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Crystalline ground states of an entropically stabilized quasicrystal model
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A binary Lennard-Jones alloy exhibits an entropically stabilized quasicrystal state in two dimensions at
elevated temperatures. We consider the ground states of this model by calculating the convex hull of cohesive
energy as a function of alloy composition. Only crystalline structures with rational values of the composition
appear on vertices of the convex hull. In particular, at the irrational composition of the ideal quasicrystal
structure, the ground state is a coexisting mixture of two nearby quasicrystal approximants.
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I. INTRODUCTION

A binary Lennard-Jones alloy in two dimensions was
first atomistic model of a decagonal quasicrystal.1,2 Monte
Carlo simulations of this model2 found that thermodynami
cally stable decagonal quasicrystals form spontaneo
from the disordered liquid state as the temperature dro
Later molecular dynamics simulations3 confirmed this find-
ing. Besides being used in quasicrystal studies4–9 the model
has been used to study viscoplastic deformation10 in amor-
phous solids and used for comparison between multican
cal methods, molecular dynamics, and Monte Ca
methods.11

Despite much effort put into the study of quasicrysta
some fundamental questions about quasicrystals have
been answered completely. One essential issue is the me
nism by which quasicrystals become thermodynamica
stable. This question is best considered in the contex
tilings of space by rigid geometrical tiles decorated with
oms. Levine and Steinhardt12 proposed that quasicrystals a
stabilized by tile matching rules that force quasiperiodicity
the ground state. Elser13 and Henley14 pointed out that ran-
dom tilings spontaneously form quasicrystals without
need for matching rules. It was then proposed by Widom2,15

that certain quasicrystals are stabilized by the configuratio
entropy of their phason fluctuations. In this scenar
quasicrystal-forming compounds exhibit conventional cr
talline states at low temperatures, then transform into
quasicrystal at intermediate temperatures before meltin
higher temperatures yet. The phason elastic constants sh
exhibit a linear temperature dependence due to their entr
origin.7,14

Skibinsky et al.16 showed that quasicrystal states with
square well potential are indeed entropically stabiliz
though here the free volume entropy also plays a role. On
contrary, Miekisz17 constructed finite-range lattice gas mo
els that have stable quasicrystalline ground states,
Jagla18 found stable quasicrystalline ground states usin
repulsive potential.

Evidence abounds that the quasicrystal state of the bin
Lennard-Jones alloy is stabilized at finite temperatures
configurational entropy. Among the evidence: observation
phason flips in Monte Carlo and molecular dynam
simulations;2,3 calculation of entropy and phason elastic co
stants arising from the ground-state degeneracy when in
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actions are truncated at near neighbors;4 calculation of pha-
son elastic constant proportional to temperature;5,7 and
observation of a low-temperature instability of the quasicr
tal phase.7 Despite this evidence of entropic stabilization
the quasicrystal state, confirmation of the crystallinity at lo
temperatures has remained elusive. Our present work in
tigates the ground states of this model and confirms th
crystalline nature.

II. THE MODEL FOR QUASICRYSTAL STATE

We used the binary Lennard-Jones alloy model introdu
by Lancon, Billard, and Chaudhari1 and independently by
Widom, Strandburg, and Swendsen.2 This model consists of
large and small particles, denoted byL and S, respectively.
Interaction energies favor mixing of unlike particle type
Optimal bond lengths encourage ten small particles to s
round a large particle and five large particles to surroun
small particle, hence favoring tenfold symmetry in the qu
sicrystal. Mathematically, the interaction potentials betwe
particles of typesa andb are

Vab~r !5Eab@~sab /r !122~sab /r !6#, ~1!

where the interaction energies areELS51, ELL5ESS51/2
and the optimal bond lengths aresLS51, sLL52 sin 36°,
sSS52 sin 18°. The total energy of a configuration ofN par-
ticles is

Etot5
1

2 (
iÞ j 51

N

Va( i )b( j )~r i j ! ~2!

with a( i ) andb( j ) indicating the types of particlesi and j.
We use the unitsT* 5kBT/ELS andU* 5Etot /ELS . We de-
note the numbers of large and small particlesNL and NS ,
and define the composition variable

x[
NS

NS1NL
. ~3!

Our goal is to determine the ground state structure as a fu
tion of x.

Low energy configurations of this model cover the pla
with tile structures~see Fig. 1!. We may describe these til
ings using a primitive set of ‘‘thin’’ 36° and ‘‘fat’’ 72° rhom-
bus tiles known as ‘‘binary tiles.’’3,4 The numbers of smal
©2001 The American Physical Society01-1
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and large particles relate to the numbers of thin and
rhombi (NT andNF) through the linear equation

S NL

NS
D 5S 3/5 1/5

2/5 4/5D S NF

NT
D . ~4!

Since fat and thin tiles occur in the ratio oft:1 in a structure
with tenfold symmetry, Eq.~4! determines the ideal quasic
rystal composition

xQ5
2

t12
50.552786 . . . , ~5!

wheret5(A511)/251.61803 . . . is thegolden mean.
Alternatively, we may take certain groups of binary til

that form larger ‘‘hexagon,’’ ‘‘boat,’’ and ‘‘star’’ tiles~see
Fig. 1!. Every binary rhombus tiling may be reexpressed a
hexagon-boat-star tiling. The hexagonal tile contains o
large and two small particles and is formed by putting
gether one fat rhombus and two thin rhombi. The boat
contains two large and two small particles and is formed
putting together three fat rhombi and one thin rhombus. T
star tile contains three large and two small particles an
formed by putting together five fat rhombi. The linear re
tionship between the number of large and small particles
the number of hexagon, boat, and star tiles is

S NL

NS
D 5S 1 2 3

2 2 2D S Nhex

Nboat

Nstar

D . ~6!

In particular, the composition of a pure boat tiling isxB
51/2 and the composition of a pure hexagon tiling~see Fig.
2! is xH52/3. Pure star tilings do not exist. Because Eq.~6!

FIG. 1. Fat and thin binary rhombus tiles decorated with la
and small particles. Rhombi combine to form hexagon, boat,
star tiles.

FIG. 2. Configurations that forms the convex hull, unit ce
form with boat tiles@B# and hexagonal tiles@H# are drawn in bold
lines.
22420
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is not invertable, there exists no fixed ratio
Nhex:Nboat:Nstar at the quasicrystal compositionXQ .

This model exhibits a highly degenerate ground st
when the potentials are truncated at nearest neighbors.2,4 The
degeneracy is given by the number of distinct ways to tile
plane with hexagons, boats, and stars. Consequently, the
ground state depends sensitively on how we treat the lo
range tail of the potential. For this paper we address the
untruncated, Lennard-Jones interaction defined in Eq.~1!,
and all of our reported ground-state energies are calculate
this manner. In order to evaluate the energies numerica
we carry the summation in Eq.~2! explicitly out to suffi-
ciently larger that the energy per particleEtot /N converges
to 1027.

To study the model at low temperatures, we calculated
energy of many structures at a large number of compositi
around the quasicrystal composition. The convex hull19 of a
plot of energy per particle versus composition aids in de
mination of the composition-dependent ground state. S
pose (x1 ,E1) and (x2 ,E2) are consecutive vertices of th
convex hull withx1,x2. Then the ground state energy of
structure of compositionx betweenx1 andx2 is given by the
tie line

E~x!5E11
E22E1

x22x1
~x2x1!. ~7!

Typically this energy will be achieved by phase separation
the N particles into a region of space containing

N15
x22x

x22x1
N, ~8!

N25
x2x1

x22x1
N ~9!

particles of phase 1 and phase 2, respectively. For finiteN,
Eq. ~7! serves as a lower bound on the energy. Generally
interface between the two phases raises the total en
above the tie line. AsN→`, the interfacial energy costper
particle vanishes.

III. MONTE CARLO SIMULATION AND ENERGY
MINIMIZATION

To find the ground-state energies, we confined our p
ticles to a parallelogram with periodic boundary conditio
in thermal equilibrium with an empty box and performe
Monte Carlo simulations.20 In addition to simulating the in-
dividual particles’ continuous motion in space using the M
tropolis algorithm, our Monte Carlo moves allowed for thr
particle flip moves,2 changes in the box volumes while kee
ing the sum of the volumes of boxes constant, and change
the angle and aspect ratio of the periodic boundary con
tions. The empty box maintains zero pressure for our sim
lation. In principle, systems at nonzero temperature w
eventually evaporate at zero pressure. Our simulations
not show evaporation, partially because of the finite to
volume. That is, the pressure is exceedingly low but not tr
zero.
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We systematically performed simulations at all compo
tions x containingN<45 particles per cell over the compo
sition rangexB50.5<x<xH50.666 . . . . For compositions
in the range 0.53061<x<0.5689 we did additional simula
tions at all compositions containingN<65 particles. At ev-
ery composition, 80–200 low-energy configurations were
laxed using conjugate gradient minimization. For fin
temperature Monte Carlo simulations we truncate the po
tial at 4sLL for the sake of computational efficiency. How
ever, the full long range interaction was included in all su
sequent conjugate gradient relaxations. Conjugate grad
minimizations ran until energies converged to 531025.

In addition to systematically searching for low-ener
configurations using simulations, we constructed several c
didate low-energy configurations by hand, then used co
gate gradient minimization to find low-energy states close
these configurations.

The freezing temperature for our system is betweenT*
50.3 and 0.18. We did simulations of 55 000 MCS
~MCS/P means Monte Carlo stepsper particle! starting from
the liquid state and cooling fromT* 50.3 to 0.18, followed
by 30 000 MCS/P cooling fromT* 50.18 to 0.08 and 15 000
MCS/P cooling fromT* 50.08 to 0.01. An annealing schem
was determined dynamically by requiring that the energy h
tograms overlap to within 1/n standard deviations,n repre-
sents the degree of annealing. We setn52 betweenT*
50.3 and 0.18,n53 betweenT* 50.18 and 0.08, andn
51 betweenT* 50.08 and 0.01. All configurations of
given N and composition are obtained from a single cooli
run. However, there are many different low-energy config
rations for each single run due to the phason flips.

IV. RESULTS

We found over a hundred low-energy configuratio
~within an energy of about 0.1 of the tie-line energy!, which
are plotted in an energy-composition plot in Figs. 3 and
By comparing these energy states, we could identify

FIG. 3. Plot of energy per particle versus particle compositi
Squares show the points on the convex hull and diamonds s
low-energy configurations of a quasicrystal approximant at com
sition xA . Bands of high-energy points originated from configur
tions that have vacancies or substitutional defects.
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stable crystalline states from the convex hull of the ener
composition plot. There is a band of relatively high-ener
configurations in Fig. 3. These are configurations with vac
cies or substitutional defects, and hence are not tilings of
plane by decorated binary tiles.

Crystalline configurations that form the convex hull a
shown in Figs. 2 and 5. The simplest configurations form
the convex hull are those with one boat tile@B# (xB51/2) or
one hexagonal tile@H# (xH52/3) as the unit cell~see Fig. 2!.
The remaining configurations that lie on the convex hull a
shown in Fig. 5. Equal proportions of boat tiles and hexa
nal tiles can be mixed to obtain the@BH# structure at com-
position xBH54/750.571428. Mixing two@BH# unit cells
and two B unit cells produces another point on the conv
hull with a unit cell of @2~BBH!# at compositionx2[BBH]
56/1150.545454 . . . . It seems that there is no way to til
the plane with just a single@BBH# per unit cell, hence the

.
w
-

FIG. 4. Plot showing details of low-energy compositions ne
the quasicrystal composition.

FIG. 5. Configurations that form the convex hull, unit cells th
form with boat tiles@B# and hexagonal tiles@H#, are drawn in bold
lines.
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need to double the cell. The last point on the convex h
mixes the@2~BBH!# unit cell with the@BH# unit cell to create
@2~BBH!~BH!# at composition x516/2950.551724 . . . ,
which is rather close to the quasicrystal composition (xQ
50.55278 . . . ).

Let us point out several compositions that do not app
on the convex hull. We considered the mixtur
@~BBH!~BH!# and @2~BBH!2~BH!#, both at x
55/950.5555 . . . , butwere unable to find any structure o
the convex hull. We also considered@~H!~BH!#,
@2~BBH!2~B!# and @2~BBH!~B!#, again failing to find any
structure on the convex hull.

Of special note is the effort we made very close to
ideal quasicrystal composition. We used a unit cell of 1
particles containing 84 small particles and 68 large partic
to approximate the quasicrystal state. The composition
this special quasicrystal approximant unit cell isxA
584/15250.552 632, which is just slightly less than th
ideal quasicrystal composition given in Eq.~5!. We did three
independent simulations to anneal this quasicrystal appr
mant. As before, 80–200 states~from each run! were used as
the input for conjugate gradient minimizations. The low
energy configuration found in each of these three run
plotted on Figs. 3 and 4.

The lowest energy configurations we identified at t
composition are shown as black diamonds in the convex
plots. These configurations all tile the plane with 16 he
gons and 26 boats. The lowest energy found lies aboutDE
50.005 per particle above the tie line. Given the entropy
particle S50.193 available from phason fluctuations,4 we
can estimate that this approximant could be entropically
bilized above temperatureT5DE/S50.026. Assuming thes
values are representative of the ideal quasicrystal comp
tion, we obtain a rough estimate of the temperature at wh
y

e
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a crystal to quasicrystal transition might occur in our mod
Crystals containing star tiles~S! are conspicuously miss

ing from the convex hull. It appears that points on the c
vex hull contain only B and H tiles. Some of the structu
lying above the convex hull do contain star tiles but th
can be considered as grain boundary defects between
free crystalline domains.

V. CONCLUSIONS

According to the convex hull, at compositionxQ the
ground state of an infinite system is a pair of coexist
crystal phases. The system should phase separate into a
talline domain@2~BBH!~BH!# and a crystalline domain o
@BH#. Because@2~BBH!~BH!# is so much closer in compos
tion to the ideal quasicrystal than@BH# is, the largest fraction
of particles

N[2(BBH)(BH)]

N
5

x[BH] 2xQ

x[BH] 2x[2(BBH)(BH)]
50.946 ~10!

will form the phase@2~BBH!~BH!#. Since the true ground
state is crystalline, the thermodynamically stable quasicry
state in the binary Lennard-Jones alloy must be stabilize
entropy. Now that the ground state has been identified, it
be possible to examine the transition from the crystal
ground state into the high-temperature quasicrystal s
through further computer simulations.
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