J. Phys.: Condens. Matter 20 (2008) 000000 (4pp)

First-principles simulation of supercooled liquid alloys

M Widom, P Ganesh, S Kazimirov, D Louca and M Mihalkovič

Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Physics, University of Virginia, Charlottesville, VA 22904, USA

E-mail: widom@andrew.cmu.edu

Received 30 August 2007 Published Online at stacks.iop.org/JPhysCM/20/000000

Abstract

Accurate simulation of multicomponent alloys demands a first-principles approach because empirical potentials become increasingly inaccurate and difficult to develop with each additional constituent element. In contrast, the computational difficulty of simulating an alloy from first principles remains essentially independent of the number of elements. However, equilibration times increase with the number of elements, regardless of the choice of interaction, owing to the need for longer-range diffusion to adequately sample configuration space. The difficulty is exacerbated at low temperatures because of the rapid decline of diffusion constants. Here we discuss the application of replica exchange molecular dynamics to aid equilibration of supercooled alloys, and we also mention the possibility of Hamiltonian exchange molecular dynamics to accelerate equilibration at high temperatures.

(Some figures in this article are in colour only in the electronic version)

1. First-principles molecular dynamics simulation

In a multicomponent alloy of N_e distinct elements, $N_e(N_e + 1)/2$ combinations of elements interact pairwise. The number of distinct interactions grows even faster if three-body and higher interactions are included. Small quantitative errors in any of the interactions can lead to large qualitative errors in predictions for outcomes such as pair correlation functions. The likelihood of a satisfactory description of an alloy diminishes as N_e grows large. There is a pressing need to simulate structures containing many elements because of alloy systems such as superalloys and bulk metallic glasses (figure 1) that contain as many as $N_e = 9$ different constituents.

Fortunately first-principles methods exist [1, 2] that are more accurate than interaction potentials even for a single element and for which the computational difficulty remains nearly constant as the number of elements grows. The disadvantage of first-principles methods is that the time required for the simulation is large and grows roughly as the third power of the total number of atoms, N_a , unlike interaction potentials for which order- N_a methods are common. This limits typical simulation sizes to $N_a < 300$ and limits typical run lengths to a few picoseconds.

(Ed: Emily)
Ascii/Word/JPCM/
cm258721/SPE
Liquid and Amorphous Metals
Printed 22/11/2007
Issue no Total pages First page Last page File name Date req Artnum Cover date

The limitation on run length is especially problematic for multicomponent alloys because equilibration and sampling become more difficult as N_e increases. There are two chief difficulties. First of all, generation of a highly independent configuration requires elements diffuse a distance of order their typical separation within the sample (see figure 1). If one element is present at low concentration this distance may be large, and diffusion times grow as the second power of distance. Secondly, if there are many elements there are many possible local structures, requiring correspondingly longer times to sample important configurations. While these difficulties are present for first-principles simulations and empirical potentials alike, they are a greater impediment for first-principles simulations owing to the limitations on run length.

2. Replica exchange method

Diffusion is faster at high temperatures because the rate to cross an energy barrier varies as $\exp(-\Delta E/k_{\rm B}T)$. The replica exchange method [4–6] exploits the relatively fast diffusion at high temperatures to accelerate the sampling of independent configurations at low temperatures. The concept is illustrated

Figure 1. Left: Representative structure of a 6-component bulk metallic glass $Fe_{48}B_6C_{15}Er_2Mo_{14}Cr_{15}$ [3]. The color coding (online) is Fe (red), B (blue), C (gray), Er (yellow), Mo (orange), Cr (green). The simulation cell has periodic boundary conditions and edge length approximately 10 Å. Right: Diffusion plots for $Fe_{63}B_6C_{15}Er_2Mo_{14}$ at T = 2000 K.

Figure 2. Left: Swapping of temperatures among independent runs. Right: Energy fluctuations of each run. Shown is an actual tempering run of duration 1800 fs for the alloy $Fe_{48}B_6C_{15}Er_2Mo_{14}Cr_{15}$ utilizing temperature range T = 1000-1500 K.

in figure 2. Here a run means a time series of configurations evolving from a single initial condition. While a run is held at fixed temperature its energy fluctuates over time. Consider a pair of runs *i* and *j*, currently at temperatures T_i and T_j with instantaneous configurations C_i and C_j at energies E_i and E_j . The probability for any configuration *C* of energy *E* to occur in the equilibrium ensemble at any temperature *T* is proportional to $\exp(-E/k_{\rm B}T)$. Hence we could swap the configurations C_i and C_j between temperatures T_i and T_j . If we carry out the swap with probability $\exp(\Delta E \Delta \beta)$ where $\beta = 1/k_{\rm B}T$, the equilibrium ensemble probabilities will be preserved at T_i and T_j . Only the dynamics (time evolution) will be affected, because runs *i* and *j* continue new temperatures.

In figure 2 swaps are attempted between runs at adjacent temperatures every 20 fs. Over time the temperature of a given run rises and falls in temperature, providing fresh independent configurations at low temperatures generated by the molecular dynamics at higher temperatures. We can achieve deep supercooling by extending this method to lower temperatures. To maintain high swap acceptance rates we take smaller temperature intervals at low temperatures. A good independent set of initial conditions is crucial for runs of this length, as the diffusion of runs between low and high temperature is not particularly fast. This particular simulation would benefit from extending to twice the time. In figure 3 we show well-equilibrated partial pair correlation functions at T = 1000 K obtained from this simulation by disentangling the time series of temperatures to collect configurations specific to each temperature, then average the distribution function over this set. One can also collect histograms of structural energies at each temperature, then reconstruct the temperature-dependent free energy [7].

3. Hamiltonian exchange method

Although the replica exchange is helpful we are still limited by the atomic diffusion rates at our highest temperature. Adding additional runs at still higher temperatures can be effective. However an alternative method [8, 9] results in vastly improved dynamics at high temperatures. The idea is to carry out a pair of high temperature runs, one using first principles for relatively short durations and the other using approximate classical potentials for long durations. Consider a pair of configurations, one obtained from first principles and the other from the classical run. Let ΔE_C be the energy change for the swap evaluated with classical potentials, and let ΔE_Q be the energy change evaluated from first principles. We can swap the configurations between classical and quantum runs with probability $\exp(-(\Delta E_C + \Delta E_Q)/k_BT)$ and bring the

Figure 3. All partial pair correlation functions at T = 1000 K for the replica exchange run on Fe₄₈B₆C₁₅Er₂Mo₁₄Cr₁₅ illustrated in figure 2.

benefits of fast classical dynamics to the quantum simulation without altering the equilibrium ensembles. Of course, the equilibrium ensemble of the quantum simulation differs from the classical simulation, even though they are at the same temperature, because the classical potentials provide an imperfect description of the energetics.

Achieving this goal requires classical potentials of sufficient quality that an acceptably high swap rate is achieved. If the classical potentials were perfect, then $\Delta E_{\rm C} = -\Delta E_{\rm Q}$ and the swap rate would be 1. We started the paper by pointing out the difficulty of producing accurate classical potentials. However, our method actually does not require *very* accurate potentials, especially if the swaps are performed at high temperatures so that the energy errors are not large compared with $k_{\rm B}T$. We created pairwise interaction potentials for Fe–B and Fe–B–C–Mo by fitting energy and force data to an empirical oscillating form. These potentials yielded swap acceptance rates of 0.7 for Fe₈₀B₂₀ and 0.5 for Fe₆₅B₆C₁₅Mo₁₄ at T = 1500 K. The result is a larger sample of independent

configurations for our quantum simulation at T = 1500 K than could have been obtained by conventional molecular dynamics. The acceleration is by several orders of magnitude, limited primarily by the attempted swap frequency.

We will use this supply of highly independent T = 1500 K configurations to increase the sample diversity of our replica exchange molecular dynamics and improve the sampling of the low temperature equilibrium ensemble.

Acknowledgment

This research was supported in part by the DARPA Structural Amorphous Metals Program under ONR Grant No. N00014-06-1-0492.

References

- [1] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
- [2] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758

- [3] Ponnambalam V, Poon S J, Shiflet G J, Keppens V M, Taylor R and Petculescu G 2003 Appl. Phys. Lett. 83 1131
- [4] Swendsen R H and Wang J S 1986 Phys. Rev. Lett. 57 2607
- [5] Yamamoto R and Kob W 2000 *Phys. Rev.* E **61** 5473
- [6] Ganesh P and Widom M 2007 Phys. Rev. B to appear
- [7] Ferrenberg A P and Swendsen R H 1989 Phys. Rev. Lett. 63 1195
- [8] Lyman E, Ytreberg F M and Zuckerman D M 2006 Phys. Rev. Lett. 96 028105
- [9] Sugita Y, Kitao A and Okamoto Y 2000 J. Chem. Phys. 113 6042

Queries for IOP paper 258721

Journal:JPhysCMAuthor:M Widom et alShort title:First-principles simulation of supercooledliquid alloys

Reference linking to the original articles

References with a volume and page number in blue have a clickable link to the original article created from data deposited by its publisher at CrossRef. Any anomalously unlinked references should be checked for accuracy. Pale purple is used for links to e-prints at ArXiv.