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Crystalline ground states of an entropically stabilized quasicrystal model

H. K. Lee} R. H. Swendsen, and M. Widom
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
(Received 5 July 2001; published 19 November 2001

A binary Lennard-Jones alloy exhibits an entropically stabilized quasicrystal state in two dimensions at
elevated temperatures. We consider the ground states of this model by calculating the convex hull of cohesive
energy as a function of alloy composition. Only crystalline structures with rational values of the composition
appear on vertices of the convex hull. In particular, at the irrational composition of the ideal quasicrystal
structure, the ground state is a coexisting mixture of two nearby quasicrystal approximants.

DOI: 10.1103/PhysRevB.64.224201 PACS nuni®er61.50—f, 64.70.Pf

[. INTRODUCTION actions are truncated at near neighbbesiculation of pha-
son elastic constant proportional to temperafifreand
A binary Lennard-Jones alloy in two dimensions was theobservation of a low-temperature instability of the quasicrys-
first atomistic model of a decagonal quasicryét%lMonte tal phasé. Despite this evidence of entropic stabilization of
Carlo simulations of this modefound that thermodynami- the quasicrystal state, confirmation of the crystallinity at low
cally stable decagonal quasicrystals form spontaneousligmperatures has remained elusive. Our present work inves-
from the disordered liquid state as the temperature dropdigates the ground states of this model and confirms their
Later molecular dynamics simulatichsonfirmed this find- ~ crystalline nature.
ing. Besides being used in quasicrystal stutiigthe model
has been used to study viscoplastic deformatiam amor- Il. THE MODEL FOR QUASICRYSTAL STATE

phous solids and used for comparison between multicanoni- _ .
cal methods, molecular dynamics, and Monte Carlo We used the binary Lennard-Jones alloy model introduced
methodsld ’ by Lancon, Billard, and Chaudharand independently by

Despite much effort put into the study of quasicrystals,Widom' Strandburg, and Swendsefiihis model consists of

some fundamental questions about quasicrystals have n rge and small parncles, depqted b)and_s respgctwely.
been answered completely. One essential issue is the mecH ;e'ractlon energies favor mixing of unlike part'lcle types.
nism by which quasicrystals become thermodynamicall ptimal bond Iengths encourage ten sm_all particles to sur-
stable. This question is best considered in the context und a Ia_wge particle and _f|ve large particles to_surround a
tilings of space by rigid geometrical tiles decorated with at_s_mall particle, henc_e favormg.tenfold_symmetry in the qua-
oms. Levine and Steinhafdtproposed that quasicrystals are sicrystal. Mathematically, the interaction potentials between
stabilized by tile matching rules that force quasiperiodicity in particles of typesr and § are

the ground state. Els€rand Henley* pointed out that ran- _ 12 6

dom tilings spontaneously form quasicrystals without the Vap(N) =Bapl (7ap/1) "= (aap /)], @
need for matching rules. It was then proposed by Wititm  where the interaction energies digs=1, E | =Egs—1/2
that certain quas_,icrystals are stabili_zed by the c_onfiguratiqnaind the optimal bond lengths arg <=1, o =2 sin 36°,
entropy of their phason fluctuations. In this scenario,o5s=2 sin 18°. The total energy of a configurationNvpar-
quasicrystal-forming compounds exhibit conventional crys-icles is

talline states at low temperatures, then transform into the

quasicrystal at intermediate temperatures before melting at 1 N

higher temperatures yet. The phason elastic constants should Bor=5 2 Vs (Tij) (2
exhibit a linear temperature dependence due to their entropic it

origin.”** with (i) and 8(j) indicating the types of particlésandi.

Skibinsky et al'® showed that quasicrystal states with awe use the unit¥* =kgT/E s andU* =E,,/E,s. We de-
square well potential are indeed entropically stabilizednote the numbers of large and small partichss and Ng,
though here the free volume entropy also plays a role. On thgnd define the composition variable
contrary, Miekis2’ constructed finite-range lattice gas mod-
els that have stable quasicrystalline ground states, and Nsg
Jagld® found stable quasicrystalline ground states using a X= NN ()
repulsive potential. st

Evidence abounds that the quasicrystal state of the binar@ur goal is to determine the ground state structure as a func-
Lennard-Jones alloy is stabilized at finite temperatures byion of x.
configurational entropy. Among the evidence: observation of Low energy configurations of this model cover the plane
phason flips in Monte Carlo and molecular dynamicswith tile structures(see Fig. 1. We may describe these til-
simulations? calculation of entropy and phason elastic con-ings using a primitive set of “thin” 36° and “fat” 72° rhom-
stants arising from the ground-state degeneracy when intebus tiles known as “binary tiles®* The numbers of small
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is not invertable, there exists no fixed ratio of
Nhex: Npoat: Nstar @t the quasicrystal compositioky, .
This model exhibits a highly degenerate ground state
when the potentials are truncated at nearest neigfforee
degeneracy is given by the number of distinct ways to tile the

% plane with hexagons, boats, and stars. Consequently, the true

FIG. 1. Fat and thin binary rhombus tiles decorated with largedround state depends sensitively on how we treat the long-

and small particles. Rhombi combine to form hexagon, boat, andange tail of the potential. For this paper we address the full,
star tiles. untruncated, Lennard-Jones interaction defined in E&y.

and all of our reported ground-state energies are calculated in
and large particles relate to the numbers of thin and fathis manner. In order to evaluate the energies numerically,
rhombi (N1 andNg) through the linear equation we carry the summation in Edq2) explicitly out to suffi-

ciently larger that the energy per particle,,;/N converges
N, 3/5 1/5, [ Ng
= : 4
Ng 2/5 4/5\ N

to 10 7.
To study the model at low temperatures, we calculated the
Since fat and thin tiles occur in the ratio efl in a structure
with tenfold symmetry, Eq(4) determines the ideal quasic-

energy of many structures at a large number of compositions
around the quasicrystal composition. The convex'Aulf a
plot of energy per particle versus composition aids in deter-
rystal composition mination of the composition-dependent ground state. Sup-
pose &;,E;) and (x,,E,) are consecutive vertices of the
(5) convex hull withx;<x,. Then the ground state energy of a
structure of compositior betweenx, andx, is given by the
tie line

X =0.5527% . ..,

QT 42
wherer=(\/5+1)/2=1.618@®.. . . is thegolden mean.

Alternatively, we may take certain groups of binary tiles E,—E,;
that form larger “hexagon,” “boat,” and “star” tiles(see EQ)=Eyt+ -~ (X—xy). ()
Fig. 1). Every binary rhombus tiling may be reexpressed as a 2 M
hexagon-boat-star tiling. The hexagonal tile contains ondypically this energy will be achieved by phase separation of
large and two small particles and is formed by putting to-the N particles into a region of space containing
gether one fat rhombus and two thin rhombi. The boat tile

contains two large and two small particles and is formed by X=X N ®)

putting together three fat rhombi and one thin rhombus. The =%y

star tile contains three large and two small particles and is

formed by putting together five fat rhombi. The linear rela- X—Xq

tionship between the number of large and small particles and N2=X X €)
. . 2 1

the number of hexagon, boat, and star tiles is

particles of phase 1 and phase 2, respectively. For fidjte

Nhex Eq. (7) serves as a lower bound on the energy. Generally the
(NL): 12 3 N ©6) interface between the two phases raises the total energy
Ng/ (2 2 2/| ™| above the tie line. AN— o, the interfacial energy cogter
Nstar particle vanishes.

In particular, the composition of a pure boat tiling g
=1/2 and the composition of a pure hexagon tilisge Fig.
2) is xy=2/3. Pure star tilings do not exist. Because Hj.

X=1/2=0.500000 [B]

X=2/3=0666... [H|

IIl. MONTE CARLO SIMULATION AND ENERGY
MINIMIZATION

To find the ground-state energies, we confined our par-
ticles to a parallelogram with periodic boundary conditions
in thermal equilibrium with an empty box and performed
Monte Carlo simulation&’ In addition to simulating the in-
dividual particles’ continuous motion in space using the Me-
tropolis algorithm, our Monte Carlo moves allowed for three
particle flip moveg, changes in the box volumes while keep-
ing the sum of the volumes of boxes constant, and changes in
the angle and aspect ratio of the periodic boundary condi-
tions. The empty box maintains zero pressure for our simu-
lation. In principle, systems at nonzero temperature will
eventually evaporate at zero pressure. Our simulations did

FIG. 2. Configurations that forms the convex hull, unit cells N0t show evaporation, partially because of the finite total

form with boat tiles|B] and hexagonal tilegH] are drawn in bold
lines.

volume. That is, the pressure is exceedingly low but not truly
zero.
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FIG. 3. Plot of energy per particle versus particle composition. FIG. 4. Plot showing details of low-energy compositions near
Squares show the points on the convex hull and diamonds shothe quasicrystal composition.
low-energy configurations of a quasicrystal approximant at compo-

Eg'rc]’:t);; . E:\:‘gf/;;;:ggfr(;frggbzgt'zifor?;ﬁéne&;tei‘:sfrom configura- oo ple crystalline states from the convex hull of the energy-
: composition plot. There is a band of relatively high-energy

We svstematically performed simulations at all com Osi_configurations in Fig. 3. These are configurations with vacan-
tions X c)(l)ntainin NZES articles per cell over the Compo cies or substitutional defects, and hence are not tilings of the
g=aop P po- plane by decorated binary tiles.

sition rangexg=0.5=x<x,=0.66 . .. . Forcompositions Crystalline configurations that form the convex hull are

"_” the ranl?e 0.530@xs0.5689 we gigsaddit_iolnal sAimuIa- shown in Figs. 2 and 5. The simplest configurations forming
tions at all compositions containing=65 particles. At ev- the convex hull are those with one boat {i] (xg=1/2) or

ery composition, 80—200 low-energy configurations were e ne hexagonal tileH] (x,= 2/3) as the unit cellsee Fig. 2

laxed using conjugate gradient minimization. For flnlteThe remaining configurations that lie on the convex hull are

temperature Monte Carlo simulations we truncate the potensy S nin Fig. 5. Equal proportions of boat tiles and hexago-
tial at 40 for the sake of computational efficiency. How- nal tiles can be mixed to obtain thBH] structure at com-
ever, the full long range interaction was included in all sub- o0 _ 47— 571428 Mixing two[BH] unit cells
sgq_ue_nt gonjugate gr_adient _relaxations. Conjugage gradieghd two BBHunit cells. producés another point on the convex
minimizations ran until energies converged 5 50°°. hull with a unit cell of [2(BBH)] at compositionx,(ggy;

l?. addt|.t|0n o systlem?tl[pally searchlrlg f?rdlow-enelrgy =6/11=0.5454% . . .. It seems that there is no way to tile
configurations using simulations, we constructed several can; o - ;
didate low-energy configurations by hand, then used Conjuq-he plane with just a singlgBBH] per unit cell, hence the
gate gradient minimization to find low-energy states close to
these configurations.

The freezing temperature for our system is betw&&n
=0.3 and 0.18. We did simulations of 55000 MCS/P ‘&
(MCS/P means Monte Carlo steper particle starting from X
the liquid state and cooling from* =0.3 to 0.18, followed
by 30000 MCS/P cooling frorit* =0.18 to 0.08 and 15 000
MCS/P cooling fromT* =0.08 to 0.01. An annealing scheme
was determined dynamically by requiring that the energy his-) 9.4 7
tograms overlap to within &/ standard deviations) repre- Tee e e s
sents the degree of annealing. We set2 betweenT*
=0.3 and 0.18,n=3 betweenT*=0.18 and 0.08, andh

X =4/7=0.571429 [BH]

=1 betweenT*=0.08 and 0.01. All configurations of a y}u...
given N and composition are obtained from a single cooling ,A_ 20000
run. However, there are many different low-energy configu- = ’_ljﬁ)}ﬁ'\'.@g'}
rations for each single run due to the phason flips. (%ﬁéff‘?g X
NV anT N
DEER

IV. RESULTS

. . X =16/29 = 0.551724 |]2(BBH) + (BH)|
We found over a hundred low-energy configurations "

(within an energy of about 0.1 of the tie-line energyhich FIG. 5. Configurations that form the convex hull, unit cells that
are plotted in an energy-composition plot in Figs. 3 and 4form with boat tiles[B] and hexagonal tilegH], are drawn in bold
By comparing these energy states, we could identify thdines.
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need to double the cell. The last point on the convex hulla crystal to quasicrystal transition might occur in our model.
mixes theg 2(BBH)] unit cell with the[BH] unit cell to create Crystals containing star tileS) are conspicuously miss-
[2(BBH)(BH)] at composition x=16/29=0.55172 ..., ing from the convex hull. It appears that points on the con-
which is rather close to the quasicrystal compositiog ( vex hull contain only B and H tiles. Some of the structures
=0.5528...). lying above the convex hull do contain star tiles but these

Let us point out several compositions that do not appeacan be considered as grain boundary defects between star-
on the convex hull. We considered the mixturesfree crystalline domains.

[(BBH)(BH)] and [2(BBH)2(BH)], both at x
=5/9=0.55%. .., butwere unable to find any structure on V. CONCLUSIONS
the convex hull. We also considered(H)(BH)],

[2(BBH)2(B)] and [2(BBH)(B)], again failing to find any According to the convex hull, at compositiox, the

structure on the convex hull. ground state of an infinite system is a pair of coexisting
Of special note is the effort we made very close to thecry;tal phasgs. The system should phase sgparate in_to a crys-

ideal quasicrystal composition. We used a unit cell of 152@lline domain[2(BBH)(BH)] and a crystalline domain of

particles containing 84 small particles and 68 large particlesBH]- Becaus¢2(BBH)(BH)] is so much closer in composi-

to approximate the quasicrystal state. The composition ofion to the ideal quasicrystal thBH] is, the largest fraction

this special quasicrystal approximant unit cell ig  Of particles

=84/152=0.552 632, which is just slightly less than the

ideal quasicrystal composition given in E&). We did three

independent simulations to anneal this quasicrystal approxi- N X[BH] ~ X[2(BBH)(BH)]

mant. As before, 80200 statéfsom each runwere used as | form the phase[2(BBH)(BH)]. Since the true ground

the input for conjugate gradient minimizations. The loweststate s crystalline, the thermodynamically stable quasicrystal

energy configuration found in each of these three runs igiate in the binary Lennard-Jones alloy must be stabilized by

plotted on Figs. 3 and 4. _ S _ entropy. Now that the ground state has been identified, it will
The lowest energy configurations we identified at thispe possible to examine the transition from the crystalline

composition are shown as black diamonds in the convex hulyround state into the high-temperature quasicrystal state
plots. These configurations all tile the plane with 16 hexaynrough further computer simulations.

gons and 26 boats. The lowest energy found lies alAdtit
=0.005 per particle above the tie line. Given the entropy per
particle S=0.193 available from phason fluctuatichsye
can estimate that this approximant could be entropically sta- We would like to thank M. Mihalkovic and E. Cockayne
bilized above temperatufe= AE/S=0.026. Assuming these for constructive discussions and assistance. This work was
values are representative of the ideal quasicrystal compossupported in part by the NSF under Grant No. DMR-
tion, we obtain a rough estimate of the temperature at whicl®732567.
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