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Abstract This chapter introduces calculational methods that can be used for ab-

initio structure prediction in multicomponent alloy systems, with an emphasis

on concepts relevant to high entropy alloys. Specifically we will address density

functional-based calculation of T=0K total energies. Extension to finite tempera-

ture will use cluster expansions for the energies to obtain the chemical substitution

entropy that characterizes the high entropy alloy family. Additional contributions

such as vibrational and electronic entropies will be included as needed. We describe

molecular dynamics and Monte Carlo simulation methods, and the types of infor-

mation that can be obtained from them. Example applications include three high

entropy alloy families, Cr-Mo-Nb-V, Nb-Ti-V-Zr, Mo-Nb-Ta-W, and their binary

and ternary subsystems.

1 Introduction

High entropy alloys form when multiple chemical species intermix freely on a sim-

ple underlying crystal lattice, forming a thermodynamically stable single phase.

However, most mixtures of chemical species will not form a high entropy alloy. In-

stead the mixtures separate into multiple distinct phases, and some of these phases

might be complex crystal structures. Thermodynamic states of mixtures as functions

of chemical composition and temperature are recorded in phase diagrams. While

the stable crystal structures of almost all pure elements are known, as are the phase

diagrams and crystal structures of most binary intermetallics, many ternary phase

diagrams have not been determined, and almost no quaternary or higher phase dia-

grams are known. The discovery of high entropy alloys provides an opportunity to

make progress on this scientific frontier.
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This chapter outlines how basic physical principles can be used to predict the for-

mation and stability of high entropy alloys. Conceptually the approach is straight-

forward. Every thermodynamic phase α has a Gibbs free energy Gα that depends

on composition and temperature. We must calculate the free energies of different

phases or combinations of phases and find the minimum. In practice we use quan-

tum mechanics to calculate the total energy of specific crystal structures of interest,

yielding the zero temperature limit of free energy. We then extend the free energy

to finite temperature by using methods of statistical mechanics to include a vari-

ety of sources of entropy. Examples will be given drawn from mixtures of refrac-

tory elements. We will discuss certain binary compounds in detail, then move on

to ternaries and finally quaternaries. The concepts and procedures described here

generalize directly to non-refractory metals and to quinary and higher order alloy

systems, although these lie outside the scope of this chapter.

Our approach differs from an alternative and highly successful method known

as CALPHAD (see Chapter 12) for calculation of phase diagrams. CALPHAD

uses databases of thermodynamic information based on experimental measurements

(when available) supplemented by numerical interpolation schemes to fill in un-

known territory. Ultimately CALPHAD should be merged with first principles total

energy calculations to exploit the relative advantages of each. First principles ex-

cels at prediction of low temperature stability, obtaining enthalpies that while not

exact are simply unavailable from experiment. CALPHAD excels at modeling of

transition temperatures and phase diagram topology, as these are often determined

experimentally with high reliability.

To illustrate these methods, we discuss in detail three overlapping examples of

four-component alloy systems consisting of refractory metals. We examine Mo-Nb-

Ta-W, which is known to readily form a stable high entropy alloy [36]; Nb-Ti-V-

Zr, which exhibits fine-grained second phase precipitation [35]; and Cr-Mo-Nb-V,

which has not been considered experimentally to date, but which we predict should

be stable at high temperature and decompose at low temperature. Understanding the

quaternary alloy system requires, in addition, understanding all four ternary and all

six binary subsystems. Indeed, our calculations confirm or shed new light on several

experimentally known phase diagrams in addition to making some new predictions.

2 Total energy calculation, T=0K

Our goal in this section is to predict the T=0K limit of alloy phase diagrams by

calculating the total energy of potential ground state structures and finding the min-

imum. Two major and distinct challenges arise immediately: 1) How to calculate

the energy of a given crystal structure; 2) how to choose candidate structures whose

energies should be determined. The first problem has a conceptually simple, though

technically challenging answer. We will apply known laws of quantum mechan-

ics that directly provide the desired quantity. The calculation will be made tractable

through the use of well established approximations of density functional theory [28].
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The second problem has no obvious solution. Although at a given composition there

should be a unique minimum energy structure, we know of no method to predict

what it will be. Since there are infinitely many conceivable structures, we cannot

calculate all possibilities. Rather, we will make a finite number of plausible guesses,

based on a combination of physical intuition, chemical analogy and computer as-

sisted search. This latter approach will exploit the fact that high entropy alloy fami-

lies tend to form simple crystal lattices so that a cluster expansion of the total energy

can accelerate our search for the ground state.

2.1 Density Functional Theory

Quantum mechanics tells us that the ground state energy of a system of interacting

particles is the lowest eigenvalue of the system Hamiltonian. The Hamiltonian is

an operator that expresses the total energy by adding together the kinetic and po-

tential energies. For bulk matter we may separate atoms into positively charged nu-

clei, which are sufficiently massive that they may be treated as fixed point charges,

and negatively charged electrons, whose mass is sufficiently low that they must

be described through a position-dependent many-body wave function that is the

eigenvector of the Hamiltonian. Electrons interact with each other and with the nu-

clei through the Coulomb potential. The eigenvalue equation to be solved is the

Schroedinger equation of the system,

HΨ (N)(r1, . . . ,rN) = EΨ (N)(r1, . . . ,rN), (1)

with Ψ (N) the many-body wave function.

The resulting interacting many-body problem, though well-posed, is computa-

tionally intractable owing to the high dimensionality of the Hilbert space in which

the the many-electron wave function must be expressed. Hohenberg and Kohn [16]

argued the many-body calculation could be replaced with the simpler problem of

finding the electron density ρ(r) that minimizes a total energy functional E[ρ(r)].
Kohn and Sham [23] re-expressed this minimization problem as a coupled set of

single electron Schroedinger equations that can be solved individually (but self-

consistently),

(

−h̄2

2m
∇2

r +Ve(r)+
∫

dr′
ρ(r′)

|r− r′|
+Vxc[ρ(r)]

)

ψi(r) = εiψi(r). (2)

The terms on the left-hand side represent, respectively, the single electron kinetic

energy, the “external potential” (electron-ion coupling), electron-electron interac-

tions, and the “exchange-correlation potential”. The equations for the single particle

wavefunctions ψi are coupled through the electron density

ρ(r) =
N

∑
i=1

|ψi(r)|
2. (3)
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Although the replacement can be exact in principle, in practice the exact form of

Eq. (2) is unknown, as it collects difficult to calculate effects of electron exchange

and correlation into the unknown exchange-correlation potential Vxc[ρ(r)] that is a

functional of the electron density. The exchange correlation functional can be ap-

proximated to accuracy sufficient for our present purposes using the familiar local

density approximation [4] (LDA) that replaces the exchange correlation functional

with the value of the exchange correlation potential of a uniform electron gas whose

density matches the local value of ρ(r) or using the generalized gradient approxima-

tion [32] (GGA) that supplements the local density approximation with corrections

dependent on the gradient of the density at the same point.

For the examples given in this chapter we solve the equations of density func-

tional theory using a program known as VASP [24, 25]. This program exploits trans-

lational symmetry of crystal structures to express the single electron wave functions

in a plane wave basis (i.e. a Fourier series). To ensure convergence of total energies

we use dense k-point grids and truncate the basis at plane wave energy of 400 eV,

significantly higher than the VASP defaults. We select the Perdew-Burke-Ernzerhof

generalized gradient approximation [32] and also make an approximation that treats

atomic core electrons approximately based on a variant of pseudopotential known

as the Projector Augmented Wave method [3, 26].

No simpler approach is feasible for total energy calculation of high entropy al-

loys. Popular approaches such as pair potentials, embedded atom potentials, and

similar empirical forms can be useful for modeling pure elements and even some

binary compounds. Unfortunately these approximations contain adjustable parame-

ters whose number proliferates with each additional chemical species, making them

impossible to fit accurately as the number of chemical species increases. In contrast,

the complexity and accuracy of density functional theory is relatively independent of

the number of species present. The greatest utility of empirical potentials would be

the study of abstract model systems whose properties can be defined for theoretical

and computational convenience rather than realism.

2.2 Ground State Prediction

The lowest energy structure is known as the ground state and is the stable form of

matter in the limit T → 0K. Note that we adopt the absolute Kelvin scale of temper-

ature throughout this chapter. Owing to the third law of thermodynamics (vanishing

entropy) this structure is essentially unique for a given composition and pressure.

Since we fix the pressure (generally at P= 0, which approximates atmospheric pres-

sure) our energy is actually an “enthalpy”

H = min
V

[E(V )+PV ], (4)

and the corresponding free energy at finite temperature is the Gibbs free energy
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G(T,P) = H −TS. (5)

We need a notation for crystal structures. Among many possible schemes, we

adopt the Pearson notation as especially convenient. The Pearson notation consists

of: a lowercase letter a,m,o, t,h,c indicating, respectively, asymmetric, monoclinic,

orthorhombic, tetragonal, hexagonal or cubic; an uppercase letter PRFICBA in-

dicating primitive, rhombohedral or some type of centering; a number indicating

the number of atomic sites per unit cell. For example, hP2 indicates HCP, while

cI2 indicates BCC. Because many different compounds can form the same crys-

tal structure, and vice-versa, we will append the Pearson symbol to the compound

name to reduce ambiguity. Thus Cr.cI2 and Nb.cI2 are BCC chromium and niobium,

while Cr2Nb.cF24 and Cr2Nb.hP12 are Laves phases (specific types of tetrahedrally

close-packed Frank-Kasper phases), with hP12 being Strukturbericht C14 (proto-

type MgZn2) and cF24 being Strukturbericht C15 (prototype Cu2Mg).

The difficulty is finding the unique minimum enthalpy structure, because there

are infinitely many conceivable arrangements among which we must find the mini-

mum. Fortunately we often have experimental hints, as well as chemical and physi-

cal intuition and computer algorithms, that allow us to focus our search on a limited

set of possibilities. By employing such constraints we risk the possibility that we

exclude the true ground state and will always be confronted with an associated un-

certainty in our predictions.

For most pure elements experimentalists voice little doubt about the stable form

at low temperature and atmospheric pressure, and DFT calculations generally agree

this form is the lowest in energy among competing possibilities [29] (elemental

boron is a notable exception [43]). In many cases the elements undergo allotropic

transitions to alternative structures as temperature rises. Notably, among the refrac-

tory metals in the Sc and Ti columns of the periodic table (groups IIIA and IVA),

the ground state structure is a high density, close-packed (FCC or HCP) structure.

At higher temperatures the structure transforms to a lower density, loosely packed

BCC structure. The mechanism for this transformation is the entropy of thermal

vibrations, as will be explained in detail in Sect. 3.2.
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Fig. 1 Enthalpies of formation in the (a) Cr-Nb and (b) Nb-V binary alloy systems. Plotting

symbols use thick circles for known low temperature stable phases, thin circles for known high

temperature phases, squares for hypothetical structures, diamonds for representative structures of

the BCC solid solution, and plus signs for cluster expansion fits.
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Moving from pure elements to compounds introduces a composition variable x

that is one-dimensional in the case of a binary compound but multidimensional in

general. Many compounds exist as a pure phase at a precise value or over a limited

range of compositions x. The thermodynamic state at composition x between two

pure phases of composition xα < x < xβ consists of a mixture of the two phases

α and β . Fig. 1a, which plots enthalpies of formation (enthalpy difference ∆H be-

tween the compound at composition x and the pure elements at compositions 0 and

1) of various structures containing elements Cr and Nb, illustrates the point. In this

figure, ∆H < 0 indicates structures whose enthalpy is lower than a mixture of pure

crystalline Cr and Nb. Here we find two negative enthalpy compounds, both at com-

position Cr2Nb. At compositions with Nb content less than x = 1/3 the ground state

corresponds to a mixture of two coexisting crystals, one of pure Cr.cI2, the other of

pure Cr2Nb.cF24. The enthalpy of formation of this mixture lies along the tie-line

joining the enthalpy of formation of Cr2Nb.cF24 to Cr.cI2. Similarly, at composi-

tions x > 1/3 the ground state consists of Cr2Nb.cF24 coexisting with Nb.cI2.

The vertices Cr.cI2, Cr2Nb.cF24 and Nb.cI2, together with the line segments

joining them constitute the convex hull of a scatter plot of formation enthalpy ∆H

vs. composition x. This convex hull forms the sequence of predicted ground states

as a function of composition. The structure Cr2Nb.hP12 has a negative enthalpy of

formation, indicating it is favorable to form from pure elements, but it lies above the

convex hull by an amount ∆E = 0.01 eV/atom, indicating it is thermodynamically

unstable relative to the ground state. Indeed, the hP12 variant of Cr2Nb is reported

to be a high temperature stable phase.

Also visible in Fig. 1a are a variety of hypothetical crystal structures formed by

decorating sites of a BCC lattice with Cr and Nb atoms in various specific repeating

patterns. We shall refer to these structures as representative structures of the BCC

solid solution. Keep in mind that the true solid solution is infinite in size and contains

within it every possible finite representative structure. One specific such structure,

known as a special quasirandom structure [46] (SQS, see Chapter 10) is chosen

because its correlation functions closely match an idealized perfectly random distri-

bution of Cr and Nb among the BCC lattice sites. The SQS can be considered as a

realization of the disordered structure represented by the coherent potential approx-

imation (CPA, see chapter 9). Another structure, which is the most ordered possible

arrangement of two species on a BCC lattice, is cP2 (Strukturbericht B2, proto-

type CsCl) which places one species at cube vertices and the other species at cube

centers. All of these decorated BCC lattices have positive enthalpy of formation in-

dicating their formation is unfavorable at low temperature, although it is possible

that some source of entropy could stabilize them at high temperature.

For convenience, we give here some representative energies of SQS and cP2

structures in three quaternary alloy families that we will focus on in this chapter, in

addition to their binary and ternary subsystems.

Our ground state prediction remains tentative because it includes only finitely

many trial structures. There is no guarantee that the experiment has found all the

relevant structures, as it can be quite difficult to ensure the experimental samples

remain in thermodynamic equilibrium, especially at low temperatures where atomic
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Cr-Mo-Nb-V alloy system

Binary SQS cP2 cF24 Tm Ternary SQS cF24 Tm Quaternary SQS cF24 Tm

Cr-Mo 95 61 95 2093 Cr-Mo-Nb 65 46 2243 Cr-Mo-Nb-V 27 -22† 2180

Cr-Nb 139 62 -34 1893 Cr-Mo-V -35 62 2105

Cr-V -50 -74 50 2040 Cr-Nb-V 81 -96 2022

Mo-Nb -71 -106 91 2742 Mo-Nb-V -28 -40 2353

Mo-V -97 -118 17 2183

Nb-V 63 55 -60∗ 2133

Table 1 Representative formation enthalpies in the Cr-Mo-Nb-V quaternary and its subsystems.

Units are meV/atom. Equiatomic SQS include a 16-atom structure for binaries [20], a 36-atom

structure for ternaries [19] and a 16-atom structure for quaternary that has vanishing first and sec-

ond neighbor correlations. Binary cP2 structure is CsCl-type (cP2). cF24 structures place smaller

atoms on 16d sites, larger atoms on 8a (∗ is based on hP12, † has composition Cr2MoNbV2, ternar-

ies are equiatomic). Melting temperatures (units are K) are experimental minimum solidus temper-

atures for binaries, and averages are given for ternaries and quaternary.

Nb-Ti-V-Zr alloy system

Binary SQS cP2 cF24 Tm Ternary SQS cF24 Tm Quaternary SQS cF24 Tm

Nb-Ti 32 70 215 1943 Nb-Ti-V 63 84 1977 Nb-Ti-V-Zr 113 96 1884

Nb-V 63 55 -60∗ 2133 Nb-Ti-Zr 66 213 1929

Nb-Zr 64 119 49 2018 Nb-V-Zr 133 38∗ 1892

Ti-V 61 124 91 1855 Ti-V-Zr 143 100 1736

Ti-Zr 53 113 201 1827

V-Zr 164 233 43 1526

Table 2 Representative formation enthalpies in the Nb-Ti-V-Zr quaternary and its subsystems.

Other details as in Table 1.

Mo-Nb-Ta-W alloy system

Binary SQS cP2 Tm Ternary SQS Tm Quaternary SQS Tm

Mo-Nb -71 -106 2742 Mo-Nb-Ta -70 2793 Mo-Nb-Ta-W -73 2885

Mo-Ta -110 -186 2896 Mo-Nb-W -58 2793

Mo-W -0.4 -10 2896 Mo-Ta-W -97 3028

Nb-Ta -4 1 2742 Nb-Ta-W -33 2926

Nb-W -34 -25 2742

Ta-W -67 -94 3293

Table 3 Representative formation enthalpies in the Mo-Nb-Ta-W quaternary and its subsystems.

Other details as in Table 1.

diffusion vanishes. A variety of alternative methods exist that aid in the exploration

of potential ground states. Probably the most powerful, in the sense that the odds

of success are high, is invoking chemical and geometrical analogy [29]. Another

method for generating trial structures is known as genetic or evolutionary algo-

rithms [12, 34]. This method generates random trials, then explores combinations of

successful attempts to create new trials. While it has enjoyed some successes, its ef-

ficiency in general remains to be proven. Other methods include basin hopping [40]

and minima hopping [13], which jump between nearby potential energy minima. A

final method, the cluster expansion, proves quite effective for high entropy alloys,

as we discuss below in section 2.3.
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Among the columns of the periodic table starting with Ti, V and Cr, the reported

structures include the hP2, cI2, cF24 and hP12 structures previously discussed.

However, not every structure occurs in every combination of elements. An exam-

ple of discovery by chemical analogy is illustrated in Fig. 1b, where we examine

the same structures (cF24, hP12 and BCC-based structures) for Nb-V as we did

previously for Cr-Nb. Here, we use square plotting symbols to indicate that cF24

and hP12 are hypothetical structures, proposed on the basis of chemical analogy.

Although they have not been reported to occur experimentally, there is a clear ener-

getic preference for NbV2.hP12, well outside the expected errors of DFT formation

enthalpies, which are typically a few meV/atom. In sections 3.1 and 3.2 below, we

suggest an explanation for this discrepancy.

Noting that hP12 and cF24 are Laves (Frank-Kasper, F-K) phases characterized

by tetrahedral close packing into specific clusters related to icosahedra, we invoke

geometric analogy to investigate two other F-K structures, of Pearson types cP8

(A15) and hR13 (µ). We place the smaller Cr atoms at low coordination sites, while

the larger Nb atoms occupy higher coordination sites. We find that the µ phase

slightly outperforms the decorated BCC lattices, but in fact neither of these alter-

native F-K structures produce a new ground state for Cr-Nb, in agreement with

experiment.

2.3 Cluster expansion

Because the high entropy alloys distribute multiple chemical species among sites of

a common crystal lattice, we can use the underlying lattice structure to our advan-

tage. The idea [5, 8, 45] is to represent the chemical species at each lattice site i with

a variable σi (here for simplicity we take σi =±1 for the case of two species), then

expand the energy in a series of pair, three-body and higher interactions,

E(σ1, . . . ,σn) = ∑
{i, j}

Ji jσiσ j + ∑
{i, j,k}

Ji jkσiσ jσk + · · · . (6)

The cluster interaction coefficients J can be fit to a database of DFT energies. Al-

though the variables are assigned to lattice sites, it is important to note that the

coefficients can be fit to relaxed energies, so that displacements off the ideal sites

caused by size and chemical variation can be included. Given a cluster expansion

it becomes quick and easy to estimate the energies of thousands of trial structures,

then the best predictions can be checked with higher precision with a full DFT cal-

culation. A convenient implementation of this method named the Alloy Theoretic

Automated Toolkit [42, 41] (ATAT) has been placed in the public domain. This is

the method that was used to generate the trial BCC decorations of Cr-Nb and Nb-V

shown in Fig. 1.

The cluster expansion can be extended to multicomponent systems. Fig. 2 illus-

trates the case of the Cr-Nb-V ternary. Conveniently the databases of BCC energies
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Fig. 2 Convex hull of the

enthalpy of formation in the

Cr-Nb-V alloy system. Pre-

dicted stable phases (convex

hull vertices) are shown in

black. Convex hull vertices

are connected by tie-lines

and by triangular tie-planes

corresponding, respectively,

to two- and three-phase co-

existence regions. Structures

above the convex hull by

∆E < 100 meV/atom are

shown as blue diamonds,

while higher energy structures

are shown as red crosses. Cr

Nb

V

  (Cr,V)
2
Nb.cF24

  NbV
2
.hP12

   (Cr,V) ordered
   0 < ∆E < 100
   100 < ∆E

for the three binaries (Cr-Nb, Nb-V and Cr-V) can be re-used as the starting point

for the full ternary. In this figure, only the predicted lowest energy structure is shown

at each composition tested. The series of stable Cr-V binaries based on various pat-

terns of chemical order on the BCC lattice (diamonds), demonstrate that formation

enthalpies in the Cr-V binary are negative [10, 11]. The stable (Cr,V)2Nb sequence

has structure cF24, except for V2Nb which is hP12. Based on these data, we predict

that at low temperature any ternary combination of Cr-Nb-V will decompose into a

mixture of cF24 or hP12 together with pure elemental or binary BCC-based struc-

tures. In the following we use the cluster expansion to predict the behavior at high

temperature.

3 Extension to finite temperature

In order to predict the phase behavior at high temperature we combine the quantum-

based energetics with principles of statistical mechanics and thermodynamics. Our

discussion will be easiest if we neglect thermal expansion. At constant volume the

relevant free energy is the Helmholtz free energy F(V,T ), which differs from the

Gibbs free energy by the Legendre transform

G(T,P) = min
V

[F(V,T )+PV ] , (7)

similar to the relationship Eq. (4) of energy and enthalpy. The Helmholtz free energy

is given by the logarithm of the canonical partition function

F =−kBT lnQ, (8)

where the partition function
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Q =
1

N!

(

2πmkB

h2

)3N/2

Z (9)

factorizes into a contribution from the momenta times a configuration integral

Z =

∫

V

N

∏
i=1

dri e−E(r1,...,rN)/kBT . (10)

The integrand in Eq. (10) is known as the Boltzmann factor, and is proportional

to the probability of a given set of positions (r1, . . . ,rN). In the following we shall

drop the momentum factors, as they are universal to all ordinary matter, and hence

thermodynamically irrelevant.

Evaluation of the configuration integral Z is our main task. The position depen-

dent energies E(r1, . . . ,rN) will be obtained from DFT. However, evaluation of the

integral requires many evaluations of E , each of which is very time consuming. We

will take advantage of the exponential dependence of the Boltzmann factor to make

further approximations.

In crystalline solids atoms typically vibrate within small distances of their equi-

librium positions. Indeed, the character of the energy landscape is such that it pos-

sesses a collection of local minima with approximately quadratic variation in the

vicinity of each minimum. Each local minimum corresponds to a discrete arrange-

ment of atoms that we shall refer to as a “configuration”, while the small contin-

uous displacements consist of mixtures of vibrational phonon modes. Temporar-

ily restricting our attention to a single configuration Γ , we may evaluate the con-

figuration integral Z(Γ ) by integrating over a neighborhood of Γ . In accordance

with Eq. (8) we define the free energy of the configuration Γ as the logarithm

F(Γ ) = −kT lnZ(Γ ), which we separate into the energy E(Γ ) of the discrete con-

figuration Γ plus the vibrational free energy F(Γ ) = E(Γ )+Fv(Γ ). Alternatively

we may factorize the configuration integral into separate contributions from the en-

ergy of the configuration E(Γ ) and the vibrational free energy Fv(Γ ),

Z(Γ ) = e−E(Γ )/kBT e−Fv(Γ )/kBT . (11)

Since the Boltzmann factor nearly vanishes far from the discrete configurations,

the entire configurational integral can be approximated as a sum of integrals around

each configuration. If we were to find that Fv depended only weakly on Γ , then in

view of the factorization expressed in Eq. (11) we could pull a common factor out

of the sum,

Z ≈ ∑
Γ

Z(Γ )≈

(

∑
Γ

e−E(Γ )/kBT

)

e−Fv/kBT ≡ e−Fc/kBT e−Fv/kBT (12)

where we define Fc = kBT lnZc with Zc = ∑Γ e−E(Γ )/kBT as the partition function

of the discrete configurational degrees of freedom. Finally, we note the separation
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of the free energy into a discrete configurational part, and a contribution from the

continuous vibrations, F =−kBT lnZ = Fc +Fv.

The preceding discussion assumed the integration in Eq. (10) was carried out

at fixed volume V , and hence the resulting free energy was a Helmholtz free

energy F(N,V,T ). Additionally integrating over the volume, including a factor

exp(−PV/kBT ) in the integrand, takes us to a constant pressure ensemble, where

the corresponding free energy is a Gibbs free energy G(N,P,T ). Equivalently we

could perform the Legendre transform in Eq. (7). The decomposition into discrete

configurational and continuous vibrational contributions follows as above, resulting

in the decomposition G = Gc +Gv.

3.1 Example: configurational free energy

As an example of configurational free energy, consider the case of Nb-V. As seen

in Fig. 1b, the representative structures of the BCC solid solution are all posi-

tive in energy, implying immiscibility, in seeming contradiction to the experimen-

tally assessed phase diagram [37] which shows a continuous solid solution. How-

ever, the assessed phase diagram only goes down to T = 2173K. Indeed, exper-

iments generally cannot achieve true equilibrium at temperatures far below their

melting temperature. Meanwhile the ideal solid solution possesses k ln(2) of en-

tropy suggesting entropic stabilization relative to phase separation at temperature

T = 0.063eV/kB ln(2) = 1055K, where we take the SQS energy from Table 1 as a

characteristic value. However, the actual energy and entropy of the solid solution

cannot be estimated as simply as suggested in this paragraph. Short-range corre-

lations in chemical occupation, related to the actual chemical interactions among

constituents, will tend to reduce both the energy and entropy.
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Fig. 3 (a) Thermodynamics of NbV2. Enthalpy and configurational free energy of BCC (cI2)

solid solutions are obtained from Monte Carlo simulations. Free energy ∆GhP12 of NbV2 includes

vibrational free energy from Eq. (14). Tm’s are experimental melting temperatures. Tc is predicted

critical temperature of Nb-V, while Tsep is phase separation temperature of NbV2 and T ∗ is pre-

dicted temperature for stability of NbV2.hP12. (b) Thermodynamics of CrMoNbV. Notation as in

(a).
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Monte Carlo simulation can properly deal with these correlations, by sampling

all possible configurations weighted by their Boltzmann factors which favor en-

ergetically favorable structures. Fig. 3 illustrates results obtained using the emc2

Monte Carlo program of the ATAT toolkit [41] in conjunction with energies de-

fined by the cluster expansion obtained using the maps program [42]. We take

as our initial condition a disordered arrangement of Nb and V on a 6 × 6 × 6

BCC supercell, with global stoichiometry NbV2. The ideal entropy of S/kB =
(1/3) ln(3) + (2/3) ln(3/2) = ln1.89 is slightly less than ln2 owing to the stoi-

chiometry being non-equiatomic. Together with the initial energy of 0.058 eV/atom,

this entropy determines the free energy at high temperatures. At fixed temperature

T we attempt to swap positions between pairs of atoms of differing species, al-

ways accepting the swap if it lowers the total energy, and accepting with probability

exp(−∆E/kBT ) if it raises the energy. The mean energy at temperature T provides

the configurational contribution to the enthalpy, Hc, while thermodynamic integra-

tion provides the relative configurational free energy Gc between nearby temper-

atures. Note that the slope of GcI2(T ) goes asymptotically to ln1.89 at high tem-

perature. Note also that we may perform Monte Carlo at any desired temperature,

including above the actual melting temperature, because we are simulating a lattice

gas model with discrete configurations.

An alternative Monte Carlo method [41] attempts to swap the chemical identity

of individual atoms, rather than interchanging positions of atom pairs. Since the

total number of atoms is preserved, but not the global stoichiometry, this simula-

tion occurs in the semi-grand ensemble. The ATAT program phb uses this method

to identify the boundaries of coexisting phases. When applied to the case of Nb-

V, this method confirms the existence of a low temperature miscibility gap, which

closes in a critical point at temperature Tc = 1400K, far below the melting point.

The phase boundary passes through stoichiometry NbV2 at an even lower temper-

ature, Tsep = 1250K. It is thus no surprise that experiments fail to identify phase

separation in Nb-V, as this is predicted to occur far below the melting temperature

which ranges from 2133K close to NbV2 up to 2742K depending on composition,

and hence equilibration will prove difficult. Similar conclusions were reached in an

independent study [33].

According to the DFT calculated enthalpies, an additional competitor to the

solid solution, other than phase separation, is formation of the predicted NbV2.hP12

complex intermetallic, whose enthalpy of formation of -0.060 eV/atom lies on the

convex hull implying stability in the limit of T → 0K. Since the tetrahedral close

packing exhibits sites of differing coordination number that favor specific chemi-

cal species, we assume this phase possesses no appreciable configurational entropy,

and hence its configurational Gibbs free energy is simply given by its formation

enthalpy, as indicated in Fig. 3. Notice that the solid solution free energy crosses

the hP12 enthalpy at a temperature that happens to be close to the melting temper-

ature. Accordingly, if vibrational free energy were to be neglected, hP12 would be

expected to be the stable phase from Tm on down at composition NbV2. The fact

that NbV2 has not been observed experimentally suggests that we must consider

vibrational free energy, as we do below in section 3.2.
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The reader may wonder why the solid solution beats NbV2.hP12, but not Cr2Nb.cF24,

since the formation enthalpy of NbV2.hP12 is even greater in magnitude than for

Cr2Nb.cF24. However, as can be seen in Fig. 1, the range of representative solid

solution structure energies in Cr-Nb are nearly double those in Nb-V. The Monte

Carlo simulated critical temperature of Tc = 2950K lies far above the melting point

Tm = 1893K. Although Cr exhibits 25% solubility in Nb, at higher Cr contrations

the solid solution is unstable to the formation of Cr2Nb.cF24. Thus we understand

the high temperature Cr-Nb-V ternary phase diagram [38], which consists of BCC

solid solutions along the Cr-V and Nb-V binary edges, while Cr2Nb.cF24 is stable

as a binary and extends stably far into the interior of the ternary composition space.

3.2 Example: vibrational free energy

The configurational integral Z in Eq. (10) restricted to the region of configuration

space nbd(Γ ) surrounding the specific configuration Γ becomes

Z(c) =

∫

nbd(Γ )

N

∏
i=1

drie
−E(r1,...,rN )/kBT . (13)

and the free energy is F(Γ ) = −kBT lnZ(Γ ). Provided that E varies quadratically

in the vicinity of the local minimum Γ , the integrand becomes a Gaussian that can

be integrated analytically. The resulting vibrational free energy is

Fv = kBT

∫

g(ω) ln [2sinh(h̄ω/2kBT )]dω (14)

where g(ω) is the vibrational (phonon) density of states. In the limit of T → 0 we

find Fv consists entirely of the zero point energy of the harmonic phonon modes,

while at elevated temperatures Fv grows negative. The form of this equation re-

veals that an excess of low frequency modes makes Fv grow negative rapidly, owing

to a high vibrational entropy. We will restrict our discussion in this chapter to the

harmonic approximation, whose validity diminishes at elevated temperature. The

quasiharmonic approximation is a mild generalization that takes into account the

volume-dependence of vibrational frequencies (Grüneisen parameters) and thus in-

corporates anharmonic effects leading to thermal expansion.

To compute the phonon spectrum we use the force constant method [27]. The

force constants give the forces on one atom due to a displacement of another via

the second derivative of total energy ∂ 2U/∂Ri∂R j, which can be evaluated from

density functional perturbation theory within VASP. We convert this to a dynamical

matrix D(k) by weighting the rows and columns by inverse atomic masses, and

then Fourier transforming at wavevector k. Eigenvalues of the dynamical matrix are

phonon frequencies ω(k), which can be converted into a density of states g(ω) by

integrating over the Brillouin zone,



14 Michael Widom

g(ω) =

∫

BZ
δ (ω −ω(k))d3k. (15)

In practice, we choose to sample the frequencies on a dense grid in k-space, then

smear the distribution to approximate g. This procedure must be performed in a cell

of sufficient size that all important interatomic force constants are represented.

0 10 20 30
h
_ ω  [meV]

0

0.1

0.2

0.3

0.4

g(
ω

) 
 [m

od
es

/m
eV

/a
to

m
]

V
2
Zr.cF24

V.cI2
Zr.hP2
∆F

0 500 1000
T  [K]

-0.4

-0.2

0

F
v

-6 -4 -2 0 2
E  [eV]

0

1

2

3

4

5

6

7

D
(E

) 
 [s

ta
te

s/
eV

/a
to

m
]

0 500 1000
T  [K]

-0.01

0

F
e

a) b)

c) d)

Fig. 4 Vibrational density of states in the V-Zr alloy system; (b) electronic density of states (E is

relative to the Fermi level EF ); (c) and (d) corresponding free energies.

As a concrete example, consider the problem of stability of V2Zr.cF24. The

assessed phase diagram shows this phase as stable from low temperature up to

1592K. However, DFT calculations (Table 2) suggest a formation enthalpy of +43

meV/atom, indicating the state is unstable at low temperature. Probably this phase

is actually stable only at high temperatures where it is formed, and simply remains

metastable at low temperature. We need to find a source of entropy that can lower

the free energy of the compound relative to that of the competing elements. Sub-

stitutional entropy is unlikely, as the two atomic species play distinct roles in this

tetrahedrally close packed structure. The small V atoms center CN=12 icosahedra,

while the larger Zr atoms center CN=16 polyhedra.

Fig. 4 compares the vibrational densities of states of the V2Zr.cF24 compound

with those of the pure elemental states V.cI2 and Zr.hP2. Owing to its large mass, Zr

exhibits lower frequency modes, and hence more negative vibrational free energy,
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than the lower mass V, with V2Zr falling in between. Although individual vibrational

free energies are large, their differences are small, and comparable to the discrete

configurational free energy. Combining the favorable vibrational free energy with

the unfavorable formation enthalpy, ∆H +∆Fv, we find that the V2Zr compound is

unstable to separation into pure elements below T ∗ = 1290K, but is stable above

this temperature. One factor contributing to the vibrational entropy of V2Zr.cF24

are the low frequency modes below 5 meV/atom. These reside predominantly on V

atoms (counterintuitively, given the low V mass) and appear related to an unusually

long V-Zr bond length in this structure.

Note that Zr undergoes an allotropic transition from its low temperature α (hP2)

form to high temperature β (cI2) at T = 1136K, which is lower than the T = 1290K

at which we just predicted V2Zr.cF24 becomes stable. Hence we should have com-

pared with the free energy of Zr.cI2 rather than hP2. Unfortunately Zr.cI2 is mechan-

ically unstable, leading to phonon modes with imaginary frequencies ω . Eq. (14)

cannot be used to calculate the vibrational free energy, requiring more sophisticated

approaches [2, 6]. Alternatively, we can look up the NIST Janaf [31] table to find

that the entropy jump at the α/β transition amounts to 3.7× 10−5 eV/atom/K. In-

cluding this additional stability of β raises the predicted stability temperature of

V2Zr.cF24 to T = 1380K.

As a second example, recall the mysterious absence of NbV2.hP12 from the ex-

perimental phase diagram despite its favorable enthalpy (Figs. 1b, 3a). Vibrational

free energy provides the explanation. As a representative of the BCC solid solution

we choose a specific structure of Pearson type tI6, and presume that its vibrational

free energy is representative of the entire ensemble. Indeed, we find that the Gv

of tI6 matches the composition-weighted Gv of pure Nb.cI2 and V.cI2 to within 2

meV/atom over the entire temperature range of interest (too low to be worth includ-

ing in Fig. 3), despite the individual values reaching approximately -1.2 eV/atom at

Tm, justifying our neglect of the structure-dependence within the solid solution. In

striking contrast, the frequency spectrum of hP12 is shifted to high frequencies rel-

ative to BCC, owing to the tetrahedral close packing of the Laves phase contrasting

with the loose packing of BCC. Consequently the vibrational free energy of hP12

greatly exceeds the pure elemental reference points, ∆Fv is positive, leading to the

upwards slope of ∆G in Fig. 3, causing the free energy of hP12 to cross with the

solid solution at T ∗ = 1100K. We predict that the BCC solid solution is thermody-

namically stable from melting at Tm = 2133K down to the critical point for phase

separation at Tc = 1400K. The hP12 Laves phase gains stability at a slightly lower

temperature T ∗ = 1100K and remains stable down to T = 0K. The low temperature

at which hP12 gains stability inhibits its formation experimentally.

Notice that the enthalpically favorable NbV2.hP12 was dstabilized by Fv, while

the enthalpically unfavorable V2Zr.cF24 was stabilized. Strong bonding, which low-

ers ∆H, increases vibrational frequencies ω , in turn raising Fv.
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3.3 Electronic free energy

Excitations of the electron gas contribute entropy to an associated electronic free

energy Fe(T ). Excitations are described by the Fermi-Dirac occupation function

fT (E) =
1

1+ exp[(E − µ)/kBT ]
(16)

representing the occupation probability f of states of energy E at temperature T

given electron chemical potential µ . This function interpolates from full occupation

( f = 1) for states below µ to complete vacancy ( f = 0) for states above, with in-

termediate values restricted to energies within a few kBT of the chemical potential,

which thus approaches the Fermi energy EF at low T .

In combination with the electronic density of states, D(E), obtained from first

principles calculations, we can evaluate the electronic band energy and entropy

U(T ) =

∫

D(E)(E −EF)( fT (E)− f0(E))dE

S(T ) =−k

∫

D(E)[ fT (E) ln fT (E)+ (1− fT (E)) ln(1− fT (E))]dE,
(17)

and set Fe(T ) =U(T )−T S(T ). Since low temperature excitations are restricted to

the vicinity of EF , the results are approximately proportional to the density of states

at the Fermi level [22],

U(T )≈
π2

6
D(EF)k

2T 2, S(T )≈
π2

3
D(EF)k

2T, Fe(T )≈−
π2

6
D(EF)k

2T 2. (18)

The resulting quadratic variations are evident in Fig. 4, with coefficients propor-

tional to D(EF). The electronic free energy difference yields a few meV/atom of

additional stability to V2Zr.cF24, bringing its temperature of instability down to

T ∗ = 1180K. Notice that the individual electronic free energies are much smaller

than the vibrational free energies, but the tendency towards cancelation is less pro-

nounced, so the electronic contribution remains important.

4 Monte Carlo and molecular dynamics simulation

Molecular dynamics is well suited to reproduce the small amplitude oscillations of

atoms in the vicinity of crystal lattice sites. At low temperatures the probability for

an atom crossing the barrier from one lattice site to another is prohibitively low

and will rarely occur on the time scale of a molecular dynamics run. In contrast,

Monte Carlo swaps of atomic species on different sites occurs with a probability P=
exp(−∆E/kBT ) related to the net energy difference ∆E = Eswap −Eini of swapped

and initial configurations, independently of the energy barrier separating the states.
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Since some of the pairwise interactions are quite low (see, e.g. Mo-W, Nb-Ta and

Nb-W in Table 3, we expect that some Monte Carlo species swaps will be accepted

even at low temperatures.

We implement this computationally by alternating molecular dynamics with

Monte Carlo swaps [44], each performed from first principles using VASP. In the

runs described below we perform 10 MD steps of 1 fs per time step, between each

attempted species swap. As illustrated in Fig. 5 for Mo-Nb-Ta-W, swaps are fre-

quently accepted with reasonably high probability at moderate and high tempera-

tures, indicating that the Monte Carlo achieves our goal of sampling the full config-

urational ensemble in the solid state. The same species swaps will almost never be

observed via molecular dynamics. The utility of various hybrid MC/MD methods

with empirical interaction potentials has been reviewed recently [30].

Fig. 5 Monte Carlo accep-

tance rates (ratio of accepted

to attempted species swaps)

for each species pair vs. tem-

perature. Note correlation of

high acceptance rate with low

enthalpy values in Table 3.
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Swaps with the greatest size contrast (e.g. Ta-Mo and Nb-Mo) occur most in-

frequently, and are nearly absent at low temperatures, while the intermediate size

swaps (Nb-W) occur occasionally and the most similar size swaps (e.g. Ta-Nb and

W-Mo) occur with high probability even at the lowest temperatures. We conclude

that at low temperature the system behaves nearly as a pseudobinary, consisting of

the chromium group (group 5, here Ta and Nb) and the vanadium group (group 6,

here W and Mo) as two effective species.

4.1 Pair correlation functions

Pair correlation functions describe the relative positional preferences of differ-

ent atomic species. Their Fourier transforms yield the diffraction pattern, which

is an important experimental probe of structure. Although crystalline solids are

anisotropic, here we shall consider only the radial distribution function which mea-

sures the magnitudes of interatomic separations. The radial distribution function

governs the angle averaged (i.e. powder) diffraction pattern. For chemical species α
and β we define
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gαβ (r) =
1

Nα Nβ

Nα

∑
i=1

Nβ

∑
j=1

〈δ (|ri j |− r)〉. (19)

In practice, a small amount of smearing is required to regularize the δ -functions.

Given a pair distribution function, the associated structure factor is

h̃αβ (Q) =

∫

dre−ik·r(gαβ (r)− 1), (20)

and the total structure factor becomes

S(Q) = 1+∑
αβ

cα fα cβ fβ h̃(Q), (21)

where cα is the concentration of species α . Here fα is the form factor, which is

approximately equal to the atomic number fα = Zα for x-rays, or to the scattering

length fα = bα for neutrons.

4.2 Route to the entropy

Monitoring configuration statistics can yield estimates for the entropy. If the actual

atomic positions can be mapped uniquely to nearby ideal lattice sites, then statistics

on the occupation of each lattice site can be accumulated, along with statistics of

various locally defined multisite clusters. Cluster variation methods [1, 7, 9, 21]

have been developed as analytical approximations for the calculation of free energy

given a model Hamiltonian. The general idea is to represent both the energy and

the entropy, separately, as functions of the clusters. As the cluster size grows, the

approximate free energy converges towards the exact value.

The simplest of these methods takes individual atomic sites as one-point clus-

ters. Given N sites containing Nα = xα N atoms of species α , where α runs from

1 to m, and xα is the concentration of species α . Counting the distinct occupations

of sites (one-point clusters), yields the total number of configurations g({Nα}) =

∏α Nα !/N!, Neglecting correlations among sites, the total entropy takes its maxi-

mal value

S({Nα})/kB = lng = lnN −∑
α

lnNα !. (22)

Making the Stirling approximation, lnN! ≈ N lnN yields the entropy per site in the

thermodynamic limit,

σ({xα}) =
−k

N
S({Nα})≈−k∑

α

xα lnxα . (23)

For an equiatomic composition of N species, so that xα = 1/N, this immediately

yields the usual S/kB = ln(N) entropy. Alternatively, we may take Eq. (23) as the

local entropy density at any specific site. In this case, if individual sites exhibit a
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preference for specific elements (e.g. with the onset of chemical order) the values of

xα differ from 1/N, and the entropy is reduced.

Moving to two-point clusters (nearest neighbor bonds) improves accuracy of the

entropy as it corrects for the onset of short-range order. Guggenheim [14] calcu-

lated the number of configurations g({Nα},{Nαβ}), where Nαβ denotes the average

number of β neighbors of atoms of chemical species α on a regular lattice of coordi-

nation number z. In the absence of correlations, we expect Nαβ = N∗
αβ ≡ Nα Nβ/N,

and the actual number of configurations to equal g({Nα}). In the presence of corre-

lations the reduced number of configurations is

g({Nα},{Nαβ}) = g({Nα})∏
α

(zNα/2−∑γ 6=α N∗
αγ )!

(zNα/2−∑γ 6=α Nαγ )!
∏

α 6=β

N∗
αβ !2Nα β

Nαβ !2
N∗

αβ
, (24)

The multiplicative factors in Eq. (24) reduce the entropy due to deviations of the

bond frequencies Nαβ from their uncorrelated values N∗
αβ . As in the case of the

single site cluster, this can be turned into a local entropy density

σ({Nα},{Nαβ}) = k lng({Nα},{Nαβ}). (25)

Owing to the two point correlations, the global averages are nontrivial, in contrast to

the single point case. They can be evaluated either by Monte Carlo simulation or es-

timated using the quasichemical approximation [14]. This method can be extended

to more complex clusters, for example the tetrahedron approximations for BCC [1]

and FCC [21] lattices.

5 Structure and thermodynamic modeling of high entropy alloys

So far this chapter developed basic techniques that can in principle be applied to

high entropy alloys, though the specific examples mainly concentrated on binary

and ternary alloy systems. We now turn our attention to quaternary high entropy

alloys, with a focus on BCC refractory metals, as example applications of the above

methods.

The properties of the periodic table imply that metals whose positions are ad-

jacent left/right or above/below tend to have similar size, valence and electronega-

tivity, and hence substitute with relative ease for one another. Valency generally is

constant within a column and differs by 1 between adjacent columns. Electroneg-

ativity correlates strongly with atomic volume, being low for large atoms and high

for small atoms. The majority of elements in the known high entropy alloys lie in

proximity to each other on the periodic table, presumably exploiting the similarity

in physical properties to increase their configurational entropy.

This observation motivates our choice to draw examples from 2× 2 “squares”

of the periodic table. That is, groups of four elements that lie on vertices of a unit

square consisting of two adjacent elements of a row together with the two elements
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that lie directly below. In such a square the largest element will lie at the bottom left

corner while the smallest is at the upper right corner. We shall call this the positive

diagonal, while the top left to bottom right, which has smaller size contrast, will be

called the negative diagonal.

5.1 Cr-Mo-Nb-V

Having previously discussed the binaries Cr-Nb and Nb-V in addition to the ternary

Cr-Nb-V, we add a fourth element, Mo, to complete a 2×2 square consisting of the

first two elements in the (V) column (namely V and Nb) and the first two elements of

the adjacent (Cr) column (namely Cr and Mo). We extended our ATATmodels of the

binary and ternary subsystems to the full quaternary, runningmaps until the internal

database extends to at least 8 atoms/unit cell and the true and predicted ground states

agree. Despite the SQS being at positive enthalpy, as listed in Table 1, maps was

able to identify an equiatomic structure of negative enthalpy, -6 meV/atom. This

lowest energy structure, which has Pearson type oI8, arranges the four chemical

species on the BCC lattice in such a manner that each unit cell has 24 near neighbor

pairs between columns (i.e. V-Cr, V-Mo, Nb-Cr or Nb-Mo) and only 8 near neighbor

pairs within columns (i.e. V-V, V-Nb, Nb-Nb, Cr-Cr, Cr-Mo, or Mo-Mo). It thus

exploits the preference for atoms of differing size and electronegativity to be nearest

neighbors [44]. In general, the enthalpies of the cP2 structures lie below the SQS

enthalpies (see Table 1), because cP2 and similar ordered structures can exploit

preferred local chemical environments.

Despite the existence of negative enthalpy BCC representative structures, our

DFT total energies predict that the ground state of equiatomic CrMoNbV consists

of phase separation into four coexisting phases, raising questions concerning the

possible existence of a high entropy alloy of this composition. No experimental

report exists to-date.

Relative free energies of the BCC solid solution and the competing Laves phase

are illustrated in Fig. 3b. The free energy of the solid solution was evaluated from

Monte Carlo using memc2 (the multicomponent version of emc2 [41]), similarly to

the case of NbV2 discussed previously in section 3.1. A byproduct of the simulation

is the ability to predict the entropy, in the present case by thermodynamic integra-

tion from a high temperature reference state. Assuming maximal entropy of ln(4) at

T = 3000K, we obtain a nearly ideal S/kB = ln(3.82) at Tm. The coexisting phases

consist of three BCC-based structures, Cr2V.tI6, Mo4Nb3.tI14 and Mo4V3.hR7, to-

gether with the Laves phase CrNbV.cF24, yielding the balanced equation

12 CrMoNbV → 3 Cr2V + 2 Mo4Nb3 + 6 CrNbV + Mo4V3 (26)

Taking the composition-weighted average of their enthalpies of formation predicts

a ground state enthalpy of -101 meV/atom. We convert this into a finite temperature

free energy by assuming ideal entropy of mixing at appropriate compositions for
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the three BCC-based structures, together with assumed Cr-V disorder in the Laves

phase. As the entropies of all four competing phases are less than ln(2), the combi-

nation loses out to the high entropy alloy at high temperature, with phase separation

expected only below Tsep = 1430K. There is considerable uncertainty in the pre-

cise separation temperature owing to several factors: we used the ideal entropy of

mixing rather than the cluster expansion to evaluate the configurational entropies

of the competing phases; we have neglected vibrational entropy throughout; some

other combination of phases may exist whose enthalpy is less favorable but that has

higher entropy.
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Fig. 6 Pair distribution functions of Cr-Mo-Nb-V at T=300K quenched from 1200K. Each panel

shows the four partial pair correlation functions for the element named above. The partials are

color coded, e.g. under V the black curve is V-V and the red curve is V-Cr. Bars at top indicate the

corresponding correlations in the pure BCC element, e.g. V has 8 neighbors at r = 2.6 Å, 6 at 3.0,

12 at 4.3, 24 at 5.0 and 8 at 5.3.

MC/MD simulation results are shown in Fig. 6. Here we carry out the MC/MD

simulation at T = 1200K, a temperature sufficiently high that chemical short-range

order might be in equilibrium even in experiment. We then quench the system to T =
300K and anneal under conventional molecular dynamics, where atomic diffusion

is frozen out. Thus we freeze in short range order typical of the high annealing

temperature, in an attempt to mimic the actual experiment. The figure illustrates the

four partial pair correlations for each of the four constituent elements, arranged on

the page according to their positions on the periodic table. The BCC structure is

clearly evident, with the well defined 8:6 split of nearest and next nearest neighbor

peaks as well as well-defined further neighbor peaks. Also evident is the strong
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preference for intercolumn neighbors, with Cr and Mo forming the strongest near

neighbor peaks of V and Nb, and vice versa.

Swap rates reported in Table 4 give insight into respective roles of different el-

ements, with the swap rates being largest for elements that are most similar in size

(the nearest off-diagonal) becoming progressively smaller as the size contrast grows

more extreme, finally nearly vanishing for the pair Nb-Cr which constitutes the pos-

itive diagonal of the square as defined above. This table also gives the near-neighbor

bond counts corresponding to the near-neighbor peaks in Fig. 6. We may use these

bond counts in the formula Eq. (24) to evaluate the entropy at T = 1200K, which

leads to S/kB = ln(3.82), identical to the value obtained at Tm from memc2.

Swap Bonds

α\β Nb Mo V Cr Nb Mo V Cr

Nb 0.48 0.24 0.05 1.73 2.05 1.71 2.51

Mo 0.49 0.23 2.00 1.90 2.14 1.96

V 0.43 1.86 2.21 1.79 2.14

Cr 2.41 1.84 2.36 1.39

Table 4 Monte Carlo swap rates and bond statistics for Cr-Mo-Nb-V quaternary at T = 1200K.

Bond counts Nα,β count number of β -type neighbors of atom type α , where α labels rows and β
labels columns. Elements are arranged in order of decreasing BCC lattice constant.

5.2 Nb-Ti-V-Zr

Our next square consists of the first two rows of the (Ti) column, namely Ti and

Zr, together with the first two rows of the (V) column. This new compound pro-

vides an interesting example because Ti and Zr are HCP at low temperature but

BCC at high temperature as a result of the lower enthalpy of HCP competing with

the higher vibrational entropy of BCC (HCP is close-packed while BCC is loose-

packed). Meanwhile Nb and V are BCC at all temperatures. Can compounds formed

from the (Ti) and (V) columns form HCP solid solutions, or must they form BCC?

Fig. 7 provides a hint.

Application of the ATAT cluster expansion to predict low energy states of both

BCC and HCP Nb-Zr alloys suggests complete phase separation into coexisting

Nb.cI2 and Zr.hP2 in agreement with experiment at low temperature. However, in

fig. 7 we see a large number of individual BCC configurations with energies of order

0.05 eV/atom. Clearly energy and configurational entropy favor a BCC solid solu-

tion over HCP at all but the most Zr-rich compositions. Applying emc2 within the

BCC solid solution we identify a critical point for phase separation into Nb-rich and

Zr-rich BCC phases at Tc = 1250K and at a composition of 30% Zr. Experimentally

the critical point lies at Tc = 1258K and at a composition of 40% Zr.

Fig. 8 shows the quaternary pair correlation functions obtained from MC/MD.

Notice that in contrast to the case of CrMoNbV just discussed, here the 8:6 split of
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Fig. 7 Enthalpy of formation

in the Nb-Zr alloy system.

Squares indicate representa-

tive structures of the BCC

solid solution. SQS and cP2

are marked with special sym-

bols. Hexagonal stars indicate

HCP.
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nearest and next-nearest neighbor peaks is hardly evident, despite the longer range

correlations beyond 4 Å remaining intact. This reflects the inherent mechanical

instability of BCC-based structures containing Zr and Ti. A side effect is that the

energies of the SQS structures in Table 2 generally lie below the energies of the cP2

structure, because the high symmetry of cP2 prevents lattice distortion. A similar

severe distortion in the local BCC structure was seen experimentally in the HfNbZr

ternary HEA [15]. Indeed, the BCC lattice is more visible in the V and Nb partials

than in those containing Ti and Zr. Notice further that the strongest near neighbor

correlation is between Zr and V, which lie along the positive diagonal of the square,

while the partials of Ti and Nb are roughly similar, as is normal for the negative

diagonal. This is further reflected in the Monte Carlo swap rates in Table 5, where

Zr and V are almost unable to swap positions owing to their strong size contrast,

while Ti and Nb swap easily. Applying the Guggenheim formulas to compute the

T = 1200K entropy yields S/kB = ln(3.89), slightly greater than was observed in

the case of CrMoNbV.

Swap Bonds

α\β Zr Ti Nb V Zr Ti Nb V

Zr 0.32 0.29 0.07 1.60 2.03 1.96 2.41

Ti 0.59 0.39 1.96 2.10 2.10 1.83

Nb 0.34 1.98 2.27 1.98 1.89

V 2.57 1.59 1.96 1.88

Table 5 Monte Carlo swap rates and bond counts for Nb-Ti-V-Zr quaternary. Elements are ar-

ranged in order of decreasing BCC lattice constant.

5.3 Mo-Nb-Ta-W

As a final example, we choose a square from the bottom two rows of the (V) and (Cr)

columns, namely Nb and Ta, and Mo and W. As previously shown [44], and repro-

duced in Table 3, the enthalpies of formation in this alloy system are significantly
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Fig. 8 Pair distribution functions of Nb-Ti-V-Zr at T=1200K quenched to T = 300K. Layout and

conventions as in Fig. 6.

negative between columns and nearly zero within columns. Thus strong chemical

order is anticipated, with the possibility of forming an ordered structure such as cP2

at low temperature, with the pair of elements from each column occupying its own

sublattice. However, the very high melting temperature makes this phase difficult

to observe experimentally. A mean field analysis of this transition [18] indicated a

transition with a critical temperature of Tc = 1600K, although subsequent Monte

Carlo simulations place it at 1280K [17] (mean field theory typically overestimates

transition temperatures). Thermodynamics of the ternary subsystem Mo-Ta-W was

investigated using combined ab-initio and CALPHAD methods [39].

The cluster interaction model produced by maps predicts the equiatomic ground

state structure is a coexistence of two BCC-based phases, Mo2NbTa2W2.hR7 and

pure elemental Nb.cI2, yielding the balanced equation

2 MoNbTaW → Mo2NbTa2W2 + Nb. (27)

Taking the composition-weighted average of the ground state enthalpy of formation

yields enthalpy of -126 meV/atom. Monte Carlo simulation using memc2 yields the

entropy at Tm as S/kB = ln3.93.

MC/MD pair correlation functions shown in Fig. 9 reveal very strong BCC-like

order including the 8:6 nearest to next-nearest neighbor split. As in the two previ-

ously examined cases, there is a pronounced preference for nearest neighbor pairs

along the positive diagonal (Ta and Mo), while the partials for pairs along the neg-

ative diagonal (Nb and W) generally resemble each other. The effect is also seen in
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Fig. 9 Pair distribution functions of Mo-Nb-Ta-W at T = 1200K quenched to T = 300K. Layout

and conventions as in Fig. 6.

the swap rates reported in Table 6, with the pair along the positive diagonal swap-

ping at far lower frequency than the pair along the negative diagonal. In keeping

with the nearly zero interaction on pairs within columns, we notice very high swap

rates for these pairs (Nb with Ta, and Mo with W).

Applying the Guggenheim formulas, we estimate the entropy at T = 1200K as

S/kB = ln(3.82), again similar to the value obtained for CrMoNbV. Full temper-

ature dependence of the entropy is plotted in Fig. 5 and can be seen to decrease

significantly only below 1200K. Given the existence of a ground state at nearly the

equiatomic composition, we can say that MoNbTaW is an essentially perfect high

entropy alloy that remains stable at all temperatures, with only minor shift in com-

position. At the same time, the entropy does vanish in this low temperature limit,

with the growth of short-range chemical order, notably an increase in intercolumn

bonds.

Swap Bonds

α\β Ta Nb W Mo Ta Nb W Mo

Ta 0.74 0.37 0.27 1.39 1.90 2.20 2.51

Nb 0.54 0.35 1.84 1.95 2.11 2.10

W 0.64 2.18 1.93 1.99 1.90

Mo 2.59 2.22 1.70 1.49

Table 6 Monte Carlo swap rates and bond counts for Mo-Nb-Ta-W quaternary. Elements are

arranged in order of decreasing BCC lattice constant.
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Vibrational and electronic densities of states, and the resulting free energies are

presented in Fig. 10. Notice that the relative vibrational free energy ∆Fv is positive,

owing to the relatively high vibrational frequencies, and likewise the relative elec-

tronic free energy ∆Fe is positive because of the relatively low density of states at

the Fermi level. Because these have been derived at fixed volume V , the free en-

ergies are Helmholtz free energies, hence thermodynamics yields the entropy by

simple differentiation, S =−∂F/∂T , so we see that electronic and vibrational con-

tributions actually reduce the entropy.
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Fig. 10 (a) Vibrational density of states in the MoNbTaW HEA; (b) electronic density of states

(E is relative to Fermi level EF ); (c) and (d) are corresponding free energies.

6 Conclusion

This chapter provides a brief introduction to first principles approaches to free en-

ergy and phase stability calculation, with application to three high entropy alloy-

forming quaternary compounds. We describe and apply a variety of methods in-

cluding the cluster expansion of total energy as implemented in the ATAT toolkit in

section 2.3, vibrational and electronic free energy calculation in sections 3.2 and 3.3,

and a hybrid Monte Carlo/molecular dynamics method in section 4 that is specifi-
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cally efficient for systems such as HEA’s where chemical substitution proliferates.

Later chapters cover some additional first principles methods in detail, the coher-

ent potential approximation (CPA) in chapter 9 and special quasirandom structures

(SQS) in chapter 10, as well as application of the MC/MD method to liquids in chap-

ters 11 and 13. The thermodynamic data calculated using the present methods can

be a guide to the refinement of CALPHAD-type thermodynamic databases such as

employed in chapter 12, which eventually provide the rigorous basis for formation

rules such as those described in chapter 2.

Although the intent was tutorial, this chapter reports several new results, illustrat-

ing the potential for new discovery in this emerging field of research. Two specific

results challenge or shed new light on assessed binary phase diagrams. Namely, we

propose that the continuous BCC solid solution in Nb-V is replaced by a previously

unknown C14 Laves phase, NbV2.hP12, below T ∗ = 1100K, and we explain the

occurrence of the C15 Laves phase V2Zr.cF24, despite its unfavorable enthalpy of

formation, as a result of vibrational and electronic entropy above T ∗ = 1180K, while

predicting it becomes thermodynamically unstable below this temperature. Through

the use of cluster expansions of total energy, we predicted the existence of low tem-

perature stable quaternaries in the Mo-Nb-Ta-W alloy system. These new structures

are specific ordered arrangements of species close to sites of the underlying BCC

lattice. In the case of Cr-Mo-Nb-V, we found that all BCC-based quaternary struc-

tures were destabilized at low temperature by competing binaries and ternaries, but

we predict this compound forms a high entropy alloy that is stable above the temper-

ature Tsep = 1430K. Because Ti and Zr prefer HCP structures at low temperatures,

there are likewise no BCC-based ground states in the quaternary Nb-Ti-V-Zr, so this

HEA is also unstable at low temperature. Indeed, we show through MC/MD simu-

lations that the Nb-Ti-V-Zr HEA exhibits strong deviations from ideal lattice sites,

even while preserving the long range BCC structure.

Fig. 11 Configurational, vi-

brational and electronic con-

tributions to the total entropy

STot . Configurational entropy

calculated according to the

Guggenheim approximation

Eqs. (24) and (25). Vibrational

and electronic contributions

come from Eqs. (14) and (18),

respectively.
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To conclude this chapter we present all contributions to the entropy for the quater-

nary Mo-Nb-Ta-W. The discrete configurational entropy is evaluated from Eq. (25)

while the vibrational and electronic free energies were obtained from the free ener-

gies illustrated in Fig. 10 by differentiation, S=−∂F(V,T )/∂T . The corresponding
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entropies are shown in Fig. 11. For this particular compound, the vibrational and

electronic entropies turn out to be negative relative to a mixture of pure elements.

Notice that the electronic contribution is relatively small, while the vibrational con-

tribution is significant, but still less than the configurational part, validating the claim

that high entropy alloys are dominated by their configurational entropy of mixing.
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