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Stability analysis of polarized domains
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Polarized ferrofluids, lipid monolayers, and magnetic bubbles form domains with deformable boundaries.
Stability analysis of these domains depends on a family of nontrivial integrals. We present a closed-form
evaluation of these integrals as a combination of Legendre functions. This result allows exact and explicit
formulas for stability thresholds and growth rates of individual modes. We also evaluate asymptotic behavior
in several interesting limit4.51063-651X97)14503-3

PACS numbegps): 68.18+p, 75.70.Kw, 75.50.Mm, 02.30.Gp

Stability analysis predicts the evolution of cylindrical po-  Now we grapple with the integral. Write
larized domains in many systems, including magnetic
bubbles [1], ferrofluid labyrinths[2,3], and amphiphilic
Langmuir monolayer$4,5]. In all these contexts the same Dy(p)=
family of nontrivial integrals arises. We evaluate these inte-
grals in closed form in terms of Legendre functions. Our
closed-form solution allows explicit analytic expressions for
stability thresholds and individual mode growth and decay
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where

rates. We also present asymptotic behavior of the integrals in | [ sirfno 1

) R : . . a(X)= ———do, X==. (5)
interesting limits such as large aspect ratio, or high spatial 0 JX+tsirfe p

frequency.

Let us briefly describe one particular physical system-rs integral is proportional to the magnetic energy when the
Consider an initially circulatradiusR) droplet of ferrofluid  icular droplet is perturbed by mode It is derived from a
[(_5] trapped between two parallel glass plates, separated b_ydbuble integral around the perturbed boundasy: ¢— ¢' is
d!stanceh. A convenlel_"nt measure of the droplet shape isy,a angular separation of points on the boungdrythe late
given by the aspect ratio 1960s Thiele[1] derived a number of useful results on the
p=2R/h (1) asymptotic behavior of the integrd)(x) in his study of
’ magnetic bubble stability. Nevertheless, only a systematic

Apply a uniform magnetic field perpendicular to the plates.€xpansion of,(x) as a function of the small parametehas
Varying the magnetic field alters the balance between magPeen obtained, an indirect approach that requires the use of
netic interactions and surface forces. We measure the relativcursion relations and power series expansions. Even more
strength of magnetic and surface forces through the dimen-
sionless magnetic Bond number
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whereM is the magnetization ang the line tensior(essen-
tially h times the surface tensipn

Jackson, Goldstein, and Ceb¢8§ calculated the growth
(or decay rate of small time-dependent perturbatidhis the
radius R of the initially circular droplet. They model the
global fluid flow and energy dissipation using Darcy’s law.
Let (¢,t) ~exp(oat)coshe), whereg represents the polar
angle (Fig. 1). The growth rates,, of the perturbation by
moden is [3]

hyn )
7=\ 12,R8 [(1—=n%)+NgDy(p)]. €
Dy(p), which depends on mode numbeand aspect ratip FIG. 1. Schematic representation of an initially circular ferro-

but not on the magnetization, is the complicated integral wejuid droplet of radiusR (solid curve and its perturbation by for
will analyze below.7 is the ferrofluid viscosity. An alternate then=5 mode(dashed curve The angular location of points on the
dynamical mode[2], in which energy dissipates locally on boundary is given byp. The droplet volume is kept constant, since
the boundary, involves the same intedfal(p). the fluid is incompressible.
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FIG. 2. Dimensionless growth rate, [see Eq(11) in the texi

for mode numbers £n<6, as a function of the magnetic Bond

numberNg . The aspect ratip=20. Notice that for eacim there
exists a critical Bond numbédmwhen o,=0) and for each value of
Ng there is a fastest growing modé .

recent publicationg2—5] use a similar approach. It would be

useful to find an explicit closed form solution fog(x).
To evaluate the integral,(x) in Eq. (5), substitute
sirf(nw) =31—cos(2hw)] and change variables t6=2w.
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FIG. 3. Critical Bond numbeN§ for 2<n=<15, as a function of
the ratio n/p. All curves are obtained exactly, combining the
closed-form expression in E¢LO) with Eq. (12).
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The utility of the substitution is evident from inspecting the This is our central result, yielding exact explicit dependence
integral representation for the Legendre function of the secof mode growth rates on Bond numbeg, mode numben,

ond kind[7],
Qn1A2) lfw CONY 4o Ren)>—s. o1
12 =— | ——d#, n>-—, z>1.
vz v2 Jo \Jz—cow 2
(6)

and aspect rati@.

Figure 2 illustrates the mode growth rate as a function of
magnetic Bond numbeXg for several mode numbers We
plot the dimensionless growth rate

L= o (11
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We find a simple and compact expression for the solution to

the integrall ,(x),

In()=32[Q_12(2x+1) = Qq_1(2x+1)]. (7)

To get closed-form expression fér,(p) we need evalu-
ate the integrals$,(x) at x=0. To accomplish this, we ex-
pandQ,_q(2x+1) nearx=0,

1 X 1
Qn1/2(2X+1)~{—C—§In<m —zﬁ(n+§)
1 1)
+ (1_C)_§|n m —(T// n+§
4n%—1 ,
X( 2 X+ O(x%), (8)

where Euler’s psi function is the logarithmic derivative of
the Gamma functiofi8] andC is Euler’s constant. Only the
lowest-order term contributes 1q(0), but we will need the
first order term in our later discussion. Thus

1n(0)=3[¢(n+3)—y(3)], 9

and finally we rewrite Eq(4) as

with ¢, defined as in Eq3). The aspect ratio is held fixed at
p=20. Note that mod&=0 is meaningless because of the
constraint of constant volume, while mode=1 is just a
spatial translation, so we consider om2. Moden goes
unstable when its growth ratg, vanishes, at critical Bond
number

*_(nz—l)

5= Dop) 12
The first mode to go unstable as Bond number increases is
n=2. However, if the magnetic Bond number is suddenly
increased to a value beyond the=2 threshold, the fastest
growing moden* may have a value greater than 2.

In Fig. 3 we plot the behavior dfi§ in terms of the ratio
n/p. This ratio is proportional to the spatial wave vedtaf
the perturbation. In particular, the wave vecksrn/R and
we find

n kh 13

p_ 2 . ( )
It appears in Fig. 3 that all curvé@<n=<15) converge to a
limiting function as the value af increases. For large and
p, N§ becomes a function only of the rativp. Below we
analyze in more detail the asymptotic behavior for lange
andp.
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In many practical situations, the aspect rafioor the
mode numben assume large valug¢2-5|, so we calculate

asymptotic expansions taking advantage of the closed-form

expression forD,(p) derived above. First consider large
andp, for fixed ration/p. Use the asymptotic limit8]

o]

whereKy(q) is the modified Bessel function of order zero,
and set

lim Qp-1/7 =Ko(a), (14

n—o

=n cosh'!| 1+ 2 ~2n+0 n) (15)
a P’/ p p®/’
Note that
lim (n+ 3)~In(n), (16)
n—oo
to get
D, p2 | n K 2n C 1
n(P)~ > N5 T Kol 5 ) T€- 17

This result is quite general, being valid for large valueg of
andn, providedn/p is kept finite. A related expression may
be found in Ref[2].

From Eqg. (12) for the critical Bond numbemlN§ and
asymptotic expansiofiL7) for D,(p) we find

N (n/p)?
3{In(n/p)+Ky(2n/p)+C} -

*
B

(18)

As expectedsee Fig. 3 N§ is a function only of the ratio
n/p. The Bessel functiorK, simplifies for small or large
arguments. In particular, the limit of smaifp yields

Ng ~ !
H1-C—In(n/p)} (19
while in the opposite limit of large/p,
PO )
3{In(n/p)+C}- (20)

Next consider the situation in which is large, but no
assumption is made regarding the valuenofThis limit is

BRIEF REPORTS

55
1 1(4n?-1
Dy(p)~ 5 (N*=1)1In(4p)—1— 7 | >
243
Xt v =gl 2

valid for arbitraryn. The difference ofiy functions in Eq.
(21) replaces the infinite series equati@12 in Ref. [4].
Taking the largen limit of Eq. (21) agrees with the small
n/p limit of Eq. (17).

We conclude by discussing the flat edge limit. Tsebers
and MaioroV{ 11] studied the threshold for instability when a
thin layer of a magnetic liquid is placed in a homogeneous
magnetic field perpendicular to the layer. The interface is flat
with a small perturbation of wave vecttér To get this flat
edge limit from our cylindrical geometry, we take radius
R—oo at fixed h. Fixed wave vectok impliesn and p—
with fixed n/p as in our asymptotic expansion equati¢hs)
and(18). Therefore, replacing/p with the wave vectok as
in Eq. (13) we obtain

(kh)?

N5~ 2{In(kh/2) +Ko(kh)+ C} -

(22

This result agrees with the prediction of Tsebers and
Maiorov [11] in zero gravity.

Still considering the flat edge limit cited above, we exam-
ine the expression for the mode growth rate,

Y

RLRIPN
nh ®

12

+ Ko(kh)+c} —(kh)?}.
(23

kh
a(k)~( |n<7

Taking the limit in which the wavelengths are large com-
pared to the slab thicknegkh<1), we expand the Bessel
function K in Eq. (23) to the second order ikh. In this
limit, the critical wave numbek,. [defined by settingr(k)
=0]is

2
ke~ el Ce2Ng, (24)

and the fastest growing mod&* [defined by setting
do(k)/dk=0] is

k* ~ % e(2/3)7Ce72/NB. (25)

Comparing Eqgs(24) and(25) we see that the ratio of spatial
frequencies between the critical and the fastest growing
mode is

relevant, for example, to the critical Bond number of mode

n=2, in the limit of large aspect ratio. Typical values pf
range from the optimal value for magnetic bubbl@sp=2

through a couple of orders of magnitude for ferrofluid thin

films [10] and reach as high gs=10" for lipid monolayers
[5]. The largep limit can be obtained from Eq8), where

Ke
_C_ 91/3.

k* - (26)

This result agrees with McConnglL2], who used a simple

the Legendre function of the second kind has been expanddt/drodynamic model to study dynamical stability analysis of

to first order in terms ok=1/p?, resulting in

a straight edge on a large lipid monolayer domain.
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