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Two-dimensional random tilings of large codimension: new progress
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Abstract

Two-dimensional random tilings of rhombi can be seen as projections of two-dimensional membranes embedded in hypercubic lattices of
higher dimensional spaces. Here, we consider tilings projected from aD-dimensional space. We study the limiting case, when the quantity
D, and therefore the number of different species of tiles, become large. We had previously demonstrated [M. Widom, N. Destainville, R.
Mosseri, F. Bailly, in: Proceedings of the Sixth International Conference on Quasicrystals, World Scientific, Singapore, 1997.] that, in this
limit, the thermodynamic properties of the tiling become independent of the boundary conditions. The exact value of the limiting entropy
and finiteD corrections remain open questions. Here, we develop a mean-field theory, which uses an iterative description of the tilings
based on an analogy with avoiding oriented walks on a random tiling. We compare the quantities so-obtained with numerical calculations.
We also discuss the role of spatial correlations. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The understanding of the stability of quasicrystalline ma-
terials, discovered about 15 years ago [2], motivates the
study of random tilings. Indeed, it is believed that in these
materials, atomic motifs form geometric tiles; the random
tiling hypothesis states that these tiles can be rearranged
via local degrees of freedom, which gives access to a finite
configurational entropy which is supposed to favor the qua-
sicrystalline symmetry against other competitive crystalline
phases [3,4]. Indeed, such symmetries, a priori inherent to
Penrose-like structures [5,6], are still displayed by their ran-
dom counterpart, which are therefore, good candidates to
model quasicrystalline materials [7]. The best description
for real quasicrystals remains an open question.

Two years ago, we presented initial results on two-
dimensional random tilings of large codimension [1] in
which, as had been anticipated by Henley [4] analytic
approach is more likely to be developed than in the
finite-dimensional case. The present paper contains pre-
liminary results in the understanding of these systems. We
developed a mean-field theory, based upon an iterative

∗ Corresponding author. Tel:+33-5-61-55-60-48;
fax: +33-5-61-55-60-48.
E-mail address:destain@irsamc2.ups-tlse.fr (N. Destainville).

walk-on-tiling construction of large codimension tilings,
providing a new insight into this infinite codimension limit.
Except for the diagonalization of an operator, all this work
relies on exact calculations. The results so-obtained are
validated by Monte Carlo simulations, based upon the same
iterative process. A more complete and explicit presentation
will be published elsewhere [8].

In the two following sections, we briefly define what infi-
nite codimension tilings are and we recall results from ref-
erence [1]. In Section 4, we explain the mean-field theory
and we compare it to results of Monte Carlo simulations.

2. Model

We define two-dimensional random tilings of rhombi, de-
noted asD→2 tilings, as projections from aD-dimensional
cubic lattice into a two-dimensional plane. Facets of the
cubic lattice project into rhombi [9–11,17]. The projection
is chosen so that the rhombi have unit edge length and their
angles are multiple ofπ /D. As a consequence, the tiles
are arranged in tilings with statistical 2D-fold rotational
symmetry. Fig. 1 displays such tilings. In this case, they
fill regular 2D-gons. Such polygonal boundary conditions
will be calledfixed in the following. We will also consider
free boundary tilings in this paper. In the de Bruijn grid
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Fig. 1. Two examples of fixed boundary tilings forD = 5 and 7. In this case, the side lengths of the 2D-gons are all equal top= 8.

representation [12–14,18], any two lines of different orien-
tation cross in the fixed boundary case, whereas they do not
necessarily cross in the free boundary case.

Before going on, let us mention that the effect of bound-
aries was recently studied [15,19,20] and turned out to be
highly non trivial: fixed boundaries have macroscopic effects
on tilings at the infinite size limit, which are characterized by
a gradient of entropy between the boundary and the center
of the tilings. As a consequence, fixed boundary tilings have
a lower entropy than free boundary ones. Note that periodic
boundary conditions give the same entropy as free ones at
the infinite size limit [16], and that this entropy only de-
pends on the relative fractions of tiles and not on the sample
shape.

3. Thermodynamic limit

We demonstrated previously [1] that when the codimen-
sion1 of the plane tilings becomes large, the entropy differ-
ence between fixed and free boundary conditions vanishes.
More precisely, the structural inhomogeneity between re-
gions close to the boundary and the bulk observed in finite
codimension tilings tends to disappear. Moreover, it was
argued that this limiting entropy is still valid when the side
length p of the polygonal boundary remains finite as the
codimension goes to infinity. In particular, one can choose
p=1 in order to perform more simple calculations [1].
In this reference, an upper bound of the limit entropy,
σ<log 2, was also given.

1 That is the differenceD-2 between the cubic lattice dimensionD and
the tiling dimension 2.

4. Mean-field theory

Both the mean-field theory and the numerical calculations
presented below rely on an iterative construction of large
codimension tilings, based upon the de Bruijn representation
of tilings [12,18]. This point of view can be used either in
the fixed boundary context [1] or in the free boundary one.

4.1. Walk-on-tiling algorithm

As illustrated in Fig. 2, aD→2 tiling can be seen as a
collection of non-intersecting paths chosen on aD–1→2
random tiling. These paths are directed from bottom to
top. They follow the edges of theD–1→2 underlying tiling.
Then these paths are ‘opened’ along a new edge direction
in order to form theD-th de Bruijn family and then aD→2
tiling. Conversely, de Bruijn lines of familyD in a D→2
tiling can be collapsed into paths on aD–1→2 tiling. As a
consequence, there is a one-to-one correspondence between
D→2 tilings with p de Bruijn lines in familyD and collec-
tions ofp non-intersecting directed paths onD–1→2 tilings.

4.2. Mean-field theory and Monte Carlo simulations

As we explained above, asD becomes large, the enumer-
ation problem can be simplified into a problem with a sin-
gle line in each de Bruijn family. In other words, de Bruijn
lines of the same family do not interact, and the number of
p-line configurations can be factorized into a product of in-
dependent single-line configurations. As a consequence, the
entropy is equal to

σ = lim
D→∞

lim
k→∞

logND(k)

k
, (1)
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Fig. 2. Iterative process for the construction ofD →2 tilings: paths are chosen on aD − 1→ 2 tiling (left), and are “opened” in a new direction to form
de Bruijn lines of theD-th family (right).

Fig. 3. A random path on a tiling as a succession of uncorrelated vertices (the bottom-to-top path has been rotated into a left-to-right path for sake of
convenience).

whereND(k) is the number ofk-step paths on aD-dimensional
random tiling [1,8].

Now, the mean-field approximation assumes that the steps
of such paths areuncorrelated. Then the number of paths
reads

ND(k) '
k∏

j=1

cj , (2)

wherecj are the numbers of choices to be made at each
vertex j to add a new step to the path (see Fig. 3).

Fig. 4. A path going through a vertexs of a D → 2 tiling gives birth to two verticess1 and s2 of a D + 1→ 2 tiling.

Keep in mind that, even if they are uncorrelated, the
verticesj belong to a randomD→2 tiling. Therefore, the
numbers of choicescj are distributed according to a prob-
ability distribution πD(c). When D tends to infinity, this
distribution tends toward a limiting distribution, denoted
by π (c). Thus, after a short calculation, Eqs. (1) and (2)
become:

σ =
∞∑

c=1

π(c)logc. (3)
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Table 1
The first values of the limit distributionp(c), obtained both in the
mean-field approximation and numerically by Monte Carlo simulations

c 1 2 3 4

Mean-field 0.30 0.45 0.19 0.04
Numerical 0.26 0.51 0.20 0.03

To get the mean-field distributionπ (c), let us first denote
by πD(q,p) the fraction of vertices on aD→2 random tiling
with q incoming edges (‘legs’) andp outgoing ones (‘arms’)
(see Fig. 4) The distributionsπD(c) and π (c) will easily
be derived fromπD(q,p). If no correlations are taken into
account, a (q,p)-vertexs of a D→2 tiling will be visited by
the paths with a probabilityπD(q,p) and will then give birth
to two verticess1 ands2, as illustrated in Fig. 4 These latter
vertices belong to aD+1→2 tiling. Each leg and each arm
of s will be chosen with probabilities 1/q and 1/p, respec-
tively. As a consequence, in this mean-field approximation,
the probabilitiesπD+1 (q,p) can be written as linear combi-
nations of the probabilitiesπD(q,p). The corresponding lin-
ear operator will be denoted byA. It is infinite-dimensional
sinceq andp can be arbitrarily large whenD goes to infinity.

The limiting distributionπ (q,p) is the fixed point ofA,
that is the eigenvector associated with the eigenvalue 1. We
have calculated this fixed point numerically, yielding the
values ofπ (c) listed in Table 1. The mean-field entropy
(3) is then approximately equal toσ=0.60. The distribution
π (q,p) also provides the mean-field correlations betweenp’s
andq’s: their covariance is cov(q,p)'−0.442 .

Let us mention that we have not taken into account the
fact that at the stepD of the iterative process, only a fraction
of order 1/D of the vertices are visited by paths [1]. This
modification does not alter the fixed point of the process
[8], but only the finiteD corrections: they have a power-law
behavior instead of an exponential one.

To close this section, let us emphasize that these
mean-field values are satisfyingly close to numerical values
obtained by Monte Carlo simulations [8], as displayed in
Table 1. The corresponding numerical entropy and correla-
tions are approximately equal to 0.57 and−0.36, respec-
tively.

5. Conclusion

The above mean-field theory provides quite satisfying
numerical results concerning the local structure of large
codimension random tilings, in terms of vertex statistics
distributions. As a consequence, it provides a good approxi-
mate value of the limit entropy of such systems.

2 As a matter of fact, this value seems to be equal to−4/9.

To go further and to get better approximations, it will be
necessary to include the role of spatial correlations in our
calculations, by taking into account the distribution of tiling
patches bigger than single vertices.

Moreover, it would be useful to get informations about
finite D corrections to the limit entropyσ , since finite codi-
mensional systems are related to real quasicrystals. Two
ingredients will be taken into account: the power-law cor-
rections of the mean-field theory as discussed above, and
the effects of contacts between de Bruijn lines, which tend
to decrease the entropy [1].
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