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Cluster-based Monte Carlo simulation of ferrofluids

S. W. Davis, W. McCausland, H. C. McGahagan, C. T. Tanaka, and M. Widom
Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

~Received 4 September 1998!

We demonstrate a Monte Carlo algorithm for efficiently simulating ferrofluids. By identifying particle
clusters and evolving them as single units, we reduce correlation times by more than two orders of magnitude.
This method enables accurate calculations of ferrofluid thermodynamics in the limit of strong magnetic cou-
pling that would be impossible by conventional means. We apply the method to study magnetic anisotropy in
dilute thin films.@S1063-651X~99!05702-5#

PACS number~s!: 02.70.Lq, 61.20.Ja, 75.50.Mm, 75.70.Ak
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I. INTRODUCTION

Ferrofluids @1# are colloidal suspensions of nanomete
scale magnetic particles. When the magnetic interactions
tween particles are stronger than thermal energy, the
ticles aggregate into chains@2#, with the magnetic moment o
each particle pointing towards a neighbor along the ch
~see Fig. 1!. Theoretical analysis of liquid state thermod
namics in this interesting state is difficult. Weak magne
coupling expansions are not accurate because particle
are tightly bound@3#. Virial expansions@4–6# in low particle
density are not adequate either, because chain formatio
inherently a many-particle correlation. While there is ho
for analytic progress using concepts of ‘‘living polymers
@5,7#, it is important to test such approximate theories w
computer simulation.

Traditional Monte Carlo computer simulation, likewise,
difficult when particle chains form@8#. The problem is that
the strong attraction of particles within a chain requires v
small particle steps to achieve a reasonable ratio of acce
steps. Large-scale translations, rotations, and undulation
the chains, which are an important factor in determining s
important thermodynamic quantities as the magnetic sus
tibility, are poorly simulated using only independent sm
displacements of each particle. Evidence of the difficulty
evident in Table I, showing the growth of correlation tim
as temperature drops.

This paper explores cluster-based enhancements to
traditional Monte Carlo technique that identify particle clu
ters and evolve them as entire units. Similar ideas have
viously been employed in simulations of strongly interacti
ionic fluids @9#. We describe how to combine tradition
single-particle steps with multiparticle steps, while mainta
ing detailed balance. We employ cluster moves for speed
to speed magnetization reversal and chain translation.
results show that cluster-based algorithms are of substa
utility, speeding equilibration of internal energy by a fact
of 2 ~in CPU time!, and speeding equilibration of magne
zation by a factor of 360. As a result we achieve qui
accurate calculations of susceptibility that are difficult w
conventional techniques.

After establishing the utility of cluster-based Monte Ca
simulations, we apply the method to examine magnetic
isotropy in ferrofluid thin films. Macroscopic thin films ex
hibit effective anisotropy due to demagnetization effects. M
PRE 591063-651X/99/59~2!/2424~5!/$15.00
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croscopic thin films exhibit dramatically enhance
anisotropy ~see Table I! due to confinement of cluster
within a plane.

II. MODEL AND ALGORITHMS

We model the ferrofluid as a gas of dipolar hard sphe
@10#. Each sphere has diametera and magnetic momentm.
One defines a reduced temperatureT!5kBTa3/m2 and a re-
duced densityr!5ra3. The dipole moment of particlei is a
three dimensional vectormi , and the dipole interaction falls
off as 1/r 3. To avoid the difficulty of summing the dipole
interaction in three-dimensional space@11#, we choose to
confine our particle positionsr i to a two-dimensional plane
Ewald summation and special boundary treatment is th
fore not needed. We employ the ‘‘minimum image’’ conve
tion for periodic boundary conditions so that each parti
interacts with the nearest image of every other particle.
addition to simplifying our treatment of the long-range dip
lar interaction, this pseudo-two-dimensional geometry allo
us to test a theory of magnetic anisotropy in thin films@5#. A
related model, in which the dipole moment also is co
strained to the plain, has been examined by Weis@12#.

We use the Metropolis Monte Carlo method@13#, follow-
ing a Markov chain through configuration space. Each Mo
Carlo step is accepted with probability 1 if the resulting e
ergy change DE,0, and accepted with probability
exp(2DE/kBT) otherwise. This method produces the corre
equilibrium ensemble in the limit of infinite simulation tim
when certain conditions are met: the simulation must be
godic, so all configurations can be reached, in principle;
tempted steps obey detailed balance, so no bias other
energy influences the distribution of configurations.

These conditions are met by a conventional algorit
consisting of two types of Monte Carlo steps: random
choose a particle, and attempt to move it through a rando
chosen small displacement; randomly choose a particle
attempt to rotate it by a randomly chosen angle about a
domly chosen axis. The difficulty with this technique is th
rate at which thermodynamic properties converge to th
long time limit. Consider a particle within a chain at a tem
perature such thatT!!1. In order for steps and rotations t
be accepted with probability near 0.5~as is the case for the
runs in Table I! their size must be very small at low temper
tures: step sizes fall off proportionally toT!, while rotation
2424 ©1999 The American Physical Society
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angles fall off likeAT!. Such small displacements and rot
tions do not significantly alter the positions and orientatio
of chains, or the distribution of chain lengths.

In the following we shall refer to correlation times in uni
of Monte Carlo steps~MCS’s!. One MCS in the conven
tional algorithm denotesN attempted particle moves andN
attempted particle rotations; i.e., the typical time in whi
each particle has a chance to move and rotate once. Note
it takes a time of orderN to evaluate potential energy for
single particle, so the CPU time for one MCS grows likeN2.
Algorithms exist@14# that reduce this exponent but they a
not efficient for the numbers of particles considered in t
paper. ForN5100 particles one conventional MCS tak
time t'0.2 sec on a 50 MHz SPARC 10 work station. W
find correlation times~see Table I! in excess of 105 MCS at
low temperatures, meaning it requires over 5 h to generate
each independent configuration.

We supplement this conventional method with additio
Monte Carlo steps designed to accelerate motion through
configuration space. Because we only seek thermodyna
information from our simulation, we may exploit nonphys
cal dynamics provided the proper equilibrium ensemble
maintained. This possibility is an advantage that Mo
Carlo simulation may enjoy that is not possible within m
lecular dynamics@15#, another important simulation metho
Thus, we introduce a move that reverses the magnetic
ment of each particle within a chain, and a move that tra
lates an entire cluster in a single step. Because interaction
a chain with the remainder of the system are weak compa
to interactions within the chain, each of these moves will
more easily accepted than if we attempted the same m
one particle at a time.

The requirement of detailed balance dictates that the p
ability to make a move, relative to the probability to make
inverse, should depend only on the relative probability
finding the system in the initial and final configurations.
equilibrium this equals exp(2DE/kBT) whereDE is the en-
ergy difference between the two configurations. We cho
to identify our clusters based on proximity of particles
each other. Particlesi and j are in proximity whenur i2r j u
,a1e. Typically we choosee50.2a, corresponding to a
broad minimum in the pair distribution function.

Having identified a cluster, we must ensure that any m
the cluster makes will not prevent finding the inverse mo
at a later time. Particle connectivity must not be alter
There are several ways to enforce this. One possibility is
leave positions unchanged when acting on a cluster. Fo

TABLE I. Temperature dependence of conventional Mon
Carlo correlation times. All runs withN5100 particles at a density
of r!50.3. Correlation timest are 1/e times.L is the mean numbe
of particles per cluster, andxxy andxz are the in- and out-of-plane
susceptibility, respectively.

T! tE tM L xxy xz

1.0 2 5 1.5 0.5 0.20
0.5 8 16 1.8 1.4 0.26
0.3 81 295 3.1 3.7 0.24
0.25 280 3400 5.5 4.7 0.21
0.2 2500 110 000 22.8 7.0 0.17
s

hat

s

l
he
ic

s
e

o-
s-
of

ed
e
ve

b-

f

e

e
e
.

to
u-

nately, reversal of cluster magnetization is an important p
cess that needs to be accelerated but does not alter pa
connectivity. This is the process by which we acceler
equilibration of the magnetization. A second possibility is
move clusters subject to the condition that the new clus
position is at least distancee from any other cluster or par
ticle. This type of cluster move is important for the equi
bration of particle positions and it accelerates the equilib
tion of energy. We have checked that our cluster Mo
Carlo method correctly reproduces the thermodynamic pr
erties calculated by the conventional Monte Carlo method
within our calculated uncertainties.

We identify clusters by comparing all particle position
pairwise. When a connected pair is found, cluster ass
ments of particles are updated, and then the pairwise c
parisons are continued. The time for this algorithm is dom
nated by theN(N21)/2 required comparisons because w
have noa priori knowledge of particle proximity. More ef-
ficient algorithms are possible at the cost of more comp
programming. This algorithm suffices because it rema
within the bound ofN2 time required by the conventiona
method.

Having paid a cost to identify clusters, we attempt ma
cluster moves and reversals to take maximum advantag
our work. Thus we attemptN translations andN reversals of
randomly chosen clusters in each Monte Carlo step of
modified program. This is in addition to theN attempted
moves and rotations of individual particles, which we s
must preform since our cluster method is not by itself
godic. Recall that the cluster moves are purposely non
godic because we forbid cluster attachment in order to p
serve detailed balance. The time for a full Monte Carlo s
still varies asN2, but with a larger coefficient.

Initial configurations for our simulations are created
placing particles on a hexagonal lattice with dipole mome
randomly oriented. Prior to accumulating thermodynam

FIG. 1. Typical chaining configuration.N5300, T!50.2, and
r!50.3. Because clusters extend across boundaries of the simu
cell, a 23 2 supercell is shown.
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and correlation function data the system is equilibrated fo
time large compared to both the duration of the initial tra
sient in internal energy and the largest 1/e time of fluctua-
tions in equilibrium. The system may be regarded as w
equilibrated by this time.

Figure 2 displays time-correlation functions for ener
defined as

gE~ t !5
1

Tsim2t (
s51

Tsim2t

@E~s1t !2Ē#@E~s!2Ē#, ~1!

where E(t) is the total energy of the configuration aftert

Monte Carlo steps andĒ is the mean over the entire simula
tion timeTsim . Data are shown for the conventional simul
tion ~solid line!, a run including magnetization reversals b
not cluster translations~dashed line!, and a run including all
types of Monte Carlo moves~dotted line!. Figure 3 shows
the same for magnetizationM (t). Both figures correspond to
the density and temperature (r!50.3, T!50.2) for which
Fig. 1 shows a typical configuration.

Correlation times and run times are tabulated in Table
We list the 1/e time, rather than the rate of exponential dec
at long times, because this can be calculated more accura
Inspection of Figs. 2 and 3 confirms that trends in 1/e times
reproduce trends in conventional correlation time obtain
from slopes of the logarithm of the correlation function.

Examine first the energy data. The conventional simu
tion requires 2500 MCS to reach its first 1/e decay ofgE .
The magnetization reversal improves matters slightly in u
of MCS, but when the relative run time is factored in, it do
little good. On the other hand, the cluster translations gre
speed equilibration. The 1/e time drops by a factor of 14 in
units of MCS and 2.4 in CPU seconds. Cluster moves a
speed up the approach to equilibrium of configurations
tially far removed from the equilibrium state. At densitie

FIG. 2. Energy autocorrelation functions for convention
Monte Carlo~solid curve!, Monte Carlo with cluster flips~dashed
curve!, and Monte Carlo with cluster flips and moves~dotted
curve!. T!50.2 andr!50.3 as in Fig. 1.
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such that the typical interchain distance is large compare
the size of a chain the speedup of energy equilibration
exceed an order of magnitude measured in CPU second

The improvement is even more dramatic for the magn
zation. In this case, the magnetization reversal and clu
translation together lower the 1/e time by a factor 2000 in
MCS and 360 in CPU seconds. This is because magne
tion of a cluster may be entirely reversed in a single Mo
Carlo step, while it may be nearly unachievable in the co
ventional approach. Acceptance ratios for magnetization
versal not very low, about 0.15, indicating that the typic
energy cost of a cluster reversal is significantly less than
energy cost of reversing a single particle magnetization. T
is expected because different clusters interact only wea
with each other. As a consequence of the reduction intM ,
accurate calculation of magnetic susceptibility becom
practical, even in the presence of chain formation when c
ventional methods require absurdly long runs.

III. MAGNETIC ANISOTROPY

With reliable values for the susceptibility in hand, wh
can we do with the results? Table I reveals growing magn
anisotropy as temperature drops. Particle clustering enha
the in-plane susceptibilityxxy and diminishes the out-of

TABLE II. Comparison of simulation methods:C denotes con-
ventional;F denotes cluster flips;T denotes cluster translation.tmcs

is time on 50 MHz SPARC 10 in units of CPU seconds per Mon
Carlo step. Simulation temperatures all atT!50.2. All other param-
eters as in Table I.

method tE tM tmcs

C 2500 110000 0.22
CF 1300 100 0.65
CFT 180 53 1.26

l FIG. 3. Magnetization autocorrelation functions for the sa
runs as in Fig. 2. Note that the conventional Monte Carlo meth
~solid line! does not decay appreciably over the time scale sho
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PRE 59 2427CLUSTER-BASED MONTE CARLO SIMULATION OF . . .
plane susceptibilityxz . This behavior is also evident in Fig
4 which displays the variation of magnetic susceptibil
with density r! at fixed temperatureT!50.2. We can ex-
plain this effect as a result of chain formation. The followin
discussion presents a semiquantitative analysis.

Isolated, noninteracting, particles exhibit Langevin beh
ior with each particle contributing

x15
m2

3kBT
~2!

to the susceptibility in any direction. One factor ofm arises
from the coupling of each moment to an applied field, wh
the other factor represents the magnetization arising from
aligned moment. The factor of 3 comes because each
ment rotates in a three-dimensional space. For particles
straight chain of lengthL, the chain behaves like an effectiv
particle of dipole moment Lm and contributes
(Lm)2/(2kBT) to xxy . The factor of 2 replaces the factor o
3 because the chain is constrained to lie in thexy plane.
CollectingN particles intoN/L chains of lengthL the result-
ing susceptibility per particle is

xxy'L
m2

2kBT
, ~3!

revealing the enhancement ofxxy due to particle chaining. In
contrast, the out-of-plane susceptibilityxz is reduced by par-
ticle clustering because particles in clusters point towa
each other in thexy plane and cannot easily rotate out of th
plane. We may estimate the susceptibility per particle as

xz'
N1

N
x1 ~4!

FIG. 4. Magnetic susceptibility per particle vs density atT!

50.2. Data points are simulated, with error bars shown where
propriate. Solid and dashed curves are, respectively, second-
and third-order virial expansions. Values greater thanx151.67 cor-
respond toxxy while values below correspond toxz . Inset: mean
chain lengthL vs density.
-
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whereN1 is the number of isolated particles not belonging
clusters.

Both approximations~3! and ~4! provide excellent ap-
proximations to the data in Fig. 4 at low density, belowr!

50.01. At higher densities, chain lengths begin to grow la
compared with the persistence length of the chains. Lo
and branched networks begin to form reducing the susce
bility below the values suggested by Eq.~3!. Likewise, Eq.
~4! breaks down when so few particles remain unbound t
the residualxz contributed by bound particles dominates, a
xz becomes independent of density. Abover!'0.05 the in-
plane susceptibilityxxy reaches a maximum and begins
decrease with increasing density. This may be related to
mation of gel-like connected networks or to phase coex
ence. Further study is needed to clarify this behavior.

The solid and dashed curves are predictions of the m
netic virial expansion@4–6#. The noninteracting Langevin
valuex1 , given by Eq.~2!, is indicated on the vertical axis
The solid lines include the contributions of the second vir
coefficients, and the dashed lines include the contribution
the third virial coefficients@4–6#. Virial coefficients are cal-
culated in their strong coupling limits. Like the approxim
tions @Eqs.~3! and~4!# discussed above, the virial expansio
is valid only at sufficiently low densities that particle chai
remain short. When particle chains exceed a lengthL equal
to the order of the virial expansion~e.g.,L53 in this case!
the virial expansion cannot account for their influence
thermodynamic properties.

IV. CONCLUSIONS

We have developed and tested a cluster-based metho
Monte Carlo simulation of ferrofluids. While we demonstra
this method for dipolar hard spheres confined in a plane
should also be applicable to three dimensions and in
presence of softer short-range interactions. The method
greatest utility, compared to conventional Monte Car
when chain formation is prevalent. In the strong coupli
limit our method permits accurate calculation of magne
susceptibility that is impossible to achieve in reasonable t
with conventional Monte Carlo or molecular dynamics me
ods.

Further enhancements of the method may be poss
Note that we reduced magnetization correlation times m
substantially than energy correlation times. We believe t
energy correlation times are governed by the difficulty
breaking and reconnecting tightly bound clusters. At pres
the only means of breaking or reconnecting clusters is
single-particle motion — we purposely prevent changes
cluster connectivity during cluster translation due to the
quirements of detailed balance. Conventional Monte Ca
steps mainly add or remove particles at cluster ends, res
ing in only modest changes in cluster identity. If cluste
could be deliberately broken into shorter segments by mu
particle moves, or joined together into larger clusters,
energy correlation time could be further reduced. Beca
the energy cost of any break is dominated by a single-n
neighbor particle bond, the acceptance rate for such mo
should be about as large as it is for single particle move

One possible scheme to incorporate cluster breaking
reconnection is to use proximity to identify clusters, th

p-
der
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2428 PRE 59DAVIS, McCAUSLAND, McGAHAGAN, TANAKA, AND WIDOM
execute many cluster translations during which proxim
may change, but always using the initial cluster identific
tions when executing translations. Because cluster brea
is provided subsequent to cluster attachment, detailed
ance can be satisfied. However, because cluster identi
tions are based on past history rather than the instantan
configuration, the simulation becomes non-Markovia
Nonetheless, in the limit when cluster identity is maintain
over long time intervals, the simulation should recover
equilibrium statistics of a genuinely Markov process@16#.

Another possible improvement upon the present met
would be to explore more general types of cluster mo
than translation and magnetization reversal. Inspecting Fi
it is apparent that undulations of chains are an important t
of fluctuation, which we have not explicitly accelerated usi
our technique. Such Monte Carlo steps may indeed be
vised @17# and included in our simulation, in principle.

In conclusion, our development of a new simulati
method enhanced the accuracy with which magnetic sus
.
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tibility may be calculated in the limit of strong coupling. W
applied this simulation technique to calculate magne
anisotropies in ferrofluid thin films. Our results show tha
model of magnetic anisotropy based upon clusters confi
within the film suffices to explain the anisotropy provide
clusters are short and well isolated from each other. Both
approximation, and the virial expansion, fail at high densit
when loops and branched networks form. In this circu
stance, computer simulation is the only method known
calculate magnetic susceptibility. The cluster-based Mo
Carlo simulation described here is needed to magnetic fl
tuations in a reasonable amount of time.
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