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Gravity-driven instability in a spherical Hele-Shaw cell
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A pair of concentric spheres separated by a small gap form a spherical Hele-Shaw cell. In this cell an
interfacial instability arises when two immiscible fluids flow. We derive the equation of motion for the
interface perturbation amplitudes, including both pressure and gravity drivings, using a mode coupling ap-
proach. Linear stability analysis shows that mode growth rates depend upon interface perimeter and gravita-
tional force. Mode coupling analysis reveals the formation of fingering structures presenting a tendency toward
finger tip-sharpening.

DOI: 10.1103/PhysRevE.63.016311 PACS number~s!: 47.20.2k, 68.05.2n, 47.54.1r
f

te

th
i-

flu
th
c
fi

e-

b

c
e-
th
rv

vit

ap
rl

nd

e
th
ro
so
e
n
el
ac

o

w
he
n-
ne
f
the
e-
a

nal

ell
nd

in-
b-
h-
al

s
n

ing
or

le-
I. INTRODUCTION

The Saffman-Taylor instability@1# has been the object o
extensive study during the last four decades@2#. It arises at
the interface separating two viscous fluids constrained
flow in the narrow gap between closed spaced parallel pla
a device known as Hele-Shaw cell. The cell thickness
smaller than any other length scale in the problem, so
flow is effectively two-dimensional. The instability arises e
ther from a pressure gradient advancing the less viscous
against the more viscous one, or by gravity acting on
density difference between the fluids. The action of su
driving-force mechanisms leads to the celebrated viscous
gering patterns@1,2#.

Most Saffman-Taylor investigations analyze flow b
tweenflat Hele-Shaw cells. In a separate work@3# we started
studying the Saffman-Taylor problem on curved surfaces
considering flow in asphericalHele-Shaw cell~Fig. 1!. The
interfacial instability was produced by a nonzero flow inje
tion rate Q, and gravitational effects were completely n
glected. We examined the effect of cell curvature on
shape of the patterns and showed that positive spatial cu
ture inhibits finger tip-splitting.

In the present paper we focus on the influence of gra
in a spherical Hele-Shaw cell. We consider bothQ50 and
Q.0 at fixed cell curvature. The unperturbed domain sh
is a polar cap of some size, presenting an initially nea
circular boundary, which is gravitationally unstable a
evolves at constant area (Q50), or slowly increasing area
(Q.0), without change of topology.

The study of viscous flow in a nonplanar Hele-Shaw c
is of interest for both scientific and practical reasons. On
scientific level, the influence of spatial curvature on hyd
dynamic flow is a matter of fundamental interest. It al
provides a simple mathematical model to describe more g
eral situations involving the filling of a thin cavity betwee
two walls of a given shape with fluid. On the practical lev
it may have applications in a number of industrial, manuf
turing processes, ranging through pressure moulding of m
ten metals and polymer materials@4#, and formation of coat-
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ing defects in drying paint thin films@5#.
The gravity-driven instability on a spherical Hele-Sha

cell also allows one to gain insight into the properties of t
dynamically similar, but more complex, Rayleigh-Taylor i
stability @6–8# for flow on substrates of arbitrary shapes. O
familiar example of this type of instability is the formation o
fingering patterns when chocolate syrup drains, due to
action of gravity, from the top of a scoop of ice cream. D
spite the apparent simplicity of this example, it is in fact
rather complicated three-dimensional problem@5#, much less
amenable to analytic treatment than its two-dimensio
Hele-Shaw counterpart.

The geometrically constrained spherical Hele-Shaw c
forces the flow to become essentially two-dimensional, a
the interface one-dimensional. High viscosity eliminates
ertial terms from the equations of motion, making the pro
lem simpler yet. In contrast, the conventional Rayleig
Taylor problem is inertially driven and three-dimension
effects become important@6–8#.

The outline of the work is the following: Sec. II derive
the nonlinear equation of motion including both injectio
and gravitational driving. Section III discusses the result
motion. Section III A considers linear stability analysis f

FIG. 1. Schematic configuration of flow in a spherical He
Shaw cell.
©2000 The American Physical Society11-1
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purely gravitational driving withQ50. The growth is purely
exponential, and the linear growth rate depends on the g
desic distance from the sphere’s north pole. Larger dista
causes both faster growth and more unstable modes, th
the characteristic wavelength is nearly constant. The non
nishing injection caseQ.0 is studied in Sec. III B. Injection
of a high viscosity fluid tends to stabilize the interface. F
Q.0 linear growth is non-exponential due to evolution
the linear growth rate with distance. Section III C studies
coupling of a small number of modes. It is shown that
gravity-driven flow fingers have tendency to finger ti
sharpening.

II. STABILITY ANALYSIS AND MODE COUPLING

Consider two immiscible, incompressible, viscous fluid
flowing in a spherical Hele-Shaw cell of thicknessb ~see Fig.
1!. The effectively two-dimensional flow takes place on t
surface of a sphere endowed with the metric@9#

ds25dr21a2sin2S r

aDdw2, ~1!

wherea is the radius of curvature of the sphere, 0<w,2p
denotes the azimuthal angle measured on the sphere a
<r<pa is the geodesic distance from the sphere’s no
pole. The polar angleu5r/a. Denote the viscosities an
densities of the upper and lower fluids, respectively, ash1 ,
%1 andh2 , %2. Consider the case%1.%2 andh1.h2, and
examine flow in the northern hemisphereu,p/2. Between
the two fluids there exists a surface tensions. The flows are
assumed to be irrotational, except at the interface. Fluid
injected into fluid 2 through an inlet located at the spher
north pole, at a given flow rateQ, which is the area covere
per unit time. Fluid 2 is simultaneously withdrawn, at t
same rate, through an outlet placed at the south pole.
acceleration of gravity is constant, represented byg, and
points from north to south pole.

During the flow, the fluid-fluid interface has a perturb
shape described asr5R[R(t)1z(w,t). The interface per-
turbation amplitude is represented byz(w,t), andR denotes
the time-dependent unperturbed radius

R~ t !5a arccosS C02
Qt

2pa2D , ~2!

whereC05cos(R0 /a), andR0 is the unperturbed radius att
50. The unperturbed shape is a polar cap of geodesic ra
r5R, surface areaA54pa2 sin2(R/2a) and circumference
L52pa sin(R/a).

We express the net perturbationz(w,t) as a Fourier series

z~w,t !5 (
n52`

1`

zn~ t !exp~ inw!, ~3!

wherezn(t) denotes the complex Fourier mode amplitud
and n50, 61, 62, . . . is the discrete azimuthal wav
number. The area of the perturbed shape is kept indepen
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of the perturbationz by expressing the zeroth Fourier mod
in Eq. ~3! asz0(t)5(21/2a) cot(R/a) (nÞ0uzn(t)u2.

We consider a generalized version of Darcy’s law@1,2#,
adjusted to describe flow between concentric spheres

vj52
b2

12h j
F¹pj2% j g sinS r

aD r̂G , ~4!

where vj5vj (r,w) and pj5pj (r,w) are, respectively, the
velocity and pressure in fluidsj 51 and 2. The gradient in
Eq. ~4! is associated with the metric~1! and is obtained from
the corresponding three-dimensional expression for the
dient in spherical coordinates (r ,u,w), by keepingr 5a and
noting thatu5r/a. In contrast to gravity-driven flows in fla
Hele-Shaw cells, the gravity term in Eq.~4! is not constant,
but depends on the radial distancer. This is a manifestation
of the cell spatial curvature together with its embedding
three dimensional space.

We can exploit the irrotational flow condition to defin
the velocity potentialvj52“f j . Using the velocity poten-
tial, we evaluate Eq.~4! for each of the fluids on the inter
face, subtract the resulting equations from each other,
divide by the sum of the two fluids’ viscosities to get

AS f1uR1f2uR
2 D2S f1uR2f2uR

2 D
52a ~k!uR2ga cosS R

a D , ~5!

where A5(h22h1)/(h21h1) is the viscosity contrast,a
5b2s/@12(h11h2)# contains the surface tension, andg
5b2g (%12%2)/@12(h11h2)# is a measure of gravitationa
force. To obtain Eq.~5! we used the pressure boundary co
dition p22p15sk at the interfacer5R, where k is the
interfacial curvature@3#.

Following steps similar to those performed in Ref.@3#, we
define Fourier expansions for the velocity potentials, wh
obey Laplace’s equation. We expressf j in terms of the per-
turbation amplitudeszn by considering the kinematic bound
ary condition for flow on a sphere. As in the flat cell cas
this condition refers to the continuity of the normal veloci
across the fluid-fluid interface@10#. Substituting these rela
tions into Eq.~5!, and Fourier transforming, yields the mod
coupling equation of the Saffman-Taylor problem in
spherical Hele-Shaw cell, taking into account both injecti
and gravity

żn5l~n! zn1 (
n8Þ0

@F~n,n8! zn8zn2n8

1G~n,n8! żn8zn2n8#, ~6!

where

l~n!5F Q

2pa2S2
~Aunu2C!2

a

a3S3
unu~n221!1unu

g

aG
~7!
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is the linear growth rate, and

F~n,n8!5
unu
aSH QAC

2pa2S2 F1

2
2sgn~nn8!G

2
aC

a3S3 F12
n8

2
~3n81n!G1

gC

2a J 1
Q

4pa3S
,

~8!

G~n,n8!5
1

aS
$Aunu@12sgn~nn8!#2C% ~9!

are the second-order mode coupling terms, withS
5sin(R/a) andC5cos(R/a). The overdot denotes total tim
derivative and the sign functionsgn(nn8)51 if (nn8).0
andsgn(nn8)521 if (nn8),0.

III. DISCUSSION

A. Linear stability analysis with QÄ0

First concentrate on the purely gravity-driven case,Q
50. In this situation, we consider flow in a closed cell obe
ing mass conservation. To drive the interface gravitationa
one could first allow the system to form a stable, unpertur
spherical cap at the south pole, and then invert the sphe
cell to put the denser fluid on top in the unstable position
the north pole.

We begin by investigating the dispersion relation~7!. No-
tice that the gravity term in Eq.~7! contains no explicit de-
pendence on radial distance. This finding is somewhat
prising, since the gravity term in Darcy’s law~4! clearly
presents a dependence onr . Physical intuition suggests
factor ofS should multiply the gravity term in Eq.~7!, mak-
ing it vanish at the poles and become maximal at the equa
This apparent missing factor reappears if we rewrite the
ear growth rate in terms of the wave numberk5unu/aS. The
variablesn andk are both useful: For example,n occurs in
integer values and counts the number of fingers. On the o
hand,k determines the characteristic wavelength of a per
bation.

To better understand the physical information behind
description of the linear stage in terms ofn andk, we plot the
linear growth rate at a sequence of radial distancesR5au in
Figs. 2~a! and 2~b!. We use typical experimental paramete
given in a recent experimental work in rotating, flat He
Shaw cells@11#: fluid 1 is a silicone oil (h1'0.5 g/cm s,
%1'1.0 g/cm3) and fluid 2 is air (h2'0, %2'0). The
thickness of the cellb50.1 cm and the surface tensions
520.7 dyne/cm. We set the radius of the spherea55 cm
and acceleration of gravityg5980 cm/s2.

Comparing Figs. 2~a! and 2~b!, it is clear that the fastes
growing mode~number of fingersn developing at a maxi-
mum growth rate! moves to largen for large radial distance
~and smalln for small radial distance! in order to keep the
corresponding fastest growingk, and thus the apparent wave
length, nearly constant. The same effect occurs in radial fl
in flat space@12#. In addition to the shift to largern, the
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growth rate of the fastest growing mode increases with ra
distance because the net gravitational force depends oR.
This differs from the case of radial flow in flat space@12#,
where the interface velocity falls off as 1/R causing the
growth rate of the fastest growing mode to decrease.

Consider the purely linear contribution, which appears
the first term on the right-hand side of Eq.~6!. The condition
Q50 simplifies the theoretical description:R(t)5R05 con-
stant, and consequently the linear growth ratel(n) is time
independent. This implies that the actual relaxation o
growth of moden is purely exponential

zn
(Q50) ~ t !5zn~0! exp@l~n!t#, ~10!

wherezn(0) is the initial perturbation amplitude. To see th
overall effect of Eq.~10!, we plot evolved interfaces usin
the same experimental parameters as those used in Figs~a!
and 2~b!. It is convenient to rewrite the net perturbation~3!
in terms of cosine and sine modesz(u,t)5z0
1(n.0@an(t)cos(nu)1bn(t)sin(nu)#, where an5zn1z2n
and bn5 i (zn2z2n) are real-valued. We take into accou
modesn ranging fromn51 up to 20. Figure 3 depicts th
evolution of the interfaces, for a random choice of phases
time t55 s. We evolve from two distinct initial radii~a!
R05a p/8, and ~b! R05a p/4. In both casesuzn(0)u
50.05 cm and we use the same randomly chosen phase
is evident that for larger radial distances~or equivalently,
larger polar angles! we have both faster growth and mo

FIG. 2. Linear growth rate as a function of~a! mode numbern
and ~b! wave numberk at a sequence of radial distances~1! R5a
p/8, ~2! R5a p/4, ~3! R5a 3p/8, and~4! R5a p/2.
1-3
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unstable modes, though the characteristic wavelength is
very different, in agreement with the predictions made fro
Figs. 2~a! and 2~b!.

B. Linear stability analysis with QÌ0

Now consider the nonvanishing injection case. TakingQ
.0 introduces two important new effects. First, inspect
Eq. ~7!, we see thatQ multiplies a term linear inn that must
be added to the growth ratel obtained withQ50. If the
inner fluid is high viscosity, so thatA,0, then this new term
in l is negative. All modes grow more slowly withQ.0,
and some may even become stable. Thus,Q.0 diminishes
the strength of the instability. Essentially, the flow fills in th
gaps between the fingers.

The second effect is more subtle. Since the unpertur
interface radiusR(t) is now time dependent, the linear
growth rate l evolves with time as the radial distanc
steadily grows. At any instant the interface evolves expon
tially with an instantaneous growth ratel depending on the
currentR(t). For sufficiently smallQ the instantaneousl at
R(t) nearly equals theQ50 value for the sameR(t). We
call this aquasistaticapproximation, and within this approxi
mation it is clear that an increasing number of modes
come unstable as time progresses due to the steady inc
of R(t). The evolution ofl in the quasistatic approximatio
is given by the series of curves shown in Fig. 2.

If we wish to study the linear growthwithout making the
quasistatic approximation, we may integrate the equation
motion ~6! exactly, keeping only terms of first order inz on
the right-hand side. Becausel is time dependent, through th
variation ofR(t), the exact solution of the linear equation
motion becomes non-exponential and can be written as

zn
(Q.0) ~ t !5zn~0!

S0

S F tan~R/2a!

tan~R0/2a!G
Aunu

3expH 2punu
Q Fa~n221!

a S C

S
2

C0

S0
D

1ga~C02C!G J , ~11!

FIG. 3. Interface evolution according to Eq.~10! at t55 s, for
~a! R05a p/8 and~b! R05a p/4. Other parameters are given in th
text.
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whereS05sin(R0 /a), andR, C, andS all depend on time.

C. Mode coupling analysis

We use the mode coupling equation~6! to investigate the
effect of the nonlinear terms in the interface evolution. W
are interested in studying how gravity influences the shap
the fingering structures, focusing on finger-tip behavi
Finger-tip splitting and tip-sharpening phenomena are rela
to the influence of a fundamental moden on the growth of its
harmonic 2n. Without loss of generality we may choose th
phase of the fundamental mode so thatan.0 andbn50. We
replace the time derivative termsȧn and ḃn by l(n) an and
l(n) bn , respectively, for consistent second order expr
sions. Under these circumstances the equation of motion
the harmonic cosine mode becomes

ȧ2n5l~2n!a2n1 1
2 T~2n,n! an

2 ~12!

where the finger-tip function is

T~2n,n!5
2n

aS H Q

2pa2S2 F ~C211!

4n
2ACG

1
3aC ~2n221!

2a3S3 J . ~13!

The corresponding equation for the sine modesb2n is not as
interesting as Eq.~12!, since growth ofb2n is uninfluenced
by an .

The sign ofT(2n,n) dictates whether finger-tip splitting
or finger tip-sharpening is favored by the dynamics@12#. If
T(2n,n),0, at second order the result is a driving term
orderan

2 forcing growth ofa2n,0. With this particular phase
of the harmonic forced by the dynamics, then outwards-
pointing fingers of the fundamental moden tend to split. In
contrast, ifT(2n,n).0 growth ofa2n.0 would be favored,
leading to outwards-pointing finger-tip sharpening.

A noteworthy point about Eq.~13! is that it shows no
dependence whatsoever on gravity. In the evaluation
T(2n,n) from Eq.~6! we found that the term involving grav
ity in F(2n,n) exactly cancels against the term involvin
gravity in l(n)G(2n,n). The second order term driving tip
splitting in Eq.~12! is therefore independent of the force
gravity, though gravity does generally influence mode co
pling at second and higher orders.

Inspecting Eq.~13! we find that, sinceA521 and C
.0, the finger-tip functionT(2n,n).0 for bothQ50 and
Q.0. Equation~13! predicts that gravity-driven flow on a
sphere leads to patterns showing enhanced finger-tip nar
ing. Informal studies of chocolate syrup fingers on ice cre
scoops support this claim.
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