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Gravity-driven instability in a spherical Hele-Shaw cell

JoseA. Miranda, Fernando Parisio, and Fernando Moraes
Laborataio de Fisica Teoica e Computacional, Departamento déska, Universidade Federal de Pernambuco,
Recife, PE 50670-901 Brazil

Michael Widom
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
(Received 7 September 2000; published 27 December)2000

A pair of concentric spheres separated by a small gap form a spherical Hele-Shaw cell. In this cell an
interfacial instability arises when two immiscible fluids flow. We derive the equation of motion for the
interface perturbation amplitudes, including both pressure and gravity drivings, using a mode coupling ap-
proach. Linear stability analysis shows that mode growth rates depend upon interface perimeter and gravita-
tional force. Mode coupling analysis reveals the formation of fingering structures presenting a tendency toward
finger tip-sharpening.
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I. INTRODUCTION ing defects in drying paint thin filmgs].
The gravity-driven instability on a spherical Hele-Shaw

The Saffman-Taylor instability1] has been the object of cell also allows one to gain insight into the properties of the
extensive study during the last four decafi2k It arises at ~dynamically similar, but more complex, Rayleigh-Taylor in-
the interface separating two viscous fluids constrained t&tability[6—8] for flow on substrates of arbitrary shapes. One
flow in the narrow gap between closed spaced parallel plate§2miliar example of this type of instability is the formation of
a device known as Hele-Shaw cell. The cell thickness idingering patterns when chocolate syrup drains, due to the
smaller than any other length scale in the problem, so th@ction of gravity, from the top of a scoop of ice cream. De-
flow is effectively two-dimensional. The instability arises ei- spite the apparent simplicity of this example, it is in fact a
ther from a pressure gradient advancing the less viscous fluidther complicated three-dimensional problgsh much less
against the more viscous one, or by gravity acting on thémenable to analytic treatment than its two-dimensional
density difference between the fluids. The action of sucHiele-Shaw counterpart.
driving-force mechanisms leads to the celebrated viscous fin- The geometrically constrained spherical Hele-Shaw cell
gering patterngi,2]. forces the flow to become essentially two-dimensional, and

Most Saffman-Taylor investigations analyze flow be-the interface one-dimensional. High viscosity eliminates in-
tweenflat Hele-Shaw cells. In a separate wd8{ we started ~ ertial terms from the equations of motion, making the prob-
studying the Saffman-Taylor problem on curved surfaces byem simpler yet. In contrast, the conventional Rayleigh-
considering flow in aphericalHele-Shaw cel(Fig. 1). The  Taylor problem is inertially driven and three-dimensional
interfacial instability was produced by a nonzero flow injec-effects become importaé—8.
tion rate Q, and gravitationa| effects were Comp|ete|y ne- The outline of the work is the fO”OWing: Sec. Il derives
glected. We examined the effect of cell curvature on thehe nonlinear equation of motion including both injection
shape of the patterns and showed that positive spatial curv&nd gravitational driving. Section Ill discusses the resulting
ture inhibits finger tip-splitting. motion. Section Il A considers linear stability analysis for

In the present paper we focus on the influence of gravity
in a spherical Hele-Shaw cell. We consider b@hk-0 and
Q>0 at fixed cell curvature. The unperturbed domain shape
is a polar cap of some size, presenting an initially nearly
circular boundary, which is gravitationally unstable and
evolves at constant are®E0), or slowly increasing area
(Q>0), without change of topology.

The study of viscous flow in a nonplanar Hele-Shaw cell
is of interest for both scientific and practical reasons. On the
scientific level, the influence of spatial curvature on hydro-
dynamic flow is a matter of fundamental interest. It also
provides a simple mathematical model to describe more gen-
eral situations involving the filling of a thin cavity between
two walls of a given shape with fluid. On the practical level,
it may have applications in a number of industrial, manufac-
turing processes, ranging through pressure moulding of mol- FIG. 1. Schematic configuration of flow in a spherical Hele-
ten metals and polymer materid#|, and formation of coat- Shaw cell.
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purely gravitational driving withQ=0. The growth is purely of the perturbationl by expressing the zeroth Fourier mode
exponential, and the linear growth rate depends on the gedn Eq. (3) as {,(t)=(—1/2a) cot(R/a) =,.o|Zn(t)|%.

desic distance from the sphere’s north pole. Larger distance We consider a generalized version of Darcy’s Igl2],
causes both faster growth and more unstable modes, thougldjusted to describe flow between concentric spheres

the characteristic wavelength is nearly constant. The nonva-

nishing injection cas®>0 is studied in Sec. Ill B. Injection b2
of a high viscosity fluid tends to stabilize the interface. For Vi=~ W
Q>0 linear growth is non-exponential due to evolution of .
the linear growth rate with distance. Section Il C studies theyhere vi=v;(p,¢) and p;j=p;(p,¢) are, respectively, the
coupling of a small number of modes. It is shown that foryelocity and pressure in fluids=1 and 2. The gradient in
gravity-driven flow fingers have tendency to finger tip- gq. (4) is associated with the metri¢) and is obtained from

, 4

[P\~
Vpi—o; gsm(g)p

sharpening. the corresponding three-dimensional expression for the gra-
dient in spherical coordinates,@, ¢), by keepingr=a and
Il. STABILITY ANALYSIS AND MODE COUPLING noting thatd= p/a. In contrast to gravity-driven flows in flat

Hele-Shaw cells, the gravity term in E@}) is not constant,
'but depends on the radial distangeThis is a manifestation
of the cell spatial curvature together with its embedding in
three dimensional space.

We can exploit the irrotational flow condition to define

the velocity potential; = —V ¢;. Using the velocity poten-
d32=dp2+a23in2<g)d(pz, (1 tial, we evaluate Eq(4) for each of the fluids on the inter-
a face, subtract the resulting equations from each other, and

divide by the sum of the two fluids’ viscosities to get

Consider two immiscible, incompressible, viscous fluids
flowing in a spherical Hele-Shaw cell of thickndsésee Fig.
1). The effectively two-dimensional flow takes place on the
surface of a sphere endowed with the meféi¢

wherea is the radius of curvature of the spheres@<2mw

denotes the azimuthal angle measured on the sphere and 0

<p=a is the geodesic distance from the sphere’s north A
pole. The polar angl®#=p/a. Denote the viscosities and

densities of the upper and lower fluids, respectivelyyas R
¢, and 7,, @,. Consider the casg,;> ¢, and ;> 7,, and =—a (x)|r—va COS(; ,
examine flow in the northern hemisphefel 77/2. Between

the two fluids there e>§ists a surface tensir;nThe flows are  \vhere A=(7,— 71)/(7,+ 71) is the viscosity contraste
assumed to be irrotational, except at the interface. Fluid 1 is b2a/[12(n,+ 7,)] contains the surface tension, and
injected into fluid 2 through an inlet located at the sphere’s_ b2g (01— 0,)/[12(71+ 7,)] is a measure of gravitational

north pole, at a given flow ra®, which is the area covered .06 T otain Eq(5) we used the pressure boundary con-
per unit time. Fluid 2 is simultaneously withdrawn, at the jision p,—p,=o« at the interfacep="R, where « is the

same rate, through an outlet placed at the south pole. Thﬁterfacial curvaturd3]
acceleration of gravity is constant, representedghyand Following steps similar to those performed in R, we

points from north to south pole. define Fourier expansions for the velocity potentials, which
During th(_a flow, the fluid-fluid interface has a perturbed obey Laplace’s equation. We expressin terms of the per-
shape_ descrlb_ed aERE R(t) +{(¢,1). The interface per- turbation amplitudeg, by considering the kinematic bound-
t“fb‘%“"” amplitude is represented DW't)' andR denotes ary condition for flow on a sphere. As in the flat cell case,
the time-dependent unperturbed radius this condition refers to the continuity of the normal velocity
across the fluid-fluid interfacgl0]. Substituting these rela-
R(t)=aarcco{ c Qt ) @) tions into Eq.(5), and Fourier transforming, yields the mode
0 2/’ coupling equation of the Saffman-Taylor problem in a
spherical Hele-Shaw cell, taking into account both injection
whereCy=cosR,/a), andR, is the unperturbed radius &t~ and gravity
=0. The unperturbed shape is a polar cap of geodesic radius
p=R, surface aread=4ma?sir?(R/2a) and circumference

d1lr— dolr
2

dilrt+ dolr
2

©)

2ma

= 2 masiniia) Er=M) Lo+ 20 (RN Lo
We express the net perturbati¢typ,t) as a Fourier series )
N +G(n,n’) gn’gnfn’]u (6)
{e)= 2 Gvexing), (3  where
where {,(t) denotes the complex Fourier mode amplitudes, An)= Q (Aln|-C)— @ In|(n2=1)+|n| Y
andn=0, =1, =2, ... is the discrete azimuthal wave 2ma’S? a’s® a
number. The area of the perturbed shape is kept independent (7
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is the linear growth rate, and
o s \(1n) (a)
n QAC 1 04 RSN
F(n,n")=— ——sgn(nn’ ’ ettt
(nn)=3s 2ma’s?|2 gninn) 03 o )
ac ! Q 0.2 .3.. .... (3) .- .o
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G(n,n’):a—S{A|n|[1—39r(nn’)]—C} (9) 5 10 15 20 25 30 35 40
0.5
are the second-order mode coupling terms, wigh o }\‘(k) @ (b)
=sin(R/a) and C=cosf/a). The overdot denotes total time '
derivative and the sign functiosgn(nn’)=1 if (nn')>0 03 (3)
andsgn(nn’)=—1 if (nn")<0. ’
0.2 2)
Ill. DISCUSSION
0.1
A. Linear stability analysis with Q=0 () k
First concentrate on the purely gravity-driven cagg, 0
=0. In this situation, we consider flow in a closed cell obey- \ \ \\
ing mass conservation. To drive the interface gravitationally, I 2 3 4 5 6 7 8

one could first allow the system to form a stable, unperturbed , ,
spherical cap at the south pole, and then invert the spherical dF(IbG)' ﬁévﬁn:fgqg;?kwg? ;astiqisescfsrg]ft'r%gg) (;Ti‘;gﬁ ((r;‘;”%b_eg
cell to put the denser fluid on top in the unstable position at;/& (2) R=a w/4, (3) R=a 37/8, and(4) R=a /2.
the north pole.

We begin by investigating the dispersion relati@h No-
tice that the gravity term in Ed7) contains no explicit de- growth rate of the fastest growing mode increases with radial
pendence on radial distance. This finding is somewhat sudistance because the net gravitational force dependR.on
prising, since the gravity term in Darcy’s la4) clearly  This differs from the case of radial flow in flat spalc¥?],
presents a dependence pn Physical intuition suggests a where the interface velocity falls off asR/causing the
factor of S should multiply the gravity term in Eq7), mak-  growth rate of the fastest growing mode to decrease.
ing it vanish at the poles and become maximal at the equator. Consider the purely linear contribution, which appears as
This apparent missing factor reappears if we rewrite the linthe first term on the right-hand side of E). The condition
ear growth rate in terms of the wave number|n|/aS The Q=0 simplifies the theoretical descriptioR(t)=R,= con-
variablesn andk are both useful: For example,occurs in  stant, and consequently the linear growth ra@) is time
integer values and counts the number of fingers. On the othéfidependent This implies that the actual relaxation or
hand,k determines the characteristic wavelength of a perturgrowth of moden is purely exponential
bation.

To better understand the physical information behind the {979 (1) =£,(0) exg M(n)t], (10
description of the linear stage in termsrodndk, we plot the
linear growth rate at a sequence of radial distarfiRes6 in
Figs. 2a) and 2b). We use typical experimental parameterswhere,(0) is the initial perturbation amplitude. To see the
given in a recent experimental work in rotating, flat Hele-overall effect of Eq.(10), we plot evolved interfaces using
Shaw cells[11]: fluid 1 is a silicone oil ¢7;~0.5 g/cm s, the same experimental parameters as those used in &ys. 2
0,~1.0 g/cnm?) and fluid 2 is air ¢,~0, 0,~0). The and 2b). It is convenient to rewrite the net perturbatits)
thickness of the celb=0.1 cm and the surface tensien in terms of cosine and sine modeg(6,t)=¢,
=20.7 dyne/cm. We set the radius of the sphare5 cm  +Z,-q[a,(t)cosfid)+b,(t)sin(hd)], where a,=¢,+{_,
and acceleration of gravitg=980 cm/$. andb,=i({,—¢_,) are real-valued. We take into account

Comparing Figs. @) and 2b), it is clear that the fastest modesn ranging fromn=1 up to 20. Figure 3 depicts the
growing mode(number of fingers developing at a maxi- evolution of the interfaces, for a random choice of phases, at
mum growth rate moves to largen for large radial distance time t=5 s. We evolve from two distinct initial radifa)
(and smalln for small radial distandein order to keep the Ry=a /8, and (b) Ry=a =/4. In both cased{,(0)|
corresponding fastest growitkgand thus the apparent wave- =0.05 cm and we use the same randomly chosen phases. It
length, nearly constant. The same effect occurs in radial flovis evident that for larger radial distancésr equivalently,
in flat space[12]. In addition to the shift to largen, the larger polar angleswe have both faster growth and more

016311-3



MIRANDA, PARISIO, MORAES, AND WIDOM PHYSICAL REVIEW E63 016311

whereSy=sin(R,/a), andR, C, andS all depend on time.

C. Mode coupling analysis

We use the mode coupling equati8) to investigate the
effect of the nonlinear terms in the interface evolution. We
are interested in studying how gravity influences the shape of
the fingering structures, focusing on finger-tip behavior.
Finger-tip splitting and tip-sharpening phenomena are related
to the influence of a fundamental moden the growth of its
harmonic 2. Without loss of generality we may choose the
phase of the fundamental mode so that-0 andb,=0. We

replace the time derivative ternas, andb,, by A(n) a, and
N(n) b,, respectively, for consistent second order expres-
sions. Under these circumstances the equation of motion for
the harmonic cosine mode becomes

FIG. 3. Interface evolution according to Eq.0) att=5 s, for
(a) Ry=a =/8 and(b) Ry=a w/4. Other parameters are given in the
text.

a=A\(2n)ay,+ 3 T(2n,n) a3 (12)
unstable modes, though the characteristic wavelength is not

very different, in agreement with the predictions made fromyhere the finger-tip function is
Figs. 2a) and 2b).

T(onm— 2n Q [(C?+1) A
B. Linear stability analysis with Q>0 (2n,n)= as 2 ma’S? an C
Now consider the nonvanishing injection case. Takihg )
>0 introduces two important new effects. First, inspecting + 3aC (2n"—1) (13)
Eq. (7), we see tha@Q multiplies a term linear im that must 2a%s? '

be added to the growth rate obtained withQ=0. If the

inner fluid is high viscosity, so th&<0, then this new term The corresponding equation for the sine mobgsis not as
in A\ is negative. All modes grow more slowly wiQ>0, interesting as Eq(12), since growth ofby, is uninfluenced
and some may even become stable. Ti@s,0 diminishes  py a,,.
the strength of the instability. Essentially, the flow fills in the  The sign of T(2n,n) dictates whether finger-tip splitting
gaps between the fingers. or finger tip-sharpening is favored by the dynamiitg]. If
~ The second effect is more subtle. Since the unperturbegt(2n n)<0, at second order the result is a driving term of
interface radiusR(t) is now time dependentthe linear  ordera? forcing growth ofa,,<0. With this particular phase
growth rate\ evolves with time as the radial distance of the harmonic forced by the dynamics, theoutwards-
steadily grows. At any instant the interface evolves exponenpginting fingers of the fundamental modetend to split. In
tially with an instantaneous growth rakedepending on the  contrast, ifT(2n,n)>0 growth ofa,,>0 would be favored,
currentR(t). For sufficiently smallQ the instantaneous at  |eading to outwards-pointing finger-tip sharpening.
R(t) nearly equals th&@=0 value for the sam&(t). We A noteworthy point about Eq(13) is that it shows no
call this aquasistaticapproximation, and within this approxi- dependence whatsoever on gravity. In the evaluation of
mation it is clear that an increasing number of modes beT(2n n) from Eq.(6) we found that the term involving grav-
come unstable as time progresses due o the steady increagein F(2n,n) exactly cancels against the term involving
of R(t). The evolution of\ in the quasistatic approximation gravity in \(n)G(2n,n). The second order term driving tip-
is given by the series of curves shown in Fig. 2. splitting in Eq.(12) is therefore independent of the force of
If we wish to study the linear growtivithoutmaking the  gravity, though gravity does generally influence mode cou-
quasistatic approximation, we may integrate the equation ofjing at second and higher orders.
motion (6) exactly, keeping only terms of first order ¢hon Inspecting Eq.(13) we find that, sinceA=—1 and C
the right-hand side. Becauads time dependent, through the - the finger-tip functioriT(2n,n)>0 for bothQ=0 and
variation ofR(t), the exact solution of the linear equation of o~ 0. Equation(13) predicts that gravity-driven flow on a
motion becomes non-exponential and can be written as  sphere leads to patterns showing enhanced finger-tip narrow-
Aln| ing. Informal studies of chocolate syrup fingers on ice cream

S| tanR/2a) ; .
(Q>0) ()= = scoops support this claim.
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