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Cluster-based Monte Carlo simulation of ferrofluids
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(Received 4 September 1998

We demonstrate a Monte Carlo algorithm for efficiently simulating ferrofluids. By identifying particle
clusters and evolving them as single units, we reduce correlation times by more than two orders of magnitude.
This method enables accurate calculations of ferrofluid thermodynamics in the limit of strong magnetic cou-
pling that would be impossible by conventional means. We apply the method to study magnetic anisotropy in
dilute thin films.[S1063-651X99)05702-3

PACS numbegps): 02.70.Lq, 61.20.Ja, 75.50.Mm, 75.70.Ak

I. INTRODUCTION croscopic thin films exhibit dramatically enhanced
anisotropy (see Table )l due to confinement of clusters
Ferrofluids[1] are colloidal suspensions of nanometer-within a plane.
scale magnetic particles. When the magnetic interactions be-
tween particles are stronger than thermal energy, the par- Il. MODEL AND ALGORITHMS
ticles aggregate into chaif2], with the magnetic moment of
each particle pointing towards a neighbor along the chain We model the ferrofluid as a gas of dipolar hard spheres
(see Fig. 1 Theoretical analysis of liquid state thermody- [10]. Each sphere has diametmand magnetic momen.
namics in this interesting state is difficult. Weak magneticOne defines a reduced temperatlife=kgTa*/ u* and a re-
coupling expansions are not accurate because particle paidéiced density* = pa®. The dipole moment of particlieis a
are tightly bound3]. Virial expansiong4—6] in low particle  three dimensional vectqe; , and the dipole interaction falls
density are not adequate either, because chain formation &f as 1f3. To avoid the difficulty of summing the dipole
inherently a many-particle correlation. While there is hopeinteraction in three-dimensional spaf&l], we choose to
for analytic progress using concepts of “living polymers” confine our particle positions to a two-dimensional plane.
[5,7], it is important to test such approximate theories withEwald summation and special boundary treatment is there-
computer simulation. fore not needed. We employ the “minimum image” conven-
Traditional Monte Carlo computer simulation, likewise, is tion for periodic boundary conditions so that each particle
difficult when particle chains formi8]. The problem is that interacts with the nearest image of every other particle. In
the strong attraction of particles within a chain requires veryaddition to simplifying our treatment of the long-range dipo-
small particle steps to achieve a reasonable ratio of acceptdar interaction, this pseudo-two-dimensional geometry allows
steps. Large-scale translations, rotations, and undulations o to test a theory of magnetic anisotropy in thin filfe§ A
the chains, which are an important factor in determining suctielated model, in which the dipole moment also is con-
important thermodynamic quantities as the magnetic suscetrained to the plain, has been examined by W3,
tibility, are poorly simulated using only independent small We use the Metropolis Monte Carlo methidd], follow-
displacements of each particle. Evidence of the difficulty ising a Markov chain through configuration space. Each Monte
evident in Table |, showing the growth of correlation times Carlo step is accepted with probability 1 if the resulting en-
as temperature drops. ergy change AE<O, and accepted with probability
This paper explores cluster-based enhancements to tlexp(—AE/kgT) otherwise. This method produces the correct
traditional Monte Carlo technique that identify particle clus-equilibrium ensemble in the limit of infinite simulation time
ters and evolve them as entire units. Similar ideas have prevhen certain conditions are met: the simulation must be er-
viously been employed in simulations of strongly interactinggodic, so all configurations can be reached, in principle; at-
ionic fluids [9]. We describe how to combine traditional tempted steps obey detailed balance, so no bias other than
single-particle steps with multiparticle steps, while maintain-energy influences the distribution of configurations.
ing detailed balance. We employ cluster moves for speeding, These conditions are met by a conventional algorithm
to speed magnetization reversal and chain translation. Owonsisting of two types of Monte Carlo steps: randomly
results show that cluster-based algorithms are of substantiahoose a particle, and attempt to move it through a randomly
utility, speeding equilibration of internal energy by a factor chosen small displacement; randomly choose a particle and
of 2 (in CPU time, and speeding equilibration of magneti- attempt to rotate it by a randomly chosen angle about a ran-
zation by a factor of 360. As a result we achieve quick,domly chosen axis. The difficulty with this technique is the
accurate calculations of susceptibility that are difficult withrate at which thermodynamic properties converge to their
conventional techniques. long time limit. Consider a particle within a chain at a tem-
After establishing the utility of cluster-based Monte Carlo perature such that*<1. In order for steps and rotations to
simulations, we apply the method to examine magnetic anbe accepted with probability near O(&s is the case for the
isotropy in ferrofluid thin films. Macroscopic thin films ex- runs in Table ) their size must be very small at low tempera-
hibit effective anisotropy due to demagnetization effects. Mi-tures: step sizes fall off proportionally {6, while rotation
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TABLE |. Temperature dependence of conventional Monte o.q"::.
Carlo correlation times. All runs withl= 100 particles at a density
of p*=0.3. Correlation times are 1£ times.L is the mean number %

of particles per cluster, ang, andx, are the in- and out-of-plane I.
susceptibility, respectively. 5

T TE ™ L Xxy Xz
1.0 2 5 1.5 0.5 0.20

0.5 8 16 1.8 14 0.26 f. ®
0.3 81 295 3.1 3.7 0.24 » {
0.25 280 3400 55 4.7 0.21 m

0.2 2500 110000 22.8 7.0 0.17 ,

angles fall off likeT*. Such small displacements and rota- 5.. Jﬁu .j{
tions do not significantly alter the positions and orientations ° D
of chains, or the distribution of chain lengths. .; s& {3‘

In the following we shall refer to correlation times in units Y ;'{‘tj
of Monte Carlo stepgMCS’s). One MCS in the conven- {? . H . H «
tional algorithm denotedl attempted particle moves ardl .f‘g LY ’.} K .“.:f} ’.}{:
attempted particle rotations; i.e., the typical time in which ausd*%%, esee,
each particle has a chance to move and rotate once. Note that
it takes a time of ordeN to evaluate potential energy for a
single particle, so the CPU time for one MCS grows IN&
Algorithms exist[14] that reduce this exponent but they are
not efficient for the numbers of particles considered in thisnately, reversal of cluster magnetization is an important pro-
paper. ForN=100 particles one conventional MCS takes cess that needs to be accelerated but does not alter particle
time t~0.2 sec on a 50 MHz SPARC 10 work station. We connectivity. This is the process by which we accelerate
find correlation timegsee Table)lin excess of 10 MCS at  equilibration of the magnetization. A second possibility is to
low temperatures, meaning it requires o¥eh to generate move clusters subject to the condition that the new cluster
each independent configuration. position is at least distancefrom any other cluster or par-

We supplement this conventional method with additionalticle. This type of cluster move is important for the equili-
Monte Carlo steps designed to accelerate motion through thigration of particle positions and it accelerates the equilibra-
configuration space. Because we only seek thermodynamtion of energy. We have checked that our cluster Monte
information from our simulation, we may exploit nonphysi- Carlo method correctly reproduces the thermodynamic prop-
cal dynamics provided the proper equilibrium ensemble iserties calculated by the conventional Monte Carlo method to
maintained. This possibility is an advantage that Montewithin our calculated uncertainties.

Carlo simulation may enjoy that is not possible within mo-  We identify clusters by comparing all particle positions
lecular dynamic$15], another important simulation method. pairwise. When a connected pair is found, cluster assign-
Thus, we introduce a move that reverses the magnetic manents of particles are updated, and then the pairwise com-
ment of each particle within a chain, and a move that transparisons are continued. The time for this algorithm is domi-
lates an entire cluster in a single step. Because interactions afted by theN(N—1)/2 required comparisons because we
a chain with the remainder of the system are weak comparelave noa priori knowledge of particle proximity. More ef-

to interactions within the chain, each of these moves will beficient algorithms are possible at the cost of more complex
more easily accepted than if we attempted the same movwerogramming. This algorithm suffices because it remains
one particle at a time. within the bound ofN? time required by the conventional

The requirement of detailed balance dictates that the probmethod.
ability to make a move, relative to the probability to make its Having paid a cost to identify clusters, we attempt many
inverse, should depend only on the relative probability ofcluster moves and reversals to take maximum advantage of
finding the system in the initial and final configurations. In our work. Thus we attemp translations and\ reversals of
equilibrium this equals exp{AE/kgT) where AE is the en- randomly chosen clusters in each Monte Carlo step of our
ergy difference between the two configurations. We choosenodified program. This is in addition to thd attempted
to identify our clusters based on proximity of particles to moves and rotations of individual particles, which we still

FIG. 1. Typical chaining configuratioN=300, T*=0.2, and
p*=0.3. Because clusters extend across boundaries of the simulated
cell, a 2Xx 2 supercell is shown.

each other. Particlesandj are in proximity when|r;—r;] must preform since our cluster method is not by itself er-
<a+te. Typically we chooses=0.2a, corresponding to a godic. Recall that the cluster moves are purposely noner-
broad minimum in the pair distribution function. godic because we forbid cluster attachment in order to pre-

Having identified a cluster, we must ensure that any moveerve detailed balance. The time for a full Monte Carlo step
the cluster makes will not prevent finding the inverse movestill varies asN?, but with a larger coefficient.
at a later time. Particle connectivity must not be altered. Initial configurations for our simulations are created by
There are several ways to enforce this. One possibility is tglacing particles on a hexagonal lattice with dipole moments
leave positions unchanged when acting on a cluster. Fortwrandomly oriented. Prior to accumulating thermodynamic
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FIG. 2. Energy autocorrelation functions for conventional FIG. 3. Magnetization autocorrelation functions for the same
Monte Carlo(solid curvg, Monte Carlo with cluster flipgdashed runs as in Fig. 2. Note that the conventional Monte Carlo method
curve, and Monte Carlo with cluster flips and movédotted  (solid line) does not decay appreciably over the time scale shown.
curve. T*=0.2 andp*=0.3 as in Fig. 1.

such that the typical interchain distance is large compared to
and correlation function data the system is equilibrated for dhe size of a chain the speedup of energy equilibration can
time large compared to both the duration of the initial tran-exceed an order of magnitude measured in CPU seconds.

sient in internal energy and the largese lime of fluctua- The improvement is even more dramatic for the magneti-

tions in equilibrium. The system may be regarded as welkation. In this case, the magnetization reversal and cluster
equilibrated by this time. translation together lower theeltime by a factor 2000 in

Figure 2 displays time-correlation functions for energyMCS and 360 in CPU seconds. This is because magnetiza-
defined as tion of a cluster may be entirely reversed in a single Monte
Carlo step, while it may be nearly unachievable in the con-

Tsim—t . . ventional approach. Acceptance ratios for magnetization re-

ge(t)= T r > [E(s+t)—E][E(s)—E], (1) versal not very low, about 0.15, indicating that the typical

sim™ t s=1

energy cost of a cluster reversal is significantly less than the
energy cost of reversing a single particle magnetization. This
where E(t) is the total energy of the configuration after is expected because different clusters interact only weakly
Monte Carlo steps an is the mean over the entire simula- with each other. As a consequence of the reductiomjn

tion time T;,,. Data are shown for the conventional simula- accurate calculation of magnetic susceptibility becomes
tion (solid ling), a run including magnetization reversals but practical, even in the presence of chain formation when con-
not cluster translation&lashed ling and a run including all  ventional methods require absurdly long runs.

types of Monte Carlo move&otted ling. Figure 3 shows

the same for magnetizatidvi(t). Both figures correspond to ll. MAGNETIC ANISOTROPY
the density and temperatur@*=0.3, T*=0.2) for which ) )
Fig. 1 shows a typical configuration. With reliable values for the susceptibility in hand, what

Correlation times and run times are tabulated in Table 11can we do with the results? Table | reveals growing magnetic
We list the 1¢ time, rather than the rate of exponential decay@nisotropy as temperature drops. Particle clustering enhances
at long times, because this can be calculated more accuratefie in-plane susceptibilityy,, and diminishes the out-of-
Inspection of Figs. 2 and 3 confirms that trends ie tifhes
reproduce trends in conventional correlation time obtained TABLE Il. Comparison of simulation method& denotes con-
from slopes of the logarithm of the correlation function. ~ Ventional;F denotes cluster flipS denotes cluster translatiot.

Examine first the energy data. The conventional simulaiS time on 50 MHz SPARC 10 in units of CPU seconds per Monte
tion requires 2500 MCS to reach its firseldecay ofge . Carlo step. Simulation temperatures allfat=0.2. All other param-

The magnetization reversal improves matters slightly in unit$ers asin Table |.
of MCS, but when the relative run time is factored in, it does

little good. On the other hand, the cluster translations greatl\r/'nemooI e ™ fmes

speed equilibration. The dtime drops by a factor of 14 in C 2500 110000 0.22
units of MCS and 2.4 in CPU seconds. Cluster moves alsgF 1300 100 0.65
speed up the approach to equilibrium of configurations ini-cgT 180 53 1.26

tially far removed from the equilibrium state. At densities
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whereN, is the number of isolated particles not belonging to
1 clusters.
* 1 Both approximations3) and (4) provide excellent ap-
1 proximations to the data in Fig. 4 at low density, belptv
i 1 =0.01. At higher densities, chain lengths begin to grow large
. compared with the persistence length of the chains. Loops
| *f i ] and branched networks begin to form reducing the suscepti-
;4 ] bility below the values suggested by E®). Likewise, Eq.
(4) breaks down when so few particles remain unbound that
the residuajy, contributed by bound particles dominates, and
x, becomes independent of density. Abgve=0.05 the in-
7 plane susceptibilityy,, reaches a maximum and begins to
1 decrease with increasing density. This may be related to for-
mation of gel-like connected networks or to phase coexist-
ence. Further study is needed to clarify this behavior.
The solid and dashed curves are predictions of the mag-
. netic virial expansior[4—6]. The noninteracting Langevin
0.0001 0.0010 0.0100 p 0.1000 1.0000 value x4, given by Eq.(2), is indicated on the vertical axis.
The solid lines include the contributions of the second virial
FIG. 4. Magnetic susceptibility per particle vs densityTdt  coefficients, and the dashed lines include the contributions of
=0.2. Data points are simulated, with error bars shown where apthe third virial coefficient§4—6]. Virial coefficients are cal-
propriate. Solid and dashed curves are, respectively, second-ordeulated in their strong coupling limits. Like the approxima-
and third-order virial expansions. Values greater thar 1.67 cor-  tions[Egs.(3) and(4)] discussed above, the virial expansion
respond toy,, while values below correspond fg,. Inset: mean s valid only at sufficiently low densities that particle chains
chain lengthL vs density. remain short. When particle chains exceed a letgtyual
to the order of the virial expansiof.g.,L =3 in this casg
plane susceptibility,. This behavior is also evident in Fig. the virial expansion cannot account for their influence on
4 which displays the variation of magnetic susceptibility thermodynamic properties.
with density p* at fixed temperaturd*=0.2. We can ex-
plain this effect as a result of chain formation. The following
discussion presents a semiquantitative analysis. IV. CONCLUSIONS
_Isolated, noninteracting, particles exhibit Langevin behav-  \ye have developed and tested a cluster-based method for
ior with each particle contributing Monte Carlo simulation of ferrofluids. While we demonstrate
this method for dipolar hard spheres confined in a plane, it
should also be applicable to three dimensions and in the
presence of softer short-range interactions. The method is of
greatest utility, compared to conventional Monte Carlo,
to the susceptibility in any direction. One factor @farises  when chain formation is prevalent. In the strong coupling
from the coupling of each moment to an applied field, whilelimit our method permits accurate calculation of magnetic
the other factor represents the magnetization arising from theusceptibility that is impossible to achieve in reasonable time
aligned moment. The factor of 3 comes because each mavith conventional Monte Carlo or molecular dynamics meth-
ment rotates in a three-dimensional space. For particles in @ds.
straight chain of length, the chain behaves like an effective ~ Further enhancements of the method may be possible.
particle of dipole moment Lu and contributes Note that we reduced magnetization correlation times more
(Lu)?/(2kgT) to Xxy- The factor of 2 replaces the factor of substantially than energy correlation times. We believe that
3 because the chain is constrained to lie in theplane. €nergy correlation times are governed by the difficulty of
CollectingN particles intoN/L chains of length_ the result-  breaking and reconnecting tightly bound clusters. At present

| 00.00001 0.0010 0.0100 0.1000 1.0000
p

~NY

0.0 el MR | YooY Y YL

u?

1= 3T (2

ing susceptibility per particle is the only means of breaking or reconnecting clusters is by
single-particle motion — we purposely prevent changes in

u? cluster connectivity during cluster translation due to the re-

XxyNLm. (3)  quirements of detailed balance. Conventional Monte Carlo

steps mainly add or remove particles at cluster ends, result-
. . - ing in only modest changes in cluster identity. If clusters
revealing the enhancement gf, due to particle chaining. In ¢ 14 pe deliberately broken into shorter segments by muiti-
contrast, the out-of-plane susceptibiliy is reduced by par-  naicie moves, or joined together into larger clusters, the
ticle clustering because particles in clusters point toward nergy correlation time could be further reduced. Because
each other in they plane and cannot (_ea_s_ily rotate out of this {e energy cost of any break is dominated by a single-near-
plane. We may estimate the susceptibility per particle as  peighnor particle bond, the acceptance rate for such moves
should be about as large as it is for single particle moves.
- & 4) One possible scheme to incorporate cluster breaking and
Xz~ N X1 reconnection is to use proximity to identify clusters, then



2428 DAVIS, McCAUSLAND, McGAHAGAN, TANAKA, AND WIDOM PRE 59

execute many cluster translations during which proximitytibility may be calculated in the limit of strong coupling. We
may change, but always using the initial cluster identifica-applied this simulation technique to calculate magnetic
tions when executing translations. Because cluster breakingnisotropies in ferrofluid thin films. Our results show that a
is provided subsequent to cluster attachment, detailed bagnodel of magnetic anisotropy based upon clusters confined
ance can be satisfied. However, because cluster identificgithin the film suffices to explain the anisotropy provided
tions are based on past history rather than the instantaneoggsters are short and well isolated from each other. Both this
configuration, the simulation becomes non-Markovian.approximation, and the virial expansion, fail at high densities
Nonethe|eSS, in the limit when cluster |dent|ty is maintainedvvhen |Oops and branched networks form. In this circum-
over |Ong time intervals, the simulation should recover thestance’ computer simulation is the 0n|y method known to
equilibrium statistics of a genuinely Markov procg4s]. calculate magnetic susceptibility. The cluster-based Monte
Another possible improvement upon the present methogtarlo simulation described here is needed to magnetic fluc-
would be to explore more general types of cluster movesyations in a reasonable amount of time.
than translation and magnetization reversal. Inspecting Fig. 1
it is apparent that undulations of chains are an important type
of fluctuation, which we have not explicitly accelerated using
our technigue. Such Monte Carlo steps may indeed be de-
vised[17] and included in our simulation, in principle. This research was supported by NSF Grant No. DMR-
In conclusion, our development of a new simulation9221596 and REU supplements. We thank H. Zhang and S.
method enhanced the accuracy with which magnetic susceBanerjee for useful discussions.
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