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1 Introduction

• The Born rule only applies to closed quantum systems, and only gives (conditional) proba-
bilities in the case of a sample space with two-time histories. Extending it to histories of a closed
quantum system involving three or more times is not trivial because of the phenomenon of quantum
interference, and was first carried out in the 1980’s and required some new ideas.

Born rule does not extend to all history sample spaces; consistency conditions

⊙

In particular, there is no (known) way of extending the Born rule to all sample spaces of
histories without running into difficulties and inconsistencies. In this respect the situation is not
unlike that encountered when one tries to extend logical operations which make perfectly good
sense for a classical phase space to logical operations on quantum properties, subspaces of the
Hilbert space. Progress has come about by restricting the class of “objects” one wants to talk
about, and refusing to combine cases in which projectors do not commute, on the grounds that
they are meaningless: quantum mechanics, at least as understood at present, can assign them no
meanings. In a similar way it turns out that one can extend the Born rule only to certain history
sample spaces which satisfy what are called consistency conditions. If these are not satisfied the
sample spaces represent mutually-exclusive histories, but even if they occur inside a closed system
we do not know how to assign them probabilities starting with Schrödinger’s equation.

• The Born rule assigns probabilities using unitary time development, i.e., Schrödinger’s equa-
tion, as a tool. For histories of involving three or more times, unitary time development is needed
to test for consistency as well as assign probabilities.

⊙

The material in these notes is basically the same as in CQT Chs. 10 and 11. However, they
begin in Sec. 2 with the special case discussed in Sec. 11.6 of CQT, which is easier to understand
than the general case. The latter is the subject of Sec. 3

• Rules are best understood by applying them to numerous examples. There are a large number
of (fairly) simple examples in CQT Chs. 12 and 13, so these notes have only a few.
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2 Initial Pure State

◦ Reference: CQT Sec. 11.6

2.1 Chain kets and consistency

⊙

Simplest situation: histories all begin with pure state |ψ0〉, so are of the form

Y α = [ψ0]⊙ Pα1

1
⊙ Pα2

2
⊙ · · ·Pαf

f = [ψ0]⊙Xα, (1)

We now think of α as the string
α = (α1, α2, . . . αf ), (2)

and suppose (for simplicity; this is not absolutely necessary) that the histories Xα are drawn from
the product history sample space constructed using the decompositions

Im =
∑

αm

Pαm
m (3)

⊙

For each history α define the corresponding chain ket

|α〉 = P
αf

f T (tf , tf−1) · · ·Pα2

2
T (t2, t1)P

α1

1
T (t1, t0)|ψ0〉. (4)

◦ Notice that the chain ket |α〉 is an element of the one-time Hilbert space H and not the
histories Hilbert space H̆. The α is a label. Also |α〉 is (in general) not normalized even if, as we
shall suppose, |ψ0〉 is normalized.

⊙

The consistency condition for the family (1) is

〈α|β〉 = 0 for α 6= β (5)

Where β = (β1, β2, . . . βf ) labels a different history from the same sample space of histories; α 6= β
means that there is at least one j in the interval from 1 to f such that αj 6= βj . Thus the consistency
condition states that the inner product of the chain kets |α〉 and |β〉 must vanish whenever α and
β are distinct histories in the sample space.

⊙

If the consistency conditions in (5) are satisfied, one assigns (conditional) probabilities

Pr(α |ψ0) = Pr(α) = 〈α|α〉 (6)

to the different histories in the sample space. These in turn generate the probabilities for the
different (history) projectors in the corresponding event algebra in the usual way.

• Since the history projectors in (1) sum to [ψ0]⊙I⊙· · · , we need another one, (I−[ψ0])⊙I⊙· · ·
to complete the history identity Ĭ. To this additional history we assign probability 0.

2.2 Examples

• In order to understand the significance of the consistency conditions (5) and the probabilities
(6) that result when they are satisfied, we need to look at a number of special cases and examples.

⊙

First example: f = 1, the histories only involve two times t0 and t1. In this case the
consistency condition is automatically satisfied, since the strings α and β are one label long, and
α 6= β is thus the same as α1 6= β1. Since they are drawn from the same decomposition of the
identity, Pα1

1
and P β1

1
are automatically orthogonal for α1 6= β1, and therefore the consistency

condition (5) is satisfied.
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⊙

Even for f > 1 it is always the case that if αf 6= βf , then 〈α|β〉 = 0.

⋆ Exercise. Show this.

• Consequently, checking consistency requires looking at cases in which αf = βf , and checking
that 〈α|β〉 = 0 when some of the earlier elements in the labels are unequal.

⊙

The Born rule applies to two-time histories, and therefore when using the Born rule one can
ignore consistency conditions.

• This is true even for the general form of the Born rule discussed in a previous chapter of these
notes, though that lies outside the present discussion, limited to histories of the form (1) with a
fixed initial (pure) state.

⊙

Second example. Let f = 2 and suppose we are dealing with a spin-half particle. For
simplicity let T (t, t′) = I, thus no magnetic field is present, and suppose that |ψ0〉 = |z+〉 = |0〉. Let
v and w be two arbitrary directions in space, or points on the Bloch sphere, and use decompositions

I1 = [v+] + [v−]; I2 = [w+] + [w−]. (7)

at times t1 and t2, respectively.

• There are then four histories in the sample space. Use the notation |(v+, w−)〉 = |(+,−)〉,
etc., for the corresponding chain kets. Are they mutually orthogonal as required by the consistency
conditions? In light of the automatic orthogonality whenever αf 6= βf , see above, we need only
check cases in which the final (w) label is the same, but the first (v) label is different, for example,

〈(v+, w+)|(v−, w+)〉 = 〈z+|v+〉〈v+|w+〉〈w+|v−〉〈v−|z+〉. (8)

⋆ Exercise. Work out the right side starting with the definition of the chain kets in (4)

• In order for (8) to vanish, at least one of the factors on the right side must be zero. How can
this be achieved? There two distinct possibilities. If v = z (or −z, which for our purposes amounts
to the same thing), then either 〈z+|v+〉 or 〈v−|z+〉 will be zero and the right side of (8) will be
zero. Otherwise both 〈z+|v+〉 and 〈v−|z+〉 will be nonzero. The other possibility is that v = w (or
−w), in which case either 〈v+|w+〉 or 〈w+|v−〉; otherwise both are nonzero.

• Next one needs to check the case where w+ in (8) is replaced with w−, but the conclusion is
exactly the same conclusion. A quick way to see this is to replace |w+〉〈w+| in the middle of the
right side of (8) with I − |w−〉〈w−|.

⋆ Exercise. Explain why this works.
⊙

Thus consistency is violated unless the intermediate time v basis is (i) the same as the z
basis, or (ii) the same as the w basis. In the special case in which w is z (or −z) the only possibility
is that v is also z (or −z). In any case, consistency is a very restrictive condition.

⋆ Exercise. What are possible choices of v and w (i.e., bases at times t1 and t2 given an initial
state |ψ0〉 = |z+〉, but instead of assuming that T (t, t′) = 1 we assume that in the standard basis

T (t1, t0) =
1√
2

(

1 1
1 −1

)

, T (t2, t1) =

(

1 0
0 i

)

. (9)

[Hint. In geometrical terms T (t1, t0) is a 180◦ rotation that interchanges the +x and +z axes of
the Bloch sphere, whereas T (t2, t1) represents a rotation of +π/2 about the z axis.]

⋆ Exercise. Show that in the case of spin-half, consistency will be violated if there are more
than two nonzero chain kets. How does this generalize to the case where the Hilbert space is of
dimension d > 2?

• For other (fairly) simple examples of consistent (and inconsistent) families, see Chs. 12 and
13 of CQT.
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3 General Consistent Families

• In this section we consider the case of a general sample space of product histories: each history
is of the form

Y = F0 ⊙ F1 ⊙ · · ·Ff , (10)

with each Fj a projector indicating a particular property at time tj . However, the sample space need
not be a product sample space in which all the Fj at time tj are drawn from a single decomposition
of I.

• While it is convenient to assume that only a finite number f + 1 of times are involved, it is
not necessary that each element of the sample space have a nontrivial projector at each of these
times. At a particular time tj the corresponding Fj might be the identity operator, the property
that is always and trivially true. Or, given a history defined with projectors at a given set of times,
one can always introduce additional times and insert the identity at these times; this new history
projector has the same physical significance as the original one.

⊙

In a closed or isolated quantum system with well-defined unitary time-development operators
T (t, t′) one can associated with every product history of the form (10) a chain operator

K(Y ) = FfT (tf , tf−1)Ff−1 · · ·T (t2, t1)F1T (t1, t0)F0 (11)

which generalizes the the notion of a chain ket introduced earlier.

• Note that K(Y ) is an operator on the one-time Hilbert space H, not an operator on the
history space H̆, so one can think of Y → K(Y ) as a linear map from operators on the “big”
histories Hilbert space H̆ to operators on the “small” Hilbert space H. Linearity means that

K(Y ′ + Y ′′ + · · · ) = K(Y ′) +K(Y ′′) + · · · . (12)

⊙

Next define the Frobenius (or Hilbert-Schmidt) inner product of operators acting on H:
inner product

〈A,B〉 = Tr[A†B]. (13)

This has the usual properties of an inner product: 〈A,B〉 = 〈B,A〉∗; antilinear in the first argument
and linear in the second; 〈A,A〉 ≥ 0, with equality if and only if A = 0 is the zero operator.

• The general consistency condition for a sample space {Y α} of product history projectors, i.e.,
a decomposition of Ĭ in which each projector is of the form (10), takes the form

〈K(Y β),K(Y γ)〉 = 0 for β 6= γ. (14)

• Here β and γ come from the set of labels {α} used to label the histories in the decomposition
{Y α}.

◦ In the case of a product sample space it is natural (but not essential) to use strings as labels:
α = (α0, . . . αf ). However, the present discussion is not limited to product sample spaces, though
we do assume that all histories are product histories of the general form (10), as this was used in
defining the chain operators (11).

• A sample space for which (14) holds is called a consistent sample space, and the corresponding
event algebra is referred to as a consistent family. However, “consistent family” can also refer to
the sample space; this does not cause confusion because the event algebra E is generated by the
sample space {Y α} in the sense that it contains all projectors of the form

Y =
∑

α

παY
α, (15)
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where each πα can be either 0 or 1.
⊙

Given a consistent family (consistent sample space) the weight W (Y ) of any history Y in
the family, i.e., any Y of the form (15) is given by by the formula:

W (Y ) = Tr[K†(Y )K(Y )]. (16)

• Because K(Y ) =
∑

α παY
α and because we are assuming that the consistency conditions (14)

are satisfied, the weight of any history of the form (15) is given by

W (Y ) =W (
∑

α

πalY
α) =

∑

α

πaW (Y α), (17)

i.e., the weights on the histories in the sample space determine the weights of histories in the event
algebra in the same manner as probabilities in an event algebra are determined by probabilities of
elements in the sample space.

• We refer to the W (Y ) as weights rather than probabilities because there is no requirement
that they add up to 1. They function in much the same way as stochastic matrices, or products of
such matrices, in a Markov process: they are used to generate a probability distribution given some
additional constraints or assumptions (such as an initial state or an initial probability distribution),
as will become clear from considering various examples.

◦ The situation is similar to that which arises for the general Born rule in which one allows a
general decomposition of the identity {P j} at an initial time and a different decomposition {Qk}
at a later time.

⋆ Exercise. Work out the chain operators for the case of a pure initial state considered above
in Sec. 2, and relate the results on consistency and weights given here to those in Sec. 2.
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