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Random tilings of the plane by rhombi are projections into the plane of corrugated
two-dimensional surfaces in a higher dimensional hypercubic crystal. We consider
tilings of 2D-fold symmetry projected from D-dimensional space. Thermodynamic
properties depend on the relative numbers of tiles with different angles and ori-
entations, and also on the boundary conditions imposed on the tiling. Relative
tile numbers define the average slope of the corrugated two-dimensional surface
and hence the average phason strain. We study tilings with large codimension and
fixed boundaries inside a regular 2D-sided polygon with p rhombi on each side.
For D → ∞ we show that the thermodynamic properties become independent of
p. Furthermore, we argue that the boundary conditions become thermodynam-
ically irrelevant in the large D limit. For p=1 we use exact enumeration for D

up to 10, and “mean field theory” arguments, to propose an upper bound for the
random tiling entropy of log(2)=0.693 per tile. The entropy for finite D increases
monotonically and reaches a limit slightly below this bound.

1 Introduction

The discovery of quasicrystals 1 motivated widespread investigation of tiling
models. It is presumed that favored atomic motifs form geometrical tiles.
These tiles may be arranged quasiperiodically in space to describe the qua-
sicrystal structure. The suggestion that random tilings exhibit quasiperiodic-
ity created a subfield within the area of tiling theory 2,3. It was shown, for at
least one atomistic model quasicrystal 4, that quasicrystalline order emerges
with random tiling, rather than Penrose-like, order. The best description for
real quasicrystalline materials remains an open problem.

In addition to their role in the theory of quasicrystals, random tiling models
appear in a number of other scientific contexts. Their combinatorial properties,
for example their relationship to generalized partitions 5,6 make them interest-
ing models for study within pure mathematics 7. Some provide examples of
exactly solvable models 8,9 of interest within statistical mechanics. We note, in
this paper, a relationship with algorithms for sorting lists 10,11. Random tiling
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Figure 1: Example tilings of 2D-gons of edge length p = 8 for D = 3, 5 and 7

models have also been proposed as models for elastic membranes 6,12.

The random tiling theory of quasicrystals focuses on two important prop-
erties: The tiling entropy contributes to the configurational entropy of the
quasicrystal, reducing its free energy and enhancing thermodynamic stability
against other competing phases 13; Variation of the entropy with average pha-
son strain defines the phason elastic constants. Techniques employed in theo-
retical studies include Monte Carlo computer simulation 14, numerical transfer
matrix methods 15 and analytic exact solution 9. For the models most relevant
to quasicrystals (5 or 10-fold symmetry in two-dimensions and icosahedral
symmetry in three-dimensions) only numerical analysis has proven successful.

The hope for an analytic approach to these complex problems motivates
our study of random tiling models with high co-dimension. Tiling models
are conveniently defined as projections from a higher D-dimensional lattice
into a lower d-dimensional physical space. For example, 10-fold symmetric
tilings may be projected from D = 5 into d = 2, and icosahedral tilings may
be projected from D = 6 into d = 3. Figure 1 displays examples of tilings
constructed as projections from D-dimensional simple cubic lattices into d = 2-
dimensional physical space.

We anticipate3 the limit D → ∞ may prove easier to analyze than specific
finite values ofD. We argue that a conventional thermodynamic limit exists for
tilings in the limit D → ∞, while the entropy depends on boundary conditions
for finite D tilings. We suggest the entropy density is spatially homogeneous,
independent of tiling size and boundary conditions. Based on this analysis, we
demonstrate that the entropy per tile remains finite as D → ∞, and we derive
an upper bound of log 2 = 0.693 on the entropy of D → 2 tilings. This paper
presents only brief discussions of our main results. Further results and details
may be found in a forthcoming publication 11.
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2 Model

We define our D → 2 tilings as projections from a D-dimensional simple cubic
lattice into a d = 2-dimensional plane. The plane is selected, and the lattice
scaled, so that the basis vectors of the cubic lattice project into unit vectors ei
belonging to a symmetric star. Faces of the simple cubic lattice project into
rhombi with unit edge length whose internal angles are multiples of π/D. The
tiles may be arranged in patterns with (exact or statistical) 2D-fold rotational
symmetry.

Figure 1 shows examples of such tilings. In this figure, the tilings are
constrained to fill regular 2D-gons with edge length p = 8. The value of p
equals the number of de Bruijn16 lines of each orientation running through the
tiling. A de Bruijn line is the union of line segments joining parallel edges of
adjacent rhombi. The orientation of the de Bruijn line refers to the orientation
of these parallel edges. A de Bruijn line cannot cross another de Bruijn line of
the same orientation. More general convex 2D-gons may be filled by varying
independently the numbers pi of de Bruijn lines associated with tile edges of
orientation ei. In the context of de Bruijn’s grid construction, the constraint of
filling a 2D-gon amounts to demanding a full dualization of the de Bruijn grid
in which all non-parallel lines eventually cross. These tilings are equivalent to
generalized partitions 5,6.

Define the rhombus Rij as a rhombus with edges parallel to ei and ej .
The rhombus defines the crossing of a de Bruijn line of family i with one of
family j. In the general case with arbitrary pi, the number of rhombi Rij is
the product pipj. For simplicity we will focus on the case of boundaries which
are regular 2D-gons with all edges of length p. The total number of rhombi in
this case equals

NR(p,D) = p2
D(D − 1)

2
. (1)

Denoting the number of fixed boundary tilings BD(p), we define the entropy
per tile

σfixed(p,D) ≡
logBD(p)

NR(p,D)
. (2)

Generalizing the boundary condition, we may consider free-boundary tilings in
which all non-overlapping, simply connected, arrangements of tiles are allowed.
We denote the free boundary entropy σfree(p,D). Periodic and free boundary
conditions give identical results in the limit of infinite area 17, and this value
is independent of the sample shape.

An interesting fact about fixed boundary tilings, which we exploit in this
paper, is that they are in one-to-one correspondence with equivalence classes
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Table 1: Exact data for p = 1 tilings for D = 1, 2, · · · , 10

D 1 2 3 4 5
BD 1 1 2 8 62
σfixed(D) 0 0.231 0.347 0.413
BD+1/BD 1 2 4 7.75 14.65

D 6 7 8 9 10
BD 908 24,698 1,232,944 112,018,190 18,410,581,880
σfixed(D) 0.454 0.482 0.501 0.515 0.525
BD+1/BD 27.20 49.92 90.85 164.35

of sorting algorithms 10,11. Tilings of the 2D-gon with edge lengths pi = 1
define networks for the sorting of D items. The general case with arbitrary pi
relates to the merging of D pre-sorted lists, each of length pi. We exploit this
relationship to obtain data on the numbers of tilings BD(p) for small values of
D in the important special case with all pi = 1 (see table 1). When p = 1 we
occasionally drop it as an explicit argument. From the work of Knuth 10 we
extract bounds on the entropy of the form

1

3
log 2 ≤ lim

D → ∞

σfixed(D) ≤ 2 log 2. (3)

3 Thermodynamic limit

Tiling models generally lack a proper thermodynamic limit. For example,
Elser 18 showed that the entropy density of tilings confined within a hexagon
is always lower than the value obtained with periodic boundary conditions 8.
Similar influence of the fixed boundary conditions is expected for models pro-
jected from higher values of D. Conventional thermodynamics 19 assumes that
intensive thermodynamic quantities such as the entropy density exist inde-
pendent of system boundary conditions and shape. It seems that these tiling
models enjoy a conventional thermodynamic limit except when confined within
2D-gons.

The source of the difficulty is evident from inspection of figure 1. Along the
perimeters of the tilings we see nearly crystalline domains. Viewing the tiling
as a membrane embedded in D-dimensional hyperspace 6, the tiling boundary
serves as a frame over which the membrane is stretched. On average the frame
lies parallel to physical space, but edges of the frame are inclined, forcing the
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membrane away from its preferred orientation near the boundary. In qua-
sicrystalline terms, the fixed boundary condition forces large phason strains.
Phason strains lower the tiling entropy, explaining the fact that fixed boundary
entropies lie below the free boundary value. Hence

σfixed(p,D) ≤ σfree(p,D) (4)

holds for all p andD. Indeed, these fixed boundary models provide an excellent
way to study random tilings in the presence of strong, spatially varying, phason
strain gradients.

Inspection of figure 1 suggests that the influence of the boundary may
vanish as D increases. This may be demonstrated from the observation that
a fraction α < 1 of all the tiles in a fixed boundary tiling lie in regions of
the tiling in which at least β D de Bruijn line families cross, with β a finite
valued function of α. As D → ∞, the entropy within this fraction of the tiles
approaches the free boundary entropy. Since these tiles comprise a subset of
the fixed boundary tiling, we obtain the inequality

α lim
D → ∞

σfree(p,D) < lim
D → ∞

σfixed(p,D) (5)

valid for any α < 1. Taking the limit of equation (5) as α → 1, and comparing
with equation (4) we observe 11

lim
D→∞

σfixed(p,D) = lim
D→∞

σfree(p,D) (6)

implying the existence of a conventional thermodynamic limit.
Finally, we point out that the entropy density σfree(p,D) becomes inde-

pendent of p in the limit D → ∞. To see this, consider any fixed value of p
in the limit D → ∞. De Bruijn lines effectively repel each other, because of
the non-crossing condition, so they tend to spread out with roughly uniform
spacing. The diameter of the tiling comprises pD line segments and must ac-
commodate p de Bruijn lines of each family. The mean distance between lines
therefore grows as D. Assuming random walk statistics of de Bruijn line me-
andering, the interval along a de Bruijn line between successive contacts with
a neighbor in the same family grows proportionally to D2. The total num-
ber of contacts between de Bruijn lines within a given family varies as p2/D.
Among the set of all D de Bruijn line families, we expect p2 such contacts.
Each contact results in a loss of total entropy of order log 2. To see the impact
on entropy density, compare the number of contacts p2 with equation (1) for
the total number of tiles. The loss of entropy density due to de Bruijn line
contact falls off as 1/D2, regardless of the value of p. In the limit of large D,
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Figure 2: Bootstrap method for constructing a D + 1 tiling from a D tiling.

the entire tiling becomes locally equivalent to a p = 1 tiling, with the entropy
density determined entirely by the number of distinct de Bruijn line families,
and the entropy density loses any dependence on p. We exploit this fact by
considering only p = 1 tilings in the next section.

4 Upper bound

Figure 2 illustrates a method5 to construct a fixed boundary tiling of dimension
D+1 from one of dimensionD. Starting from any tiling of dimensionD, choose
any path of length D along tile edges from the top of the tiling to the bottom.
Cut the tiling along this path, separate the two parts by length 1, and draw
new bonds connecting previously identical vertices. Finally, adjust all edge
orientations to match the set of symmetry D + 1.

This method of construction shows we can count the number of tilings pro-
jected from dimensionD+1, using only information about the tilings projected
from dimension D. Tilings at levelD+1 are in one-to-one correspondence with
{path,tiling} sets at level D. We relate the number of D+1 tilings to the mean
number of paths on D tilings,

BD+1 = PDBD, (7)

where the mean path count

PD ≡
1

BD

BD∑

τ=1

PD(τ) (8)

and PD(τ) is the number of top-to-bottom paths on the D tiling labeled τ .
Estimation of PD is aided by our thermodynamic hypothesis. For large D,

we suppose that among the BD distinct tilings, the majority are statistically
similar to each other, while there are a minority of exceptional cases 19. The
distribution of properties, such as the individual values of PD(τ), should be
sharply peaked near the mean value. In the limit D → ∞ the distribution
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should approach a δ-function. This expectation is supported by numerical
simulations 11. It suffices, then, to calculate only one “typical” value of PD(i)
to estimate the mean value.

To calculate a typical value of PD(τ), consider the problem of constructing
top-to-bottom paths on a typical tiling. Most of these paths travel through the
bulk of the tiling, far from any boundary. At each step, the path may follow
one or more routes. The only requirement is that the path segment leading out
of a vertex must contain a downwards component. We estimate the number
of paths as the product over vertices v of the number of choices Nc(v) to be
made at each step

PD ≈

D∏

v=1

Nc(v). (9)

Evaluation of equation (9) requires the distribution of valuesNc(v) along paths.

Because we do not know the distribution of values of Nc(v), we settle for
an estimate that yields an upper bound to PD, and hence to σ(D). Note that
the product in equation (9) is the Dth power of the geometric mean of Nc(v).
The geometric mean of any set of positive numbers is bounded above by the
arithmetic mean, reaching this bound only when all values are equal. The
arithmetic mean N̄c = Z̄/2, with Z̄ the mean coordination number, because
on average half the tile edges at each vertex have a vertical component in the
southerly direction. From Euler’s theorem applied to rhombus tilings with a
boundary, we know Z̄ ≤ 4. We deduce the upper bound PD ≤ 2D for typical
tilings. This explains why the ratios BD+1/BD in table 1 increase by slightly
less than a factor of 2 between successive values of D. Knuth 10 conjectures a
related bound PD(τ) expected to hold for all tilings τ . Iterating equation (7)
it follows that BD ≤ 2NR(d) and finally,

σ(D) =
logBD

NR(D)
≤ log 2. (10)

From numerical path enumeration studies of generic higher codimension tilings
we believe the true D → ∞ limit lies about 15% below our bound (10).

In conclusion, we have established the existence of a thermodynamic limit
for random tilings in the limit D → ∞, and have proposed an upper bound of
log 2 on the entropy per tile. Topics for future investigation include variation
of σfree(D) with D, and analysis of phason elasticity. Also of interest is the
extension of our current theory to random tilings of three-dimensional space
by rhombahedra.
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