homogeneous, with a well defined
local entropy per tile at large p. Since only D′<D de Bruijn families inter-
sect in such a domain, this entropy a priori differs from the free bound-
ary D→ 2 one. However, by rotational symmetry, all the domains where
exactly D′ families intersect have the same local entropy. In the following,
the union of such domains where only D′ families meet will be denoted
by AD′ and called the region of “effective dimensionality” D′.

Define SD→2
0 as the entropy functional evaluated at T0. It satisfies

SD→2
0 � σ̄D. Then

lim
D→∞

SD→2
0 � σ̄∞ �σ∞. (A.1)

Next we intend to show that for any real number h<1,

lim
D→∞

SD→2
0 �hσ∞. (A.2)

It then follows that

lim
D→∞

SD→2
0 �σ∞, (A.3)

Fig. 14. The de Bruijn straight lines (left) and the corresponding rhombus tiling in the 4→
2 case with p=20 (for clarity’s sake, we have only drawn 10 lines per family instead of 20 on
the left figure). The regions where only three or even two families intersect clearly appear on
the left figure. The corresponding regions are delimited by the two internal octagons on the
right figure: in the outer region A2, only two families meet; In the intermediate one A3, three
families meet; And in the central region A4, all four families intersect.
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Fig. 15. Left: Schematical representations of the D families of de Bruijn lines and of their
intersections, to be compared to Fig. 14 (left). When D tends to infinity, the polygonal
boundary tends toward a circle of circumference 2Dp and the polygonal central region AD

tends toward a circle a diameter p. Right: Two families of de Bruijn lines making an angle
θij . The number of intersections of these two families in a region equals its area α divided
by the area α0 of the grayed unit cell.

and, owing to relation (A.1), that

σ∞ � lim
D→∞

SD→2
0 � σ̄∞ �σ∞, (A.4)

and therefore that the three involved quantities are equal.
Let us prove the above statement (A.2). We use the fact (see Sec-

tion 4.3.3 and also paper I(1)), that the entropy σ∞ of free boundary
tilings does not depend on strain in the large D limit. We show that the
local entropy of T0 equals σ∞ in (nearly) all regions AD′ .

First we estimate how many tiles each region contains. Since a tile is
defined as the intersection of two de Bruijn lines, we will count the num-
ber of such intersections in a given region, by calculating the number of
intersections per unit area in each region on the one hand and the area of
the regions on the other hand. However we work not in the “tiling met-
ric” but in the “grid metric” instead. That is to say, in the figure where
the de Bruijn lines were originally drawn straight (left-hand representation
in Fig. 14). Figure 15 (left) displays a schematic representation of a grid
were the different regions under consideration clearly appear.

The number of intersections in a region A of area α is the sum over
all pairs of de Bruijn families of the number of intersections of a pair.
Consider a given pair of families Fi and Fj , i < j , which make an angle
θij . The number of such intersections is the area α divided by the area α0
of the unit cell of the lattice defined by these (only) two families (Fig. 15,
right). If the distance which separates two lines of a family is set to 1, then
α0 =1/| sin θij |. Hence the total number of intersections is
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∑

i<j

α

1/| sin θij | =α
∑

i<j

| sin θij |, (A.5)

where the indices i and j run over the families present in A.
As displayed in Fig. 15 (left) a region AD′ is a crown made of 2D

kites (or triangles for the inner crown) of equal areas. A kite (or triangle)
of AD′ will be denoted by KD′ and its area by κD′ . Henceforth the area
of AD′ is equal to αD′ = 2DκD′ . In KD′ , there are D′ adjacent families of
lines, for example F1, . . . , FD′ . The angles that they make relatively to an
arbitrary reference direction are therefore θl = θ0 + lπ/D, l=1, . . . ,D′ and
the number of intersections in KD′ is

QD′ =κD′

⎛

⎝
∑

1�i<j�D′
sin

(j − i)π
D

⎞

⎠ . (A.6)

When D goes to infinity, x=D′/D becomes a continuous variable which
represents a “fraction” of the D families of lines. For example, the pre-
vious sum in Eq. (A.6) can be estimated by an integral on the variables
y= j/D and z= i/D. If E(x) denotes the integral part of x, then

φD(x) ≡
∑

1�i<j�E(xD)
sin

(j − i)π
D

�D2
∫ x

0
dy

∫ y

0
dz sinπ(y− z)

= D2

π2
[πx− sinπx] . (A.7)

The central region AD plays a particular role among the regions AD′ :
when D is large, the fraction of tiles in AD tends to 1/2. Indeed, as illus-
trated in Fig. 14 (left) and 15 (left), the central region tends toward a cir-
cle of diameter p. Its area is πp2/4, and, owing to the above result applied
to the case x=1, the number of intersections that it contains grows like

D2

π

πp2

4
= D2p2

4
. (A.8)

Since the total number of tiles grows like
D2p2

2
, this central region con-

tains one half of the total number of tiles.
By comparison, the situation is completely different in the other

regions AD′ , with D′<D. In this case, when D goes to infinity, the frac-
tion of tiles in such a region vanishes. Let us first explicitly compute the
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Fig. 16. (left) around the central region AD , there is a first crown of triangles CD−1 (light
gray), a second crown of kites KD−2 (medium gray), a third crown of kites KD−3 (dark gray)
and so forth; in this figure, D=6. Right: the three kinds of kites which define a kite-shaped
region KD′ (white): a big kite minus two small kites (light gray) plus a smaller kite (dark
gray).

asymptotic behavior of this fraction and then discuss how to handle this
vanishing character.

Figure 16 (left) shows the geometry of the regions under consider-
ation when D is finite. Around the central region AD, there is a first crown
triangular domains, then a second crown of kite-shaped regions, and as
k increases, the regions AD′ lie in concentric crowns around the central
one. Each crown contains 2D kite-shaped (or triangle-shaped) regions. As
Fig. 16 (right) illustrates, such a kite can be seen as a greater rectangu-
lar kite(28) minus two equal rectangular kites. These two latter kites have
a non empty intersection, which is itself an even smaller kite. If the areas
of these kites are, respectively, denoted by δD′ , δD′+1 and δD′+2, then the
area of KD′ is

κD′ = δD′ −2δD′+1 + δD′+2. (A.9)

Now, for each of these four kites, its edges are two rays of the cir-
cular central region and two tangents to this central region, perpendicular
to these two latter rays. Since the central region has diameter p, if the two
rays make an angle θ , the area of the kite is

δ(θ)= p2

4
tan

(
θ

2

)
. (A.10)



866 Widom et al.

For the domain KD′ , θ =π(D−D′)/D for the greater kite. Henceforth,

δD′ = p2

4
tan

(
π
D−D′

2D

)
. (A.11)

The same formula holds for δD′+1 and δD′+2. Thus if we set k=D−D′,

κD′ = p2

4

[
tan

(
kπ

2D

)
−2 tan

(
(k−1)π

2D

)
+ tan

(
(k−2)π

2D

)]
. (A.12)

Fixing the ratio x=D′/D, and approximating the above as a second deriv-
ative, we finally get

κD′ =κE(xD)�π2p
2

8
1
D2

tan (π(1−x)/2)
[
1+ tan2 (π(1−x)/2)

]
.

(A.13)

Thus the number of tiles in AE(xD) is

NE(xD)=αE(xD)φD(x)=2DκE(xD)φD(x). (A.14)

For later reference we also calculate the average area of a tile in AE(xD),

σ(x)=
∑

1�i,j�E(xD) sin2 (j−i)π
D∑

1�i,j�E(xD) sin (j−i)π
D

� cos(2πx)−1+2π2x2

8(πx− sinπx)
. (A.15)

Finally, the fraction of tiles in the region AE(xD) is

nE(xD) = NE(xD)

NT
= NE(xD)

D2p2/2

� 1
2D

tan (π(1−x)/2)
[
1+ tan2 (π(1−x)/2)

]

× [πx− sinπx] , (A.16)

when D goes to infinity, since the number of tiles in the whole tiling is
NT =D2p2/2.

As expected, these fractions vanish but they can be added to get a
non vanishing number of intersections. More precisely, let us fix a real
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number 0 � g � 1 and let us compute the fraction of tiles which lie in
regions where at least E(gD) families of lines intersect:

1
2

+
D−1∑

l=E(gD)
nl � 1

2
+ 1

2

∫ 1−g

0
dx tan (πx/2)

[
1+ tan2 (πx/2)

]

× [π(1−x)− sinπx]≡ 1
2

+ 1
2
f (1−g). (A.17)

The above integral is a continuous function f (g) for g ∈ [0,1]. It fulfills
the required condition f (0)= 1 (which means that the whole tiling con-
tains a fraction 1 of tiles!). Moreover, f (g)< 1 when g> 0. Thus for any
h<1, there exists a real number g>0 such that a fraction h of the tiles lie
in regions where at least E(gD) families of lines meet. Since g> 0, when
D goes to infinity, the number of families of lines also goes to infinity in
such regions.

Moreover, Appendix B demonstrates that the local tilings in such
regions are true large codimension ones. Hence everywhere in the above
region, the local entropy tends to the free boundary entropy σ∞. A frac-
tion h of the tiles lie in regions where the local entropy per tile tends to
σ∞ when D→∞. We get(11) the expected relation (A.2) and we conclude
that free and fixed boundary entropies coincide.

These arguments can also be extrapolated to finite p tilings provided
D is large. Indeed, if p is finite, a domain KD′ can be very small and can
contain very few tiles (and even no tile at all). Nevertheless in the previous
demonstration, regions AE(xD) with x0 � x � x0 + δx can be put together
into larger regions, to which all the previous arguments can be applied.

Finally we remark that the tiling T0 which was not assumed a priori
to maximize the entropy functional indeed does so at the large D limit.
Therefore it should be close to generic and should give a good idea of the
macroscopic structure of large D generic tilings, in particular as far as the
scaling laws of Section A.3 are concerned.

A.2. Non-diagonal Tilings

For large p non-diagonal tilings with side lengths ki =xip, where α�
xi � β, we use a particular tiling T ′

0 which is a variation of T0. Its over-
all definition is the same except that the line spacing li depends on the de
Bruijn family Fi . We follow the main steps of the prior demonstration, in
particular the calculation of the areas κD′ or αD′ .
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We choose li =p/(xip− 1)� 1/xi so that the width li (ki − 1)=p of
the family Fi is independent of i in the grid representation (Fig. 15, left).
Therefore the areas αD′ remain unchanged as compared to Section.

On the other hand, the density of intersections in each domain KD′
will vary because of varying line spacing. In particular the area α0 of the
unit cell now depends on i and j :

α0(i, j)=
li lj

| sin θij | = 1
xixj | sin θij | . (A.18)

The number of intersections (A.6) becomes

Q̃D′ =κD′

⎛

⎝
∑

1�i<j�D′
xixj sin

(j − i)π
D

⎞

⎠�β2QD′ . (A.19)

Henceforth, the new numbers of tiles in the crown AD′ and in the whole
tiling satisfies ÑD′ � β2ND′ and ÑT � α2NT . If we set again D′ =E(xD),
the new fraction of tiles in AD′ satisfies

ñE(xD)= ÑE(xD)

ÑT
� β2

α2
nE(xD). (A.20)

As a consequence, the outer crowns with small effective dimensionality D′,
which had a vanishingly small contribution to the total number of tiles in
the previous section, will again be negligible in the present case.

To finish the proof, we must check that the remainder of the tiling has
a local entropy equal to σ∞. The proof is explicited in Appendix B in the
diagonal case but can easily be adapted to the present case, leading to

n′
ij

(n′)∗ij
� α2

β2

6
π2
, (A.21)

where the notations are defined in appendix B. Even though the lower
bound on tile fractions now depends on α and β because we are dealing
with a nondiagonal case, it remains finite.
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A.3. Scaling Law for the Effective Dimensionality

We derive the effective dimensionality D′ =Deff (r) in the tiling T0 of
side length p at the large D limit. Here 0<r <R is the distance from the
tiling center O and R�pD/π is the radius of the tiling. Assume that in a
large D tiling, a region of effective dimensionality Deff is an annulus ADeff

of center O, the tiling center, and of radii r and r + δr. Hence Deff (r +
δr)=Deff (r)− 1 (the effective dimensionality decreases with increasing r),
that is to say

δr
d

dr
Deff (r)=−1. (A.22)

Now we need to compute δr. Following Appendix (A.1) we write x=
Deff/D. If we knew the area s(x) of ADeff in the tiling metric, then we
could extract δr from s(x)=2πrδr, in order to write

s(x)
d

dr
Deff (r)=−2πr. (A.23)

But we can easily extract s(x) from Eqs. (A.14) and (A.15) for the number
and area of tiles in AE(xD) to find

s(x) = Dp2

32
tan (π(1−x)/2)

[
1+ tan2 (π(1−x)/2)

]

×
[
cos(2πx)−1+2π2x2

]
. (A.24)

It is convenient to introduce dimensionless variables which remove the
divergences for large D and p. Specifically, we introduce r̂ ≡ r/R and
ŝ(x) ≡ s(x)/(Dp2), and we recall that Deff (r)/D = x and R = pD/π to
obtain

ŝ(x)
d

dr̂
x=− 2

π
r̂, (A.25)

which is completely equivalent to Eq. (A.22).
We can solve Eq. (A.25) by direct integration to obtain the radius r̂

corresponding to a given effective dimension x,
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r̂2(x)−1 = −π
∫ x

0
s(x′)dx′

= 1
16

(
−14+2 cos (πx)

+πx csc2
(πx

2

)
(πx+2 sinπx)

)
(A.26)

or we can invert the solution and obtain (after returning to unscaled vari-
ables)

Deff (r)=Dγ (r/R) (A.27)

with γ (r̂) the inverse of r̂(x). Although the solution in Eq. (A.26) cannot
be inverted in closed form, we can expand it for small x to find values of r
close to the boundary R. Defining the small quantity ε=1− r/R, we have

ε= π2x2

24
+O(x4), (A.28)

then by reversion of series obtain

γ (r/R)=x≈
√

24
π

√
ε. (A.29)

Apparently, the effective dimensionality varies rapidly near the boundary.
We also use the notion of effective codimension ceff =Deff − 2. At

large D, one has

ceff

D−2
� Deff

D
=γ (r/R). (A.30)

All the quantities expressed as functions of x are also functions of r/R.
For example, the vertex density

d(x)= 1
σ(x)

� 2
πx

= 2
πγ (r/R)

� 1√
6(1− r/R) =d(r/R) (A.31)

at small x, i.e. when r close to R. This scaling compares well with numer-
ical data in Section 4.
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APPENDIX B: REGULARITY OF LARGE CODIMENSION FIXED

BOUNDARY TILINGS

We check here that in each region AD′ of the diagonal tiling T0 the
local entropy per tile tends to the free boundary one σ∞ as D→ ∞. As
discussed in paper I(1), a sufficient condition is that tile fractions should
be “bounded” on AD′ . This means that all local tile fractions nij have the
same order of magnitude as the strain-free ones n∗

ij . In other words, there
exist a finite constant a>0 such that

nij �a n∗
ij (B.1)

for all i and j . We want to calculate the tile fractions n′
ij in AD′ and com-

pare them to the strain-free ones. Recall that in a D→2 tiling,

n∗
ij =C sin

∣∣∣∣π
j − i
D

∣∣∣∣ , (B.2)

where the constant C comes from the normalization relation
∑
n∗
ij =1.

As in Appendix A, we set D′ =E(xD) where D is large and x >0 is
finite. The main difficulty in this appendix comes from the fact that in the
region AD′ under consideration, not all tile species occur. Without loss of
generality, we assume that only the tiles with indices i, j =1, . . . ,D′ exist.
These tiles appear in the region AE(xD) with the fractions (B.2), but with
a different normalization constant because only some of them appear. The
normalization relation now reads

∑

1�i<j�D′
n′
ij =1. (B.3)

At the large D limit, this sum can be replaced by an integral and we get
the tile fractions in AE(xD):

n′
ij = 1

(D′)2
π2x2

πx− sin(πx)
sin

∣∣∣∣xπ
j − i
D′

∣∣∣∣ . (B.4)

Now we check that this tiling has bounded local fractions of tiles
when it is considered as a D′ →2 tiling. We need to compare the above n′

ij

to the corresponding quantities in an unstrained D′ → 2 tilings, in other
words to

(n′)∗ij = π

(D′)2
sin

∣∣∣∣π
j − i
D′

∣∣∣∣ . (B.5)
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By convexity of the sin function on the interval [0, π ], we have: sin |xπ(j−
i)/D′|�x sin |π(j − i)/D′|, and

n′
ij

(n′)∗ij
� x

π

π2x2

πx− sin(πx)
� 6
π2
, (B.6)

which achieves the proof: a=6/π2 in condition (B.1). From the results of
paper I,(1) we conclude that in such a region AD′ , the local entropy per
tile equals the free boundary value σ∞ when D→∞.
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