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Stability analysis of polarized domains
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~Received 4 November 1996!

Polarized ferrofluids, lipid monolayers, and magnetic bubbles form domains with deformable boundaries.
Stability analysis of these domains depends on a family of nontrivial integrals. We present a closed-form
evaluation of these integrals as a combination of Legendre functions. This result allows exact and explicit
formulas for stability thresholds and growth rates of individual modes. We also evaluate asymptotic behavior
in several interesting limits.@S1063-651X~97!14503-2#

PACS number~s!: 68.18.1p, 75.70.Kw, 75.50.Mm, 02.30.Gp
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Stability analysis predicts the evolution of cylindrical p
larized domains in many systems, including magne
bubbles @1#, ferrofluid labyrinths @2,3#, and amphiphilic
Langmuir monolayers@4,5#. In all these contexts the sam
family of nontrivial integrals arises. We evaluate these in
grals in closed form in terms of Legendre functions. O
closed-form solution allows explicit analytic expressions
stability thresholds and individual mode growth and dec
rates. We also present asymptotic behavior of the integra
interesting limits such as large aspect ratio, or high spa
frequency.

Let us briefly describe one particular physical syste
Consider an initially circular~radiusR! droplet of ferrofluid
@6# trapped between two parallel glass plates, separated
distanceh. A convenient measure of the droplet shape
given by the aspect ratio

p52R/h. ~1!

Apply a uniform magnetic field perpendicular to the plate
Varying the magnetic field alters the balance between m
netic interactions and surface forces. We measure the rela
strength of magnetic and surface forces through the dim
sionless magnetic Bond number

NB5
2M2h2

g
, ~2!

whereM is the magnetization andg the line tension~essen-
tially h times the surface tension!.

Jackson, Goldstein, and Cebers@3# calculated the growth
~or decay! rate of small time-dependent perturbationsz in the
radiusR of the initially circular droplet. They model the
global fluid flow and energy dissipation using Darcy’s la
Let z(f,t);exp(snt)cos(nf), wheref represents the pola
angle ~Fig. 1!. The growth ratesn of the perturbation by
moden is @3#

sn5S hgn

12hR3D @~12n2!1NBDn~p!#. ~3!

Dn(p), which depends on mode numbern and aspect ratiop
but not on the magnetization, is the complicated integral
will analyze below.h is the ferrofluid viscosity. An alternate
dynamical model@2#, in which energy dissipates locally o
the boundary, involves the same integralDn(p).
551063-651X/97/55~3!/3758~4!/$10.00
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Now we grapple with the integral. Write

Dn~p!5S 1xD $@ I n~0!2I 1~0!#2@ I n~x!2I 1~x!#%, ~4!

where

I n~x!5E
0

p/2 sin2nv

Ax1sin2v
dv, x5

1

p2
. ~5!

This integral is proportional to the magnetic energy when
circular droplet is perturbed by moden. It is derived from a
double integral around the perturbed boundary~v5f2f8 is
the angular separation of points on the boundary!. In the late
1960s Thiele@1# derived a number of useful results on th
asymptotic behavior of the integralI n(x) in his study of
magnetic bubble stability. Nevertheless, only a system
expansion ofI n(x) as a function of the small parameterx has
been obtained, an indirect approach that requires the us
recursion relations and power series expansions. Even m

FIG. 1. Schematic representation of an initially circular ferr
fluid droplet of radiusR ~solid curve! and its perturbation byz for
then55 mode~dashed curve!. The angular location of points on th
boundary is given byf. The droplet volume is kept constant, sinc
the fluid is incompressible.
3758 © 1997 The American Physical Society
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55 3759BRIEF REPORTS
recent publications@2–5# use a similar approach. It would b
useful to find an explicit closed form solution forI n(x).

To evaluate the integralI n(x) in Eq. ~5!, substitute
sin2(nv)51

2@12cos(2nv)# and change variables tou52v.
The utility of the substitution is evident from inspecting th
integral representation for the Legendre function of the s
ond kind @7#,

Qn21/2~z!5
1

&
E
0

p cosnu

Az2cosu
du, Re~n!.2

1

2
, z.1.

~6!

We find a simple and compact expression for the solution
the integralI n(x),

I n~x!5 1
2 @Q21/2~2x11!2Qn21/2~2x11!#. ~7!

To get closed-form expression forDn(p) we need evalu-
ate the integralsI n(x) at x50. To accomplish this, we ex
pandQn21/2(2x11) nearx50,

Qn21/2~2x11!'F2C2
1

2
lnS x

x11D2cS n1
1

2D G
1F ~12C!2

1

2
lnS x

x11D2cS n1
1

2D G
3S 4n221

4 D x1O~x2!, ~8!

where Euler’s psi functionc is the logarithmic derivative of
the Gamma function@8# andC is Euler’s constant. Only the
lowest-order term contributes toI n~0!, but we will need the
first order term in our later discussion. Thus

I n~0!5 1
2 @c~n1 1

2 !2c~ 1
2 !#, ~9!

and finally we rewrite Eq.~4! as

FIG. 2. Dimensionless growth rates̄n @see Eq.~11! in the text#
for mode numbers 2<n<6, as a function of the magnetic Bon
numberNB . The aspect ratiop520. Notice that for eachn there
exists a critical Bond number~when s̄n50! and for each value of
NB there is a fastest growing moden* .
c-

o

Dn~p!5
p2

2 H FcS n1
1

2D2cS 2
1

2D G
1FQn21/2S p212

p2 D2Q1/2S p212

p2 D G J . ~10!

This is our central result, yielding exact explicit dependen
of mode growth rates on Bond numberNB , mode numbern,
and aspect ratiop.

Figure 2 illustrates the mode growth rate as a function
magnetic Bond numberNB for several mode numbersn. We
plot the dimensionless growth rate

s̄n5S 12hR3

hg Dsn , ~11!

with sn defined as in Eq.~3!. The aspect ratio is held fixed a
p520. Note that moden50 is meaningless because of th
constraint of constant volume, while moden51 is just a
spatial translation, so we consider onlyn>2. Moden goes
unstable when its growth ratesn vanishes, at critical Bond
number

NB*5
~n221!

Dn~p!
. ~12!

The first mode to go unstable as Bond number increase
n52. However, if the magnetic Bond number is sudden
increased to a value beyond then52 threshold, the fastes
growing moden* may have a value greater than 2.

In Fig. 3 we plot the behavior ofNB* in terms of the ratio
n/p. This ratio is proportional to the spatial wave vectork of
the perturbation. In particular, the wave vectork5n/R and
we find

n

p
5
kh

2
. ~13!

It appears in Fig. 3 that all curves~2<n<15! converge to a
limiting function as the value ofn increases. For largen and
p, NB* becomes a function only of the ration/p. Below we
analyze in more detail the asymptotic behavior for largen
andp.

FIG. 3. Critical Bond numberNB* for 2<n<15, as a function of
the ratio n/p. All curves are obtained exactly, combining th
closed-form expression in Eq.~10! with Eq. ~12!.
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In many practical situations, the aspect ratiop or the
mode numbern assume large values@2–5#, so we calculate
asymptotic expansions taking advantage of the closed-f
expression forDn(p) derived above. First consider largen
andp, for fixed ration/p. Use the asymptotic limit@8#

lim
n→`

Qn21/2FcoshS qnD G5K0~q!, ~14!

whereK0(q) is the modified Bessel function of order zer
and set

q5n cosh21S 11
2

p2D'
2n

p
1OS np3D . ~15!

Note that

lim
n→`

c~n1 1
2 !' ln~n!, ~16!

to get

Dn~p!'
p2

2 H lnS npD1K0S 2np D1CJ . ~17!

This result is quite general, being valid for large values op
andn, providedn/p is kept finite. A related expression ma
be found in Ref.@2#.

From Eq. ~12! for the critical Bond numberNB* and
asymptotic expansion~17! for Dn(p) we find

NB*'
~n/p!2

1
2 $ ln~n/p!1K0~2n/p!1C% . ~18!

As expected~see Fig. 3! NB* is a function only of the ratio
n/p. The Bessel functionK0 simplifies for small or large
arguments. In particular, the limit of smalln/p yields

NB*'
1

1
2 $12C2 ln~n/p!% , ~19!

while in the opposite limit of largen/p,

NB*'
~n/p!2

1
2 $ ln~n/p!1C% . ~20!

Next consider the situation in whichp is large, but no
assumption is made regarding the value ofn. This limit is
relevant, for example, to the critical Bond number of mo
n52, in the limit of large aspect ratio. Typical values ofp
range from the optimal value for magnetic bubbles@9# p52
through a couple of orders of magnitude for ferrofluid th
films @10# and reach as high asp5104 for lipid monolayers
@5#. The largep limit can be obtained from Eq.~8!, where
the Legendre function of the second kind has been expan
to first order in terms ofx51/p2, resulting in
m

e

ed

Dn~p!'
1

2
~n221!H ln~4p!212

1

4 S 4n221

n221 D
3FcS n1

1

2D2cS 2
1

2D G J , ~21!

valid for arbitraryn. The difference ofc functions in Eq.
~21! replaces the infinite series equation~2.12! in Ref. @4#.
Taking the largen limit of Eq. ~21! agrees with the smal
n/p limit of Eq. ~17!.

We conclude by discussing the flat edge limit. Tseb
and Maiorov@11# studied the threshold for instability when
thin layer of a magnetic liquid is placed in a homogeneo
magnetic field perpendicular to the layer. The interface is
with a small perturbation of wave vectork. To get this flat
edge limit from our cylindrical geometry, we take radiu
R→` at fixedh. Fixed wave vectork implies n andp→`
with fixedn/p as in our asymptotic expansion equations~17!
and~18!. Therefore, replacingn/p with the wave vectork as
in Eq. ~13! we obtain

NB*'
~kh!2

2$ ln~kh/2!1K0~kh!1C%
. ~22!

This result agrees with the prediction of Tsebers a
Maiorov @11# in zero gravity.

Still considering the flat edge limit cited above, we exa
ine the expression for the mode growth rate,

s~k!'S gk

12hhD H 2NBF lnS kh2 D1K0~kh!1CG2~kh!2J .
~23!

Taking the limit in which the wavelengths are large com
pared to the slab thickness~kh!1!, we expand the Besse
function K0 in Eq. ~23! to the second order inkh. In this
limit, the critical wave numberkc @defined by settings(k)
50# is

kc'
2

h
e12Ce22/NB, ~24!

and the fastest growing modek* @defined by setting
ds(k)/dk50# is

k*'
2

h
e~2/3!2Ce22/NB. ~25!

Comparing Eqs.~24! and~25! we see that the ratio of spatia
frequencies between the critical and the fastest grow
mode is

kc
k*

5e1/3. ~26!

This result agrees with McConnell@12#, who used a simple
hydrodynamic model to study dynamical stability analysis
a straight edge on a large lipid monolayer domain.
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Sphéroidales, Tome II and III ~Gauthier-Villars, Paris, 1959!.
@8# W. Magnus, F. Oberhettinger, and R. P. Soni,Formulas and

Theorems for the Special Functions of Mathematical Phys
~Springer-Verlag, New York, 1966!; I. S. Gradshteyn and I. M.
Ryzhik, Table of Integrals, Series, and Products~Academic
Press, New York, 1994!.

@9# A. A. Thiele, Bell Syst. Tech. J.50, 725 ~1971!.
@10# A. G. Boudouvis, J. L. Puchalla, and L. E. Scriven, J. Collo

Interface Sci.124, 688 ~1988!.
@11# A. O. Tsebers and M. M. Maiorov, Magnetohydrodynami

16, 126 ~1980!.
@12# H. M. McConnell, J. Phys. Chem.96, 3167~1992!.


