
WIEN2k
An Augmented Plane Wave Plus Local Orbitals Program

for Calculating Crystal Properties

User’s Guide, WIEN2k 11.1 (Release 11.04.2011)

Peter Blaha
Karlheinz Schwarz

Georg Madsen
Dieter Kvasnicka

Joachim Luitz

Vienna University of Technology
Inst. of Physical and Theoretical Chemistry

Getreidemarkt 9/156, A-1060 Vienna/Austria

Peter Blaha, Karlheinz Schwarz, Georg K. H. Madsen, Dieter Kvasnicka, Joachim Luitz:
WIEN2k
An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties

revised edition WIEN2k 11.1 (Release 11.04.2011)

Univ. Prof. Dr. Karlheinz Schwarz
Techn. Universität Wien
Institut für Physikalische und Theoretische Chemie
Getreidemarkt 9/156
A-1060 Wien/Austria
ISBN 3-9501031-1-2

ISBN 3-9501031-1-2

Contents

1 Introduction 1

I Introduction to the WIEN2k package 5

2 Basic concepts 7

2.1 Density Functional Theory . 7

2.2 The APW Methods . 8

2.2.1 The LAPW Method . 8

2.2.2 The APW+lo Method . 9

2.2.3 General considerations . 10

3 Quick Start 13

3.1 Naming conventions . 13

3.2 Starting the server . 14

3.3 Connecting to the w2web server . 15

3.4 Creating a new session . 15

3.5 Creating a new case . 16

3.6 Creating the struct file . 16

3.7 Initialization . 18

3.8 The SCF calculation . 20

3.9 The case.scf file . 21

3.10 Saving a calculation . 21

3.11 Calculating properties . 21

3.11.1 Electron density plots . 21

3.11.2 Density of States (DOS) . 24

3.11.3 X-ray spectra . 26

3.11.4 Bandstructure . 26

3.11.5 Bandstructure with band character plotting / full lines 27

3.11.6 Volume Optimization . 28

3.12 Setting up a new case . 29

3.12.1 Manual setup . 29

3.12.2 Setting up a new case using w2web . 29

3

II Detailed description of the files and programs of the WIEN2k package 31

4 Files and Program Flow 33

4.1 Flow of input and output files . 33

4.2 Input/Output files . 37

4.3 The case.struct.file . 38

4.4 The case.scf file . 41

4.5 Flow of programs . 43

4.5.1 Core, semi-core and valence states . 43

4.5.2 Spin-polarized calculation . 45

4.5.3 Fixed-spin-moment (FSM) calculations . 45

4.5.4 Antiferromagnetic (AFM) calculations . 45

4.5.5 Spin-orbit interaction . 46

4.5.6 Orbital potentials . 47

4.5.7 Exact-exchange and Hybrid functionals for correlated electrons 47

4.5.8 modified Becke-Johnson potential (mBJ) for band gaps 49

5 Shell scripts 51

5.1 Job control . 51

5.1.1 Main execution script (x lapw) . 51

5.1.2 Job control for initialization (init lapw) . 52

5.1.3 Job control for iteration (run lapw or runsp lapw) 53

5.2 Utility scripts . 55

5.2.1 Save a calculation (save lapw) . 55

5.2.2 Restoring a calculation (restore lapw) . 56

5.2.3 Remove unnecessary files (clean lapw) . 56

5.2.4 Migrate a case to/from a remote computer (migrate lapw) 56

5.2.5 Generate case.inst (instgen lapw) . 57

5.2.6 Set R-MT values in your case.struct file (setrmt lapw) 57

5.2.7 Create case.int file (for DOS) (configure int lapw) 57

5.2.8 Check for running WIEN jobs (check lapw) . 58

5.2.9 Cancel (kill) running WIEN jobs (cancel lapw) 58

5.2.10 Extract critical points from a Bader analysis (extractaim lapw) 58

5.2.11 scfmonitor lapw . 58

5.2.12 analyse lapw . 59

5.2.13 Check parallel execution (testpara lapw) . 59

5.2.14 Check parallel execution of lapw1 (testpara1 lapw) 59

5.2.15 Check parallel execution of lapw2 (testpara2 lapw) 59

5.2.16 grepline lapw . 60

5.2.17 initso lapw . 60

5.2.18 vec2old lapw . 60

5.2.19 clmextrapol lapw . 60

5.3 Structure optimization . 61

5.3.1 Lattice parameters (Volume, c/a, lattice parameters) 61

5.3.2 Minimization of internal parameters (min lapw) 63

5.4 Phonon calculations . 66

5.4.1 init phonon lapw . 66

5.4.2 analyse phonon lapw . 67

5.5 Parallel Execution . 67

5.5.1 k-Point Parallelization . 67

5.5.2 MPI parallelization . 68

5.5.3 How to use WIEN2k as a parallel program . 68

5.5.4 The .machines file . 68

5.5.5 How the list of k-points is split . 70

5.5.6 Flow chart of the parallel scripts . 71

5.5.7 On the fine grained parallelization . 71

5.6 Getting on-line help . 72

5.7 Interface scripts . 73

5.7.1 eplot lapw . 73

5.7.2 parabolfit lapw . 73

5.7.3 dosplot lapw . 73

5.7.4 dosplot2 lapw . 74

5.7.5 Curve lapw . 74

5.7.6 specplot lapw . 74

5.7.7 rhoplot lapw . 74

5.7.8 opticplot lapw . 74

5.7.9 addjoint-updn lapw . 74

6 Initialization 75

6.1 NN . 75

6.1.1 Execution . 76

6.2 SGROUP . 76

6.2.1 Execution . 76

6.3 SYMMETRY . 76

6.3.1 Execution . 77

6.4 LSTART . 77

6.4.1 Execution . 77

6.4.2 Dimensioning parameters . 77

6.4.3 Input . 78

6.5 KGEN . 79

6.5.1 Execution . 80

6.5.2 Dimensioning parameters . 80

6.6 DSTART . 80

6.6.1 Execution . 80

6.6.2 Dimensioning parameters . 80

7 SCF cycle 83

7.1 LAPW0 . 83

7.1.1 Execution . 84

7.1.2 Dimensioning parameters . 84

7.1.3 Input . 84

7.2 ORB . 86

7.2.1 Execution . 87

7.2.2 Dimensioning parameters . 88

7.2.3 Input . 88

7.3 LAPW1 . 90

7.3.1 Execution . 91

7.3.2 Dimensioning parameters . 91

7.3.3 Input . 91

7.4 LAPWSO . 95

7.4.1 Execution . 95

7.4.2 Dimensioning parameters . 95

7.4.3 Input . 96

7.5 LAPW2 . 97

7.5.1 Execution . 97

7.5.2 Dimensioning parameters . 97

7.5.3 Input . 98

7.6 SUMPARA . 101

7.6.1 Execution . 101

7.6.2 Dimensioning parameters . 101

7.7 LAPWDM . 102

7.7.1 Execution . 102

7.7.2 Dimensioning parameters . 102

7.7.3 Input . 103

7.8 LCORE . 103

7.8.1 Execution . 103

7.8.2 Dimensioning parameters . 104

7.8.3 Input . 104

7.9 MIXER . 105

7.9.1 Execution . 105

7.9.2 Dimensioning parameters . 106

7.9.3 Input . 106

8 Analysis, Properties and Optimization 109

8.1 TETRA . 109

8.1.1 Execution . 110

8.1.2 Dimensioning parameters . 110

8.1.3 Input . 110

8.2 QTL . 111

8.2.1 Execution . 112

8.2.2 Input . 112

8.2.3 Output . 114

8.3 SPAGHETTI . 114

8.3.1 Execution . 115

8.3.2 Input . 115

8.4 IRREP . 117

8.4.1 Execution . 117

8.4.2 Dimensioning parameters . 118

8.5 LAPW3 . 118

8.5.1 Execution . 118

8.5.2 Dimensioning parameters . 118

8.6 LAPW5 . 118

8.6.1 Execution . 119

8.6.2 Dimensioning parameters . 119

8.6.3 Input . 119

8.7 AIM . 121

8.7.1 Execution . 121

8.7.2 Dimensioning parameters . 121

8.7.3 Input . 122

8.8 LAPW7 . 124

8.8.1 Execution . 125

8.8.2 Dimensioning parameters . 125

8.8.3 Input . 125

8.9 FILTVEC . 129

8.9.1 Execution . 129

8.9.2 Dimensioning parameters . 129

8.9.3 Input . 130

8.10 XSPEC . 131

8.10.1 Execution . 131

8.10.2 Dimensioning parameters . 132

8.10.3 Input . 132

8.11 TELNES3 . 134

8.11.1 Execution . 135

8.11.2 Input . 135

8.11.3 Practical considerations . 140

8.11.4 Files . 140

8.12 BROADENING . 141

8.12.1 Execution . 141

8.12.2 Input . 142

8.13 OPTIMIZE . 142

8.13.1 Execution . 142

8.13.2 Input . 143

8.14 ELAST . 143

8.14.1 Execution . 143

8.15 MINI . 144

8.15.1 Execution . 144

8.15.2 Dimensioning parameters . 144

8.15.3 Input . 144

8.16 OPTIC . 146

8.16.1 Execution . 147

8.16.2 Dimensioning parameters . 148

8.16.3 Input . 148

8.17 JOINT . 151

8.17.1 Execution . 151

8.17.2 Dimensioning parameters . 151

8.17.3 Input . 151

8.18 KRAM . 153

8.18.1 Execution . 154

8.18.2 Dimensioning parameters . 154

8.18.3 Input . 154

8.19 DIPAN . 155

8.19.1 Execution . 156

8.19.2 Dimensioning parameters . 156

8.19.3 Input . 156

8.20 FSGEN . 157

9 Utility Programs 159

9.1 symmetso . 159

9.1.1 Execution . 160

9.2 pairhess . 160

9.2.1 Execution . 160

9.2.2 Dimensioning parameters . 160

9.2.3 Input . 161

9.3 eigenhess . 162

9.4 patchsymm . 162

9.4.1 Execution . 162

9.5 afminput . 163

9.5.1 Execution . 163

9.5.2 Dimensioning parameters . 163

9.6 clmcopy . 163

9.6.1 Execution . 164

9.6.2 Dimensioning parameters . 164

9.6.3 Input . 164

9.7 reformat . 165

9.8 hex2rhomb and rhomb in5 . 165

9.9 plane . 165

9.10 add columns . 166

9.11 clminter . 166

9.12 eosfit . 166

9.13 eosfit6 . 166

9.14 spacegroup . 167

9.15 join vectorfiles . 167

9.16 arrows . 167

9.17 xyz2struct . 168

9.18 cif2struct . 169

9.19 struct2cif . 169

9.20 StructGen of w2web . 169

9.21 supercell . 170

9.21.1 Execution . 170

9.22 structeditor . 170

9.22.1 Execution . 171

9.23 Visualization . 172

9.23.1 BALSAC . 172

9.23.2 XCrysDen . 172

9.24 Unsupported software . 173

10 Examples 175

10.1 TiC . 175

10.2 FCC Nickel . 175

10.3 Rutile . 176

10.4 supercell calc . 177

10.5 Further examples . 178

III Installation of the WIEN2k package and Dimensioning of programs 179

11 Installation and Dimensioning 181

11.1 Requirements . 181

11.1.1 Installation tips for mpich and fftw-2.1.5 . 182

11.2 Installation of WIEN2k . 182

11.2.1 Expanding the WIEN2k distribution . 182

11.2.2 Site configuration for WIEN2k . 184

11.2.3 User configuration . 185

11.2.4 Performance and special considerations . 185

11.2.5 Global dimensioning parameters . 186

11.3 w2web . 186

11.3.1 General issues . 186

11.3.2 How does w2web work? . 187

11.3.3 w2web-files in you home directory . 187

11.3.4 The configuration file conf/w2web.conf . 187

11.3.5 The password file conf/w2web.users . 188

11.3.6 Using the https-protocol with w2web . 188

11.4 Environment Variables . 188

12 Trouble shooting 189

12.1 Ghost bands . 190

13 References 195

IV Appendix 199

A Local rotation matrices 201

A.1 Rutile (TiO2) . 202

A.2 Si Γ-phonon . 202

A.3 Trigonal Selenium . 203

B Periodic Table 205

List of Tables

4.1 Input and output files of init programs . 35

4.2 Input and output files of utility programs . 36

4.3 Input and output files of main programs in an SCF cycle 37

4.4 Lattice type, description and bravais matrix used in WIEN2k 39

6.6 Relativistic quantum numbers . 79

7.41 LM combinations of “Cubic groups” (3‖(111)) direction, requires “positive atomic
index” in case.struct. Terms that should be combined (Kara and Kurki-Suonio 81)
must follow one another. 100

7.42 LM combination and local coordinate system of “non-cubic groups” (requires “neg-
ative atomic index” in case.struct) . 100

8.5 Possible values of QSPLIT and their interpretation . 113

8.50 Quantum numbers of the core state involved in the x-ray spectra 133

11

List of Figures

2.1 Partitioning of the unit cell into atomic spheres (I) and an interstitial region (II) . . . 8

3.1 TiC in the sodium chloride structure. This plot was generated using BALSAC (see
9.23.1). Interface programs between WIEN2k and BALSAC are available. 14

3.2 Startup screen of w2web . 15

3.3 Main window of w2web . 16

3.4 StructGen of w2web . 17

3.5 List of input files . 20

3.6 Task “Electron Density Plots” . 22

3.7 Electron density of TiC in (100) plane using Xcrysden 23

3.8 Electron density of TiC in (100) plane . 24

3.9 Density of states of TiC . 25

3.10 Density of states of TiC . 25

3.11 Ti LIII spectrum of TiC . 26

3.12 Bandstructure of TiC . 27

3.13 Bandstructure of TiC, showing t2g-character bands of Ti in character plotting mode . 28

3.14 Energy vs. volume curve for TiC . 28

4.1 Data flow during a SCF cycle (programX.def, case.struct, case.inX, case.outputX and
optional files are omitted) . 34

4.2 Program flow in WIEN2k . 44

5.1 Flow chart of lapw1para . 71

5.2 Flow chart of lapw2para . 71

7.1 Schematic dependence of DOS and ul(r, El) on the energy 93

9.1 3D electron density in TiC generated with XCrysDen 173

13

Licence conditions of WIEN2k
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz

Prof. Dr. Karlheinz Schwarz
Vienna University of Technology
Inst. of Physical and Theoretical Chemistry
A-1060 Vienna, Getreidemarkt 9/156
AUSTRIA
Fax: +43-1-58801-15698

DEFINITIONS:

In the following, the term “the authors”, refers to P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvas-
nicka and J. Luitz at the above address. “Program” shall mean that copyrighted APW+LO code
(in source and object form) comprising the computer programs known as WIEN2k or the graphical
user interface w2web.

MANDATORY TERMS AND CONDITIONS:

I will adhere to the following conditions upon receipt of the program:

1. All title, ownership and rights to the program or to copies of it remain with the authors,
irrespective of the ownership of the media on which the program resides.

2. I will not supply a copy of the code to anyone for any reason whatsoever. This in no way
limits my making copies of the code for backup purposes, or for running on more than one
computer system at my institution (it is a site license for the registered group). I will refer
any request for copies of the program to the authors.

3. I will not incorporate any part of WIEN2k or w2web into any other program system, without
prior written permission of the authors.

4. I will keep intact all copyright notices.
5. I understand that the authors supply WIEN2k and w2web and its documentation on an “as

is” basis without any warranty, and thus with no additional responsibility or liability. I agree
to report any difficulties encountered in the use of WIEN2k or w2web to the authors.

6. In any publication in the scientific literature I will reference the program as follows:

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Aug-
mented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
(Karlheinz Schwarz, Techn. Universität Wien, Austria), 2001. ISBN 3-9501031-1-2

Please enter your publications with WIEN2k on our web-page for “papers”, so that we can
easily include them in the list of WIEN-publications. In addition we like to receive a copy
(ps-, pdf-file or reprint), especially for less common journals. Please send it to the second
author, K. Schwarz.

7. It is understood that modifications of the WIEN2k or the w2web code can lead to problems
where the authors may not be able to help. Please report useful modifications or major ex-
tensions to the authors.

8. I understand that support for running the program can not be provided in general, except on
the basis of a joint project between the authors and the research partner.

ii

1 Introduction

The Linearized Augmented Plane Wave (LAPW) method has proven to be one of the most accurate
methods for the computation of the electronic structure of solids within density functional theory.
A full-potential LAPW-code for crystalline solids has been developed over a period of more than
twenty years. A first copyrighted version was called WIEN and it was published by

P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, in
Comput. Phys. Commun. 59, 399 (1990).

In the following years significantly improved and updated UNIX versions of the original WIEN-
code were developed, which were called WIEN93, WIEN95 and WIEN97. Now a new version,
WIEN2k, is available, which is based on an alternative basis set. This allows a significant improve-
ment, especially in terms of speed, universality, user-friendliness and new features.

WIEN2k is written in FORTRAN 90 and requires a UNIX operating system since the programs are
linked together via C-shell scripts. It has been implemented successfully on the following computer
systems: Pentium systems running under Linux, IBM RS6000, HP , SGI , Compac DEC Alpha, and
SUN. It is expected to run on any modern UNIX (LINUX) system.

Hardware requirements will change from case to case (small cases with 10 atoms per unit cell can
be run on any Pentium PC with 128 Mb under Linux), but generally we recommend a powerful PC
or workstation with at least 256 Mb (better 512 Mb or more) memory and 1 Gb (better a few Gb)
of disk space. For coarse grain parallization on the k-point level, a cluster of PCs with a 100 Mb/s
network is sufficient. Faster communication is recommended for the fine grain (single k-point)
parallel version.

In order to use all options and features (such as the new graphical user interface w2web or some
of its plotting tools) the following public domain program packages in addition to a F90 compiler
must be installed:

I perl 5 or higher (for w2web only)
I emacs or another editor of your choice
I ghostscript (with jpg support)
I gnuplot (with png support)
I www-browser
I pdf-reader (acroread,...)
I MPI+SCALAPACK (on parallel computers only)

Usually these packages should be available on modern systems. If one of these packages is not
available, it can either be installed from public domain sources (see Chapt. 11) or the corresponding
configuration may be changed (e.g. using vi instead of emacs). None of the principal components
of WIEN2k requires these packages, only for advanced features or w2web they are needed.

WIEN2k has the following features that are new with respect to WIEN97:

1

2 CHAPTER 1. INTRODUCTION

I due to the new APW+lo basis set it is significantly faster (up to an order of magnitude).
Optimizations in the most time consuming parts of LAPW1 and LAPW2 have been made.

I iterative diagonalization (for cases with large matrices and few eigenvalues)
I beside the k-point parallelization (including heterogeneous workstation clusters) a fine grain

parallelization based on MPI is also available.
I A new web-based graphical user interface w2web has been developed. It does NOT require

an X-environment and thus WIEN2k can be controlled from (but not run on !) any Windows-
PC. This should particularly help the novice to get acquainted with WIEN2k but it should be
useful for the regular user as well.

I support for AFM and FSM calculations
I spin-orbit coupling, including a new p1/2-LO for higher accuracy
I wavefunction plotting
I determination of irreducible representations
I elastic constants (cubic cases only)
I Topological analysis based on Bader’s “atoms in molecules” concept
I LDA+U, orbital polarization (OP), magnetic and electric fields
I Exact-exchange and Hybrid functionals inside spheres
I new PKZB and TPSS meta-GGA functionals

The development of WIEN2k was made possible by support from many sources. We try to give
credit to all who have contributed. We hope not to have forgotten anyone who made an important
contribution for the development or the improvement of the WIEN2k code. If we did, please let us
know (we apologize and will correct it). The main developers in addition to the authors are the
following groups:

I C. Ambrosch-Draxl (Univ. Graz, Austria) and her group, optics
I T. Charpin (Paris), elastic constants
I H. Hofstaetter and O.Koch (Vienna) iterative diagonalization
I K. Jorissen (Univ.Antwerp), C.Hebert (TU Wien), telnes3
I R. Laskowski (TU Vienna), mpi-parallelization, new dstart version
I L. Marks (Northwestern Univ.): speed-up, various optimizations, geometry optimization

(PORT) and new mixer (MSEC1, MSR1, MSR1a)
I R. Luke (Univ. Delaware): new mixer (MSEC1)
I P. Novák and J. Kuneš (Prague), LDA+U, SO
I C. Persson (Uppsala), irreducible representations
I M. Scheffler (Fritz Haber Inst., Berlin) and his group, forces, dstart, geometry optimization
I E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo
I J. Sofo and J. Fuhr (Barriloche), Bader analysis
I F. Tran (Vienna), Forces for orbital potential, Hybrid-Functionals
I B. Yanchitsky and A. Timoshevskii (Kiev), sgroup

We want to thank those WIEN97 users, who reported bugs or made suggestions and thus con-
tributed to new versions as well as persons who have made major contributions in the develop-
ment of previous versions of the code:

I R. Augustyn (Vienna), U. Birkenheuer (Munich, wavefunction plotting), P. Blöchl (IBM
Zürich), F. Boucher (Nantes), A. Chizmeshsya (Arizona), R.Dohmen and J.Pichlmeier (RZG
Garching, parallelization) P. Dufek (Vienna), H. Ebert (Munich), E. Engel (Frankfurt), H.
Enkisch (Dortmund), M. Fähnle (MPI Stuttgart), B. Harmon (Ames, Iowa), S. Kohlhammer
(Stuttgart), T. Kokalj (Ljubljana), H. Krimmel (Stuttgart), P. Louf (Vienna), I. Mazin (Wash-
ington), M. Nelhiebel (Vienna), V. Petricek (Prague), C. Rodrigues (La Plata, Argentina), P.
Schattschneider (Vienna), R. Schmid (Frankfurt), D. Singh (Washington), H. Smolinski (Dort-
mund), T. Soldner (Leipzig), P. Sorantin (Vienna), S. Trickey (Gainesville), S. Wilke (Exxon,
USA), B. Winkler (Kiel)

3

This work was supported by the following institutions:

I Austrian Science Foundation (FWF-Projects P5939, P7063, P8176, SFB08-11)
I Siemens Nixdorf (WIEN93)
I IBM (WIEN)

We take this opportunity to thank for all contributions.
For suggestions or bug reports please contact the authors by email:

pblaha@theochem.tuwien.ac.at
kschwarz@theochem.tuwien.ac.at

4 CHAPTER 1. INTRODUCTION

Part I

Introduction to the WIEN2k package

5

2 The basic concepts of the present
band theory approach

2.1 The density functional theory

An efficient and accurate scheme for solving the many-electron problem of a crystal (with nuclei
at fixed positions) is the local spin density approximation (LSDA) within density functional theory
(Hohenberg and Kohn 64, Kohn and Sham 65). Therein the key quantities are the spin densities
ρσ(r) in terms of which the total energy is

Etot(ρ↑, ρ↓) = Ts(ρ↑, ρ↓) + Eee(ρ↑, ρ↓)+ ENe(ρ↑, ρ↓) + Exc(ρ↑, ρ↓) + ENN

with ENN the repulsive Coulomb energy of the fixed nuclei and the electronic contributions, la-
belled conventionally as, respectively, the kinetic energy (of the non-interacting particles), the
electron-electron repulsion, nuclear-electron attraction, and exchange-correlation energies. Two
approximations comprise the LSDA, i), the assumption that Exc can be written in terms of a local
exchange-correlation energy density µxc times the total (spin-up plus spin-down) electron density
as

Exc =
∫
µxc(ρ↑, ρ↓) ∗ [ρ↑ + ρ ↓]dr (2.1)

and ii), the particular form chosen for that µxc. Several forms exist in literature, we use the most
recent and accurate fit to the Monte-Carlo simulations of Ceperly and Alder by Perdew and Wang
92. Etot has a variational equivalent with the familiar Rayleigh-Ritz principle. The most effective
way known to minimize Etot by means of the variational principle is to introduce orbitals χσik
constrained to construct the spin densities as

ρσ(r) =
∑
i,k

ρσik|χσik(r)|2 (2.2)

Here, the ρσik are occupation numbers such that 0 ≤ ρσik ≤ 1/wk, wherewk is the symmetry-required
weight of point k. Then variation of Etot gives the Kohn-Sham equations (in Ry atomic units),

[−∇2 + VNe + Vee + V σxc]χ
σ
ik(r) = εσikχ

σ
ik(r) (2.3)

which must be solved and thus constitute the primary computational task. This Kohn-Sham equa-
tions must be solved self-consistently in an iterative process, since finding the Kohn-Sham orbitals
requires the knowledge of the potentials which themselves depend on the (spin-) density and thus
on the orbitals again.

7

8 CHAPTER 2. BASIC CONCEPTS

Recent progress has been made going beyond the LSDA by adding gradient terms of the electron
density to the exchange-correlation energy or its corresponding potential. This has led to the gen-
eralized gradient approximation (GGA) in various parameterizations, e.g. the one by Perdew et al
92 or Perdew, Burke and Ernzerhof (PBE) 96, which is the recommended option.

A recent version called meta-GGA by Perdew et al (1999) and Tao et al. (2003) employes for the
evaluation of the exchange-correlation energy not only the gradient of the density, but also the
kinetic energy density τ(r). Unfortunately, such schemes are not yet self-consistent.

2.2 The Full Potential APW methods

Recently, the development of the Augmented Plane Wave (APW) methods from Slater’s APW, to
LAPW and the new APW+lo was described by Schwarz et al. 2001.

2.2.1 The LAPW method

The linearized augmented plane wave (LAPW) method is among the most accurate methods for
performing electronic structure calculations for crystals. It is based on the density functional theory
for the treatment of exchange and correlation and uses e.g. the local spin density approximation
(LSDA). Several forms of LSDA potentials exist in the literature , but recent improvements using
the generalized gradient approximation (GGA) are available too (see sec. 2.1). For valence states
relativistic effects can be included either in a scalar relativistic treatment (Koelling and Harmon 77)
or with the second variational method including spin-orbit coupling (Macdonald 80, Novák 97).
Core states are treated fully relativistically (Desclaux 69).

A description of this method to linearize Slater’s old APW method (i.e. the LAPW formalism) and
further programming hints are found in many references: Andersen 73, 75, Koelling 72, Koelling
and Arbman 75, Wimmer et al. 81, Weinert 81, Weinert et al. 82, Blaha and Schwarz 83, Blaha et al.
85, Wei et al. 85, Mattheiss and Hamann 86, Jansen and Freeman 84, Schwarz and Blaha 96). An
excellent book by D. Singh (Singh 94) describes all the details of the LAPW method and is highly
recommended to the interested reader. Here only the basic ideas are summarized; details are left
to those references.

Like most “energy-band methods“, the LAPW method is a procedure for solving the Kohn-Sham
equations for the ground state density, total energy, and (Kohn-Sham) eigenvalues (energy bands)
of a many-electron system (here a crystal) by introducing a basis set which is especially adapted to
the problem.

II
I

I

Figure 2.1: Partitioning of the unit cell into atomic spheres (I) and an interstitial region (II)

This adaptation is achieved by dividing the unit cell into (I) non-overlapping atomic spheres (cen-
tered at the atomic sites) and (II) an interstitial region. In the two types of regions different basis
sets are used:

2.2. THE APW METHODS 9

1. (I) inside atomic sphere t, of radius Rt, a linear combination of radial functions times spheri-
cal harmonics Ylm(r) is used (we omit the index t when it is clear from the context)

φkn
=
∑
lm

[Alm,kn
ul(r, El) +Blm,kn

u̇l(r, El)]Ylm(r̂) (2.4)

where ul(r, El) is the (at the origin) regular solution of the radial Schroedinger equation for
energy El (chosen normally at the center of the corresponding band with l-like character)
and the spherical part of the potential inside sphere t; u̇l(r, El) is the energy derivative of
ul evaluated at the same energy El. A linear combination of these two functions constitute
the linearization of the radial function; the coefficients Alm and Blm are functions of kn (see
below) determined by requiring that this basis function matches (in value and slope) each
plane wave (PW) the corresponding basis function of the interstitial region; ul and u̇l are
obtained by numerical integration of the radial Schroedinger equation on a radial mesh
inside the sphere.

2. (II) in the interstitial region a plane wave expansion is used

φkn
=

1√
ω
eikn·r (2.5)

where kn = k + Kn; Kn are the reciprocal lattice vectors and k is the wave vector inside
the first Brillouin zone. Each plane wave is augmented by an atomic-like function in every
atomic sphere.

The solutions to the Kohn-Sham equations are expanded in this combined basis set of LAPW’s
according to the linear variation method

ψk =
∑
n

cnφkn (2.6)

and the coefficients cn are determined by the Rayleigh-Ritz variational principle. The convergence
of this basis set is controlled by a cutoff parameter RmtKmax = 6 - 9, where Rmt is the smallest
atomic sphere radius in the unit cell and Kmax is the magnitude of the largest K vector in equation
(2.6).

In order to improve upon the linearization (i.e. to increase the flexibility of the basis) and to make
possible a consistent treatment of semicore and valence states in one energy window (to ensure
orthogonality) additional (kn independent) basis functions can be added. They are called “local
orbitals (LO)“ (Singh 91) and consist of a linear combination of 2 radial functions at 2 different
energies (e.g. at the 3s and 4s energy) and one energy derivative (at one of these energies):

φLOlm = [Almul(r, E1,l) +Blmu̇l(r, E1,l) + Clmul(r, E2,l)]Ylm(r̂) (2.7)

The coefficients Alm, Blm and Clm are determined by the requirements that φLO should be normal-
ized and has zero value and slope at the sphere boundary.

2.2.2 The APW+lo method

Sjöstedt, Nordström and Singh (2000) have shown that the standard LAPW method with the ad-
ditional constraint on the PWs of matching in value AND slope to the solution inside the sphere
is not the most efficient way to linearize Slater’s APW method. It can be made much more effi-
cient when one uses the standard APW basis, but of course with ul(r, El) at a fixed energy El in
order to keep the linear eigenvalue problem. One then adds a new local orbital (lo) to have enough
variational flexibility in the radial basisfunctions:

φkn
=
∑
lm

[Alm,kn
ul(r, El)]Ylm(r̂) (2.8)

10 CHAPTER 2. BASIC CONCEPTS

φlolm = [Almul(r, E1,l) +Blmu̇l(r, E1,l)]Ylm(r̂) (2.9)

This new lo (denoted with lower case to distinguish it from the LO given in equ. 2.7) looks almost
like the old “LAPW”-basis set, but here the Alm and Blm do not depend on kn and are determined
by the requirement that the lo is zero at the sphere boundary and normalized.

Thus we construct basis functions that have “kinks” at the sphere boundary, which makes it nec-
essary to include surface terms in the kinetic energy part of the Hamiltonian. Note, however, that
the total wavefunction is of course smooth and differentiable.

As shown by Madsen et al. (2001) this new scheme converges practically to identical results as the
LAPW method, but allows to reduce “RKmax” by about one, leading to significantly smaller basis
sets (up to 50 %) and thus the corresponding computational time is drastically reduced (up to an
order of magnitude). Within one calculation a mixed “LAPW and APW+lo” basis can be used for
different atoms and even different l-values for the same atom (Madsen et al. 2001). In general one
describes by APW+lo those orbitals which converge most slowly with the number of PWs (such
as TM 3d states) or the atoms with a small sphere size, but the rest with ordinary LAPWs. One
can also add a second LO at a different energy so that both, semicore and valence states, can be
described simultaneously.

2.2.3 General considerations

In its general form the LAPW (APW+lo) method expands the potential in the following form

V (r) =

∑
LM

VLM (r)YLM (r̂) inside sphere∑
K

VKe
iK·r outside sphere (2.10)

and the charge densities analogously. Thus no shape approximations are made, a procedure fre-
quently called a “full-potential“ method.

The “muffin-tin“ approximation used in early band calculations corresponds to retaining only the
l = 0 component in the first expression of equ. 2.10 and only the K = 0 component in the second.
This (much older) procedure corresponds to taking the spherical average inside the spheres and
the volume average in the interstitial region.

The total energy is computed according to Weinert et al. 82.

Rydberg atomic units are used except internally in the atomic-like programs (LSTART and LCORE)
or in subroutine outwin (LAPW1, LAPW2), where Hartree units are used. The output is always
given in Rydberg units.

The forces at the atoms are calculated according to Yu et al (91). For the implementation of this
formalism in WIEN see Kohler et al (96) and Madsen et al. 2001. An alternative formulation by
Soler and Williams (89) has also been tested and found to be equivalent, both in computationally
efficiency and numerical accuracy (Krimmel et al 94).

The Fermi energy and the weights of each band state can be calculated using a modified tetrahe-
dron method (Blöchl et al. 94), a Gaussian or a temperature broadening scheme.

Spin-orbit interactions can be considered via a second variational step using the scalar-relativistic
eigenfunctions as basis (see Macdonald 80, Singh 94 and Novák 97). In order to overcome the prob-
lems due to the missing p1/2 radial basis function in the scalar-relativistic basis (which corresponds
to p3/2), we have recently extended the standard LAPW basis by an additional “p1/2-local orbital”,
i.e. a LO with a p1/2 basis function, which is added in the second-variational SO calculation (Kuneš
et al. 2001).

2.2. THE APW METHODS 11

It is well known that for localized electrons (like the 4f states in lanthanides or 3d states in some
TM-oxides) the LDA (GGA) method is not accurate enough for a proper description. Thus we have
implemented various forms of the LDA+U method as well as the “Orbital polarization method”
(OP) (see Novák 2001 and references therein). In addition you can also calculate exact-exchange
inside the spheres and apply various hybrid functionals (see Tran et al. 2006 for details).

One can also consider interactions with an external magnetic (see Novák 2001) or electric field (via
a supercell approach, see Stahn et al. 2000).

PROPERTIES:

The density of states (DOS) can be calculated using the modified tetrahedron method of Blöchl et
al. 94.

X-ray absorption and emission spectra are determined using Fermi’s golden rule and dipole matrix
elements (between a core and valence or conduction band state respectively). (Neckel et al. 75,
Schwarz et al 79,80)

X-ray structure factors are obtained by Fourier Transformation of the charge density.

Optical properties are obtained using the “Joint density of states” modified with the respective
dipole matrix elements according to Ambrosch et al. 95, Abt et al. 94, Abt 97. and in particular
Ambrosch 06. A Kramers-Kronig transformation is also possible.

An analysis of the electron density according to Bader’s “atoms in molecules” theory can be made
using a program by J. Sofo and J. Fuhr (2001)

12 CHAPTER 2. BASIC CONCEPTS

3 Quick Start

Contents
3.1 Naming conventions . 13
3.2 Starting the server . 14
3.3 Connecting to the w2web server . 15
3.4 Creating a new session . 15
3.5 Creating a new case . 16
3.6 Creating the struct file . 16
3.7 Initialization . 18
3.8 The SCF calculation . 20
3.9 The case.scf file . 21
3.10 Saving a calculation . 21
3.11 Calculating properties . 21
3.12 Setting up a new case . 29

We assume that WIEN2k is properly installed and configured for your site and that you ran
userconfig lapw to adjust your path and environment. (For a detailed description of the in-
stallation see chapter 11.

This chapter is intended to guide the novice user in the handling of the program package. We
will use the example of TiC in the sodium chloride structure to show which steps are necessary to
initialize a calculation and run a self consistent field cycle. We also demonstrate how to calculate
various physical properties from these SCF data. Along the way we will give all important infor-
mation in a very abridged form, so that the novice user is not flooded with information, and the
experienced user will be directed to more complete information.

In this chapter we will also show, how the new graphical user interface w2web can be utilized to
setup and run the calculations.

3.1 Naming conventions

Before we begin with our introductory example, we describe the naming conventions, to which we
will adhere throughout this user’s guide.

On UNIX systems the files are specified by case.type and it is required that all files reside in a
subdirectory ./case. Here and in the following sections and in the shell scripts which run the
package themselves, we follow a simple, systematic convention for file labeling.

For the general discussion (when no specific crystal is involved), we use case, while for a specific
case, e.g. TiC, we use the following notation:

13

14 CHAPTER 3. QUICK START

Figure 3.1: TiC in the sodium chloride structure. This plot was generated using BALSAC (see
9.23.1). Interface programs between WIEN2k and BALSAC are available.

case=TiC

The filetype “type” always describes the content of the file (e.g.,

type=inm is inPUT for mIXER).

Thus the input to MIXER for TiC is found in the file

TiC.inm

which should be in subdirectory ./TiC.

3.2 Starting the w2web server

Start the user interface w2web on the computer where you want to execute WIEN2k(you may have
to telnet, ssh,.. to this machine) with the command

w2web [-p xxxx]

If the default port (7890) used to serve the interface is already in use by some other process,
you will get the error message w2web failed to bind port 7890 - port already in
use!. Then you will have to choose a different port number (between 1024 and 65536) . Please
remember this port number, you need it when connecting to the w2web server.

Note: Only user root can specify port numbers below 1024!

At the first startup of this server, you will also be asked to setup a username and password, which
is required to connect to this server.

3.3. CONNECTING TO THE W2WEB SERVER 15

3.3 Connecting to the w2web server

Use your favorite WWW-browser to connect to w2web, specifying the correct portnumber, e.g.

netscape http://hostname where w2web runs:7890

(If you do not remember the portnumber, you can find it by using “ps -ef | grep w2web” on the
computer where w2web is running.) You should see a screen as in Fig.3.2.

3.4 Creating a new session

The user interface w2web uses sessions to distinguish between different working environments
and to quickly change between different calculations. First you have to create a new session (or
select an old one). Enter “TiC” and click the “Create” button.
Note: Creating a session does not automatically create a new directory!

You will be placed in your home directory if no working directory was designated to this session
previously (or if the directory does not exist any more).

Figure 3.2: Startup screen of w2web

16 CHAPTER 3. QUICK START

3.5 Creating a new case-directory

Using “Session Mgmt. o change directory” you can select an existing directory or create a new one.
For this example create a new directory lapw and than TiC using the “Create” button. After the
directory has been created, you have to click on select current directory to assign this newly created
directory to the current session.

After clicking on Click to restart session the main window of w2web will appear (Fig.3.3.

Figure 3.3: Main window of w2web

3.6 Creating the “master input“ file case.struct

To create the file TiC.struct start the struct-file generator using “Execution o StructGen” (see
figure 3.4).

For a new case w2web creates an empty structure template in which you can specify structural
data. Later on this information is used to generate the TiC.struct file.

As a first step specify the number of atoms (2 for TiC) and fill in the data given below into the
corresponding fields (white boxes):

Title TiC
Lattice F (for face centered)
a 4.328 Å(make sure the Ang button is selected)
b 4.328 Å
c 4.328 Å
α, β, γ 90
Atom Ti, enter position (0,0,0)
Atom C, enter position (.5,.5,.5)

Click “Save Structure” (Z will be updated automatically) and “set automatically RMT and con-
tinue editing ”:

3.6. CREATING THE STRUCT FILE 17

This will compute the nearest neigbor distances using the program nn and setrmt lapw will then
determine the optimal RMT values (muffin-tin radius, atomic sphere radius). To learn more about
the philosophy of setting RMTs see http : //www.wien2k.at/reguser/faq. Since it is essential to keep
RMTs constant within a series of calculations (eg. when you do a Volume-optimization, see 3.11.6
), you should already now decide whether you want to do just one single calculation with fixed
structural parameters, or whether you intend a relaxation of internal parameters (using forces and
min lapw) or a volume optimization, which would required reduced RMT values.

Choose a reduction of 3 % so that we can later optimize the lattice parameter.

Figure 3.4: StructGen of w2web

When you are done, exit the StructGen with “save file and clean up”. This will generate the file
TiC.struct (shown now in view-only mode with a different background color), which is the
master input file for all subsequent programs.

A few other hints on StructGen:

18 CHAPTER 3. QUICK START

You have to click on Save Structure after every modifications you make in the white fields.
Add/remove a position/atom only if you have made no other changes before.

In a face-centered (body-centered) spacegroup you have to enter just one atom (not the ones in
(.5,.5,0),. . .).

StructGen offers a built in calculator: Each position of equivalent atoms can be entered as a num-
ber, a fraction (e.g. 1/3) or a simple expression (e.g. 0.21 + 1/3). The first position defines the
variables x, y and z, which can be using in expression defining the other positions (e.g. −y, x,
−z + 1/2).

When you now choose “Files o show all files”, you will see, that tic.struct has been created.

For a detailed description of these files consult sections 4.3 and 6.4.3.

3.7 Initialization of the calculation (init lapw)

After the two basic input files have been created, initalization of the calculation is done by “Execu-
tion o initialize calc.”. This will guide you through the steps necessary to initialite the calculation.
Simply follow the steps that are highlighted in green and follow the instructions.

The initialization process is described in detail in section 5.1.2.

Alternatively you could run the script init lapw from the command line. All actions of this script
are logged in short in :log and in detail in the file case.dayfile, which can easily be accessed
by Utils. o show dayfile.

Initializing the calculation will run several steps automatically, where x is the script to start WIEN2k
programs (see section: 5.1.1).

x nn calculates the nearest neighbors up to a specified distance and thus helps to determine the
atomic sphere radii (you must specify a distance factor f, e.g. 2, and all distances up to f *
NN-dist. are calculated)

view TiC.outputnn : check for overlapping spheres, coordination numbers and nearest neighbor
distances, (e.g. in the sodium chloride structure there must 6 nearest and 12 next nearest
neighbors). Using these distances and coordinations you can check whether you put the
proper positions into your struct file or if you made a mistake. nn also checks whether
your equivalent atoms are really crystallographically equivalent and eventually writes a new
struct-file which you may or may not accept. If you have not done so at the very begin-
ning, go back to StructGen and choose proper RMT values. You can save a lot of CPU-time by
changing RMT to almost touching spheres. See Sec.4.3

x sgroup calculates the point and spacegroups for the given structure
view TiC.outputsgroup : Now you can either accept the TiC.struct file generated by sgroup

(if you want to use the spacegroup information or a different cell has been found by sgroup)
or keep your original file (default).

x symmetry generates from a raw case.struct file the space group symmetry operations, de-
termines the point group of the individual atomic sites, generates the LM expansion for the
lattice harmonics (in case.in2 st) and local rotation matrices (in case.struct st).

view TiC.outputs : check the symmetry operations (they have been written to or compared with
already available ones in TiC.struct by the program symmetry) and the point group sym-
metry of the atoms (You may compare them with the “International Tables for X-Ray Crys-
tallography“). If the output does not match your expectations from the “Tables”, you might
have made an error in specifying the positions. The TiC.struct file will be updated with
symmetry operations, positive or negativ atomic counter (for “cubic” point group symme-
tries) and the local rotation matrix.

3.7. INITIALIZATION 19

instgen lapw : You are requested to generate an input file TiC.inst and can define the spin-
polarization of each atom. While this is not important for TiC, it is very important for spin-
polarized calculations and in particular for anti-ferromagnetic cases, where you should “flip”
the spin of the AFM atoms and/or set the spin of the “non-magnetic” atoms (eg. oxygen in
NiO) to zero.

x lstart generates atomic densities (see section 6.4) and determines how the orbitals are treated in
the band structure calculations (i.e. as core or band states, with or without local orbitals, . . .).
You are requested to specify the desired exchange correlation potential and an energy that
separates valence from core states. For TiC select the recommended potential option “GGA
of Perdew-Burke-Ernzerhof 96” and a separation energy of -6.0 Ry.

edit TiC.outputst : check the output (did you specify a proper atomic configuration, did lstart
converge, are the core electrons confined to the atomic sphere?). Warnings for the radial
mesh can usually be neglected since it affects only the atomic total energy. lstart generates
TiC.in0 st, in1 st, in2 st, inc st and inm st. For Ti it selects automatically 1s, 2s,
and 2p as core states, 3s and 3p will be treated with local orbitals together with 3d, 4s and 4p
valence states.

edit TiC.in1 st : As mentioned, the input files are generated automatically with some default val-
ues which should be a reasonable choice for most cases. Nevertheless we highly recommend
that you go through these inputs and become familiar with them. The most important param-
eter here is RKMAX, which determines the number of basis functions (size of the matrices).
Values between 5-9 (APW) and 6-10 (LAPW) are usually reasonable. You may change here
the usage of APW or LAPW (set 1 or 0 after the CONT/STOP switch), since often APW is
necessary only for orbitals more difficult to converge (3d, 4f). Here we will just change EMAX
of the energy window from 1.5 to 2.0 Ry in order to be able to calculate the unoccupied DOS to higher
energies.

edit TiC.in2 st : Here you may limit the LM expansion (for some speedup), change the value of
GMAX (in cases with small spheres (e.g. systems with H-atoms) values of 15-24 are recom-
mended) or specify a different BZ-integration method to determine the Fermi energy. For
this example you should not change anything so that you can compare your results with the
test run.

Copy all generated inputs (from case.in∗ st to case.in*). In cases without inversion sym-
metry the files case.in1c, in2c are produced.

x kgen generates a k-mesh in the Brillouin zone (BZ). You must specify the number of k-points
in the whole BZ (use 1000 for comparison with the provided output, a “good” calculations
needs many more). For details see section 6.5.

view TiC.klist : check the number of k-points in the irreducible wedge of the BZ (IBZ) and the
energy interval specified for the first k-point. You can now either rerun kgen (and generate
a different k-mesh) or continue.

x dstart generates a starting density for the SCF cycle by superposition of atomic densities gener-
ated in lstart. For details see section 6.6.

view TiC.outputd (check if gmax >gmin)
Now you are asked , whether or not you want to run a spin-polarized calculation (in such a case

case dstart is re-run to generate spin-densities). For TiC say No.

Alternatively, w2web provides an “expert-mode”, where some inputs can be specified right at the
beginning and then the whole initialization runs at once. Please check carefully the STDOUT-
listing and some output-files for possible errors or warnings!!

Initialization of a calculation (running init lapw) will create all inputs for the subsequent SCF
calculation choosing some default options and values. You can find a list of input files using “Files
o input files” (3.5).

20 CHAPTER 3. QUICK START

Figure 3.5: List of input files

3.8 The SCF calculation

After the case has been set up, a link to “run SCF” is added, (“Run Programs o run SCF” and you
should invoke the self-consistency cycle (SCF). This runs the script run lapw with the desired
options.

The SCF cycle consists of the following steps:

LAPW0 (POTENTIAL) generates potential from density
LAPW1 (BANDS) calculates valence bands (eigenvalues and eigenvectors)
LAPW2 (RHO) computes valence densities from eigenvectors
LCORE computes core states and densities
MIXER mixes input and output densities

After selecting “run SCF” from the “Execution” menu, the SCF-window will open, and you can
now specify additional parameters. For this example we select charge convergence to 0.0001: Spec-
ify “charge” to be used as convergence criterion, and select a value of 0.0001 (-cc 0.0001).

To run the SCF cycle, click on “Run!”

Since this might take a long time for larger systems; you can specify the “Execution type” to be batch
or submit (if your system is configured with a queuing system and w2web has been properly set
up, see section 11.3).

While the calculation is running (as indicated by the status frame in the top right corner of the
window), you can monitor several quantities (see section 3.9).

Once the calculation is finished (11 iterations), view case.dayfile for timing and errors and
compare your results with the files in the provided example (TiC/case scf).

3.9. THE CASE.SCF FILE 21

For magnetic systems you would run a spin-polarized calculation with the script runsp lapw.
The program flow of such a calculation is described in section 4.5.2 and the script itself in section
5.1.3.

3.9 The “history“ file case.scf

During the SCF cycle the essential data of each iteration are appended to the file case.scf, in our
example TiC.scf. For an easier retrieval of certain quantities, the essential lines carry a label of
the form :LABEL: which can be used to monitor these quantities during a SCF run.

The information is retrieved using the UNIX grep command or using the “Utils. o analyze” menu.

While the SCF cycle of TiC is running try to monitor e.g. the total energy (label :ENE) or the charge
distance (label :DIS). The calculation has converged, when the convergence criterion is met for
three subsequent iterations (compare the charge distance in the example).

For a detailed description of the various labels consult section 4.4.

3.10 Saving a calculation

Before you proceed to another calculation, you should save the results of the SCF-cycle with the
save lapw command, which is also described in detail in section 5.2.1. This can also be done from
the graphical user interface by choosing the “Utils. o save lapw” menu.

Save the result to this example under the name “TiC scf”.

You can now improve your calculation and check the convergence of the most important parame-
ters:

I increase RKMAX and GMAX in case.in1 and case.in2
I increase the k-mesh with x kgen
I choose a different exchange-correlation potential in case.in0

Then just execute another run lapw using “Execution o run SCF”.

3.11 Calculating properties

Once the SCF cycle has converged one can calculate various properties like Density of States (DOS),
band structure, Optical properties or X-ray spectra.

For the calculation of properties (which from now on will be called “Tasks”). We strongly encourage
the user to utilize the user interface, w2web. This user interface automatically supplies input file
templates and shows how to calculate the named properties on a step by step basis.

3.11.1 Electron density plots

Select “El. Dens.” from the “Tasks” menu and click on the buttons one by one (see figure 3.6):

I The total charge density includes the Ti 3s and 3p states and the resulting density
around Ti would be very large and dominated by these semicore states. To get
a “meaningful” picture of the chemical bonding effects one must remove these
states. Inspection of TiC.scf1 and TiC.scf2 should allow you to select an
EMIN value to eliminate the Ti 3s and 3p semicore states.

22 CHAPTER 3. QUICK START

Figure 3.6: Task “Electron Density Plots”

I Recalculate the valence density with EMIN=-1.0 to truncate Ti 3s and 3p (x
lapw2). This is only possible, when you still have a valid TiC.vector file on
a tetrahedral mesh.

I Select a plane and plot the density in the (100) plane of TiC. When XCRYSDEN
is installed (for details see http://www.xcrysden.org/doc/wien.html), it will be
offered automatically and provides a convenient way to specify a plane and create
a colorful plot 3.7.

– Select 2D-plot
– Specify a resolution of 100 points (first line)
– Select a plane by selecting 3 atoms and define these 3 atoms by clicking on

them.
– Choose rectangular parallelogram and enlarge the rectangular selection by 0.5

(for all 4 margins, then update the display)
– calculate the density and produce a nice contour plot:
– choose “rainbow”-colors, activate all display-option buttens, and choose in

“Ranges” a smaller “highest rendered value”.
– Finally, use smaller spheres (pipe+ball display model) and thinner bonds

(Modify/Ball-Stick-ratio).
I Alternatively, without XCRYSDEN, edit TiC.in5 and choose the offered template

input file. To select the (100) plane for plotting specify the following input:
-1 -1 0 4 # origin of plot (x,y,z,denominator)
-1 3 0 4 # x-end of plot
3 -1 0 4 # y-end of plot

3 2 3 # x,y,z number of shells
100 100 # x, y plotting mesh, choose ratio similar to x,y length
RHO
ANG VAL NODEBUG

3.11. CALCULATING PROPERTIES 23

ORTHO

For a detailed description of input options consult section 8.6.3
I Calculate electron density (x lapw5)
I Plot output (using rhoplot), after the first preview select a range zmin=-0.5 to

zmax=2

Figure 3.7: Electron density of TiC in (100) plane using Xcrysden

Compare the result with the electron density plotted in the (100) plane (see figure 3.8). The pro-
gram gnuplot (public domain) must be installed on your computer. For more advanced graphics
use your favorite plotting package or specify other options in gnuplot (see rhoplot lapw how
gnuplot is called).

24 CHAPTER 3. QUICK START

Figure 3.8: Electron density of TiC in (100) plane

3.11.2 Density of States (DOS)

Select “Density of States (DOS)” from the “Tasks” menu and click on the buttons one by one:

I Calculate partial charges (x lapw2 -qtl). (This is only possible, when you still
have a valid TiC.vector file on a tetrahedral mesh.)

I Create TiC.int, either using “configure TiC.int” or/and by “editing” the offered
template input file. Select: total DOS, Ti-d, Ti-deg , Ti-dt2g , C-s and C-p-like DOS.

TiC
-0.50 0.00200 1.500 0.003 EMIN, DE, EMAX, Gauss-broadening
6 NUMBER OF DOS-CASES
0 1 tot (atom,case,description)
1 4 Ti d
1 5 Ti eg
1 6 Ti t2g
2 2 C s
2 3 C p

For a detailed description of input options consult section 8.1.3
I Calculate DOS (x tetra).
I Preview output using “dosplot”

If you want to use the supplied plotting interface dosplot2 to preview the results, the program
gnuplot (public domain) must be installed on your computer.

The calculated DOS can be compared with figures 3.9 and 3.10. Together with the electron density
the partial DOS allows you to analyse the chemical bonding (covalency between Ti−deg and C−p,
non-bonding Ti− dt2g , charge transfer estimates,....)

3.11. CALCULATING PROPERTIES 25

Figure 3.9: Density of states of TiC

Figure 3.10: Density of states of TiC

26 CHAPTER 3. QUICK START

3.11.3 X-ray spectra

Select “X-Ray Spectra” from the “Tasks menu” and click on the buttons one by one:

I Calculate partial charges (x lapw2 -qtl). This is only possible, when you still
have a valid TiC.vector file on a tetrahedral mesh. To reproduce this figure you
will have to increase the EMAX value in your TiC.in1 to 2.5 Ry and rerun x lapw1

I Edit TiC.inxs; choose the offered template. This template will calculate the LIII -
spectrum of the first atom (Ti in this example) in the energy range between -2 and
15 eV. For a detailed description of the contents of this input file refer to section
8.10.3.

I Calculate spectra
I Preview spectra

If you want to use the supplied plotting interface specplot to preview the results, the public domain
program gnuplot must be installed on your computer. The calculated TiC Ti-LIII -spectrum can be
compared with figure 3.11.

Figure 3.11: Ti LIII spectrum of TiC

3.11.4 Bandstructure

Select “Bandstructure” from the “Tasks” menu and click on the buttons one by one:

I Create the file TiC.klist band from the template in
$WIENROOT/SRC templates/fcc.klist. (To calculate a bandstructure a
special k-mesh along high symmetry directions is necessary. For a few crystal
structures template files are supplied in the SRC-directory, you can also use
XCRYSDEN (save it as xcrysden.klist) to generate a k-mesh or type in your own
mesh.

I Calculate Eigenvalues using the “-band” switch (which changes lapw1.def such
that the k-mesh is read from TiC.klist band and not from TiC.klist)
Note: When you want to calculate DOS, charge densities or spectra after this bandstruc-
ture, you must first recalculate the TiC.vector file using the “tetrahedral” k-mesh,
because the k-mesh for the band structure plots is not suitable for calculations of such
properties.

3.11. CALCULATING PROPERTIES 27

I Edit TiC.insp: insert the correct Fermi energy (which can be found in the saved
scf-file) and specify plotting parameters. For comparison with figure 3.12 select
an energy-range from -13 to 8 eV.

I Calculate Bandstructure (x spaghetti).
I Preview Bandstructure (needs ghostscript installed).

If you want to preview the bandstructure, the program ghostview (public domain) must be in-
stalled on your computer. You can compare your calculated bandstructure with figure 3.12.

tic atom 0 size 0.40

W L Λ Γ ∆ X Z W K

EF

E
ne

rg
y

(e
V

)

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 -1.0

 -2.0

 -3.0

 -4.0

 -5.0

 -6.0

 -7.0

 -8.0

 -9.0

-10.0

-11.0

-12.0

-13.0

Figure 3.12: Bandstructure of TiC

3.11.5 Bandstructure with band character plotting / full lines

Select again “Bandstructure” from the “Tasks” menu. We assume that you have already done the
steps described in the previous section (generate TiC.klist band and x lapw1 -band).

I Calculate partial charges (x lapw2 -qtl -band)
Note: You have to calculate the partial charges for the new special k-mesh specified above
and cannot use the partial charges from the DOS calculation.

I Edit TiC.insp: insert the correct Fermi energy (same as before) and specify plot-
ting parameters. For ”band character plotting” (see figure 3.13) select ”line type
= dots” and jatom=1, jtype=6 and jsize=0.2 (in the last input line) to produce a
character plot of the Ti t2g-like character bands.

I Calculate Bandstructure (x spaghetti)
I Preview Bandstructure
I To plot the bandstructure with full lines, calculate the irreducible representations

with ”x irrep” and select ”lines” in case.insp.

If you have case.irrep* or case.qtl* files from previous runs which do not fit to the
present case.output1 file, you may get errors while running spaghetti. In this case
remove all case.irrep or case.qtl files.

You can compare your results with figure 3.13.

28 CHAPTER 3. QUICK START

tic atom 1D-t2g size 0.20

W L Λ Γ ∆ X Z W K

EF

E
ne

rg
y

(e
V

)

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 -1.0

 -2.0

 -3.0

 -4.0

 -5.0

 -6.0

 -7.0

 -8.0

 -9.0

-10.0

-11.0

-12.0

-13.0

Figure 3.13: Bandstructure of TiC, showing t2g-character bands of Ti in character plotting mode

3.11.6 Volume Optimization

Select “Optimize (V,c/a)” from the “Execution” menu. Setup the shell script optimize.job
script using x optimize and volume variations of -10, -5, 0, +5 and +10%. Then run the
optimize.job. When the job has finished, you should click on Plot and then preview the en-
ergy curve.

You should get an energy curve as in figure 3.14. On the screen you will find the fitting parameters
for the “equation of states” (Murnaghan, Birch-Murnaghan and the EOS2 equation, see sec. 9.12).
This information is also written to TiC.outputeos.

Figure 3.14: Energy vs. volume curve for TiC

3.12. SETTING UP A NEW CASE 29

3.12 Setting up a new case

In order to setup a new case you need at least the following information:

I The lattice parameters (in Bohr or Ångstroms) and angles,
I the lattice type (primitive, face-centered, hexagonal,...) or spacegroup,
I the position of all equivalent and inequivalent atoms in fractions of the unit cell.
I Alternatively with the new StructGen you can specify the spacegroup and only the inequiv-

alent positions. The equivalent ones will be generated automatically.

Usually this information can be collected from the “International Tables of Crystallography” once
you know the space group, the Wyckoff position and the internal free coordinates.

3.12.1 Manually setting up a new case

Usually for a new “case“ the input is not created from scratch, but one uses the struct file from a
similar case as pattern. Change into the lapw subdirectory and proceed as follows:

mkdir case new
cd case new
cp ../case old/case old.struct case new.struct

Now edit case new.struct (see section 4.3) as necessary (Note: this is a fixed formatted file,
so all values must remain at their proper columns). Afterwards generate case new.inst using
instgen lapw.

3.12.2 Setting up a new case using w2web

Use the menu Session Mgmt. o change session of w2web to create a new session (enter the name of
the new session and click on “Create”). Then you should also create a new directory and “select”
it..

When you select “Execution o StructGen”, you have several choices:

You can just specify the number of non-equivalent atoms and a template file will be created. In
StructGen you simply specify the lattice (type or spacegroup), cell parameters and name and po-
sitions of atoms. When you “save file and clean up” the new case.struct file and the case.inst
file are created automatically.

Alternatively, you can use cif2struct or xyz2struct to convert a “cif”, “txt” or “xyz” file
into the WIEN2k case.struct file. Check page 168 for more info on the specific file formats.

For more information on the StructGen refer to page 169.

30 CHAPTER 3. QUICK START

Part II

Detailed description of the files and
programs of the WIEN2k package

31

4 File structure and program flow

Contents
4.1 Flow of input and output files . 33
4.2 Input/Output files . 37
4.3 The case.struct.file . 38
4.4 The case.scf file . 41
4.5 Flow of programs . 43

(for naming conventions see section 3.1)

4.1 Flow of input and output files

Each program is started with (at least) one command line argument, e.g.

programX programX.def

in which the arguments specifies a filename, in which FORTRAN I/O units are connected to unix
filenames. (See examples at specific programs). These “def“-files are generated automatically
when the standard WIEN2k scripts x, init lapw or run lapw are used, but may be tailored by
hand for special applications. Using the option

x program -d

a def-file can be created without running the program. In addition each program reads/writes the
following files:

case.struct a “master“ input file, which is described below (Section 4.3)
case.inX a specific input file, where X labels the program (see def-files for each program in chapter

6).
case.outputX an output file

The programs of the SCF cycle (see figure 4.1) write the following files:

case.scfX a file containing only the most significant output (see description below).
program.error error report file, should be empty after successful completion of a program (see

chapter 6)

33

34 CHAPTER 4. FILES AND PROGRAM FLOW

ne
ce

ss
ar

y
op

tio
na

l

br
oy

d1

sc
f0

cl
m

su
m

(o
ld

)
L

A
PW

0

L
A

PW
1

L
C

O
R

E

cl
m

co
r

sc
fc

ve
ct

or

sc
f1

kg
en

L
A

PW
2

vs
p

vn
s

cl
m

sc

cl
m

va
l

sc
f2

he
lp

3*

sc
fm

(o
ld

)

M
E

R
G

E
sc

f
M

IX
E

R

cl
m

su
m

(n
ew

)

(n
ew

)
sc

fm

br
oy

d2

Figure 4.1: Data flow during a SCF cycle (programX.def, case.struct, case.inX, case.outputX and
optional files are omitted)

4.1. FLOW OF INPUT AND OUTPUT FILES 35

The following tables describe input and output files for the initialization programs nn, sgroup,
symmetry, lstart, kgen, dstart (table 4.1), the utility programs tetra, irrep, spaghetti,
aim, lapw7, elnes, lapw3, lapw5, xspec, optic, joint, kram, optimize and mini (table
4.2) as well as for a SCF cycle of a non-spin-polarized case (table 4.2). Optional input and output
files are used only if present in the respective case subdirectory or requested/generated by an
input switch. The connection between FORTRAN units and filenames are defined in the respective
programX.def files. The data flow is illustrated in Fig. 4.1.

program needs generates
necessary optional necessary optional

NN nn.def case.outputnn case.struct nn
case.struct

SGROUP case.struct case.outputsgroup case.struct sgroup

SYMMETRY symmetry.def case.outputs case.struct st
case.struct case.in2 st case.in2 st

LSTART lstart.def case.outputst case.rspup
case.struct case.rsp case.rspdn
case.inst case.in0 st case.vsp st

case.in1 st case.vspdn st
case.in2 st case.sigma
case.inc st
case.inm st
case.inm restart

KGEN kgen.def case.outputkgen
case.struct case.klist

case.kgen
DSTART dstart.def case.outputd

case.struct case.clmsum(up)
case.rsp(up) dstart.error
case.in0 case.in0 std
case.in1
case.in2

Table 4.1: Input and output files of init programs

program needs generates
necessary optional necessary optional

SPAGHETTI spaghetti.def case.qtl case.spaghetti ps case.spaghetti ene
case.insp case.outputso case.outputsp
case.struct case.irrep case.band.agr
case.output1

TETRA tetra.def case.outputt
case.int case.dos1(2,3)
case.qtl case.dos1ev(1,2,3)
case.kgen

LAPW3 lapw3.def case.output3
case.struct case.rho
case.in2
case.clmsum case.clmsum

LAPW5 lapw5.def case.sigma case.output5 case.rho.oned
case.struct case.rho
case.in5
case.clmval

XSPEC xspec.def case.outputx case.coredens
case.inc case.dos1ev
case.int case.xspec
case.vsp case.txspec
case.struct case.m1
case.qtl case.m2

OPTIC optic.def case.outputop
case.struct case.symmat
case.mat diag
case.inop
case.vsp
case.vector

JOINT joint.def case.outputjoint case.sigma intra
case.injoint case.joint case.intra

continued on next page

36 CHAPTER 4. FILES AND PROGRAM FLOW

case.struct
case.kgen
case.weight
case.symmat
case.mat diag

KRAM kram.def case.epsilon case.eloss
case.inkram case.sigmak case.sumrules
case.joint

OPTIMIZE case.struct case initial.struct optimize.job case vol xxxxx.struct
case c/a xxxxx.struct

MINI mini.def case.scf mini case.outputM case.clmsum inter
case.inM case.tmpM case.tmpM1
case.finM case.constraint case.struct1
case.scf case.clmhist case.scf mini1
case.struct .min hess .minrestart

IRREP case.struct case.outputirrep
case.vector case.irrep

AIM case.struct case.outputaim case.crit
case.clmsum case.surf
case.inaim

LAPW7 case.struct case.output7 case.abc
case.vector case.grid
case.in7 case.psink
case.vsp

QTL case.struct case.outputq
case.vector case.qtl
case.inq
case.vsp

Table 4.2: Input and output files of utility programs

program needs generates
necessary optional necessary optional

LAPW0 lapw0.def case.clmup/dn case.output0 case.r2v
case.struct case.vrespsum/up/dn case.scf0 case.vcoul
case.in0 case.inm case.vsp(up/dn) case.vtotal
case.clmsum case.vns(up/dn)

ORB orb.def case.energy case.outputorb case.br1orb
case.struct case.vorb old case.scforb case.br2orb
case.inorb case.vorb
case.dmat orb.error
case.vsp

LAPW1 lapw1.def case.vns case.output1 case.nsh(s)
case.struct case.vorb case.scf1 case.nmat only
case.in1 case.vector.old case.vector
case.vsp case.energy
case.klist

LAPWSO lapwso.def case.vorb case.vectorso
case.struct case.outputso
case.inso case.scfso
case.in1 case.energyso
case.vector case.normso
case.vsp
case.vns
case.energy

LAPW2 lapw2.def case.kgen case.output2 case.qtl
case.struct case.nsh case.scf2 case.weight
case.in2 case.weight case.clmval case.weigh
case.vector case.weigh case.help03*
case.vsp case.recprlist case.vrespval
case.energy case.almblm

case.radwf
LAPWDM lapwdm.def case.inso case.outputdm

case.struct case.scfdm
case.indm case.dmat
case.vector lapwdm.error
case.vsp
case.weigh
case.energy

SUMPARA case.struct case.scf2p case.outputsum
case.clmval case.clmval

continued on next page

4.2. INPUT/OUTPUT FILES 37

case.scf2
LCORE lcore.def case.vns case.outputc case.corewf

case.struct case.scfc
case.inc case.clmcor
case.vsp lcore.error

After LCORE the case.scfX files are appended to case.scf and the
case.clmsum file is renamed to case.clmsum old (see run lapw)

MIXER mixer.def case.clmsum old case.outputm case.broyd*
case.struct case.clmsc case.scfm
case.inm case.clmcor case.clmsum
case.clmval case.scf mixer.error

case.broyd1
case.broyd2

After MIXER the file case.scfm is appended to case.scf, so that after an iteration is
completed, the two essential files are case.clmsum and case.scf.

Table 4.3: Input and output files of main programs in an SCF cycle

4.2 Description of general input/output files

In the following section the content of the (non-trivial) output files is described:

case.almblm Contains the Alm, Blm, Clm coefficients of the wavefunctions (generated optional by
lapw2).

case.broydX Contains the charge density of previous iterations if you use Broyden’s method for
mixing. They are removed when using save lapw. They should be removed by hand when
calculational parameters (RKMAX, kmesh, . . .) have been changed, or the calculation crashed
due to a too large mixing and are restarted by using a new density generated by dstart.

case.clmcor Contains the core charge density (as σ(r) = 4πr2ρ(r) and has only a spherical part).
In spin-polarized calculations two files case.clmcorup and case.clmcordn are used instead.

case.clmsc Contains the semi-core charge density in a 2-window calculation, which is no longer
recommended. In spin-polarized calculations two files are used instead: case.clmscup and
case.clmscdn.

case.clmsum Contains the total charge density in the lattice harmonics representation and as
Fourier coefficients. (The LM=0,0 term is given as σ(r) = 4πr2ρ(r), the others as r2ρLM (r);
suitable for generating electron density plots using lapw5 when the TOT-switch is set,
(see section 8.6). In spin-polarized calculations two additional files case.clmup and
case.clmdn contain the spin densities. Generated by dstart or mixer.

case.clmval Contains the valence charge density as r2ρLM (r); suitable for generating valence elec-
tron density plots using lapw5 when the VAL-switch is set, (see 8.6). In spin-polarized cal-
culations two files case.clmvalup and case.clmvaldn are used instead.

case.dmatup/dn Contains the density matrix generated by lapwdm for LDA+U, OP or Hybrid-
DFT calculations.

case.dosX Contains the density of states (states/Ry) and corresponding energy (in Ry at the inter-
nal energy scale) generated by tetra. X can be 1-3. Additional files case.dosXev contain
the DOS in (states/eV) and the energy in eV with respect to EF.

case.help03X Contains eigenvalues and partial charges for atom number X.
case.kgen This file contains the indices of the tetrahedra in terms of the list of k-points. It is used

in lapw2 (if EFMOD switch in case.in2 is set to TETRA, see 7.5.3) and in tetra.
case.klist This file contains a list of k-points in the first BZ and represents a tetrahedral (special

point) mesh. It is generated in kgen and can either be inserted into the case.in1 file or
used directly in kgen.

case.qtl Contains eigenvalues and corresponding partial charges (bandwise) in a form suitable for
tetra and band structure plots with “band character”. The decomposition of these charges
is controlled by ISPLIT in case.struct.

case.radwf Contains the radial basis functions inside spheres (generated optional by lapw2).
case.rho Contains the electron densities on a grid in a specified plane generated by lapw5. This

file can be used as input for your favorite contour or 3D plotting program.

38 CHAPTER 4. FILES AND PROGRAM FLOW

case.rsp Contains the atomic densities generated by lstart. They are used by dstart to gener-
ate a first crystalline density (case.clmsum).

case.r2v Contains the exchange potential (in the lattice harmonics representation as r2 ∗ VLM (r)
and as Fourier coefficients) in a form suitable for plotting with lapw5.

case.scf mini Contains the last scf-iteration of each individual time (geometry) step during a struc-
tural minimization using mini. Thus this file contains a complete history of properties (en-
ergy, forces, positions) during a structural minimization.

case.sigma Contains the atomic densities for those states with a “P” in case.inst. Generated in
lstart and used for difference densities in lapw5.

case.spaghetti ps A ps file with the energy bandstructure plot generated by spaghetti.
case.band.agr A xmgrace file with the energy bandstructure plot generated by spaghetti.
case.vcoul Contains the Coulomb potential (in the lattice harmonics representation as r2 ∗ VLM (r)

and as Fourier coefficients) in a form suitable for plotting with lapw5.
case.vorb Contains the orbital potential (in Ry) generated by orb for LDA+U or hybrid-DFT cal-

culations in form of a (2l+1,2l+1) matrix.
case.vtotal Contains the total potential (in the lattice harmonics representation as r2 ∗ VLM (r) and

as Fourier coefficients) in a form suitable for plotting with lapw5.
case.vector Binary file, contains the eigenvalues and eigenvectors of all k-points calculated in

lapw1. In spin-polarized calculations two files case.vectorup and case.vectordn are
used instead. lapwso generates case.vectorso.

case.energy Contains the eigenvalues of all k-points calculated in lapw1. In spin-polarized calcu-
lations two files case.vectorup and case.vectordn are used instead. lapwso generates
case.energyso.

case.vns Contains the non-spherical part of the total potential V. Inside the sphere the radial co-
efficients of the lattice harmonics representation are listed (for L greater than 0), while for
the interstitial region the reanalyzed Fourier coefficients are given (see equ. (2.10)). In spin-
polarized calculations two files case.vnsup and case.vnsdn are used instead.

case.vorbup/dn Contains the orbital dependent part of the potential in LDA+U, OP or Hybrid-
DFT calculations. Generated in orb, used in lapw1.

case.vsp Contains the spherical part of the total potential V stored as r ∗ V (thus the first val-
ues should be close to −2 ∗ Z). In spin-polarized calculations two files case.vspup and
case.vspdn are used instead.

4.3 The “master input“ file case.struct

The file case.struct defines the structure and is the main input file used in all programs. We
provide several examples in the subdirectory

example struct file

If you are using the “Struct Generator” from the graphical user interface w2web, you don’t have to
bother with this file directly! However, the description of the fields of the input mask can be found
here.

Note: If you are changing this file manually, please note that this is a formatted file and the proper column
positions of the characters are important! Use REPLACE instead of DELETE and INSERT during edit!

We start the description of this file with an abridged example for rutile TiO2 (adding line numbers):

--------------------- top of file ---------------------line #
Titaniumdioxide TiO2 (rutile): u=0.305 1
P LATTICE,NONEQUIV. ATOMS 2 2
MODE OF CALC=RELA 3
8.6817500 8.6817500 5.5916100 90. 90. 90. 4

ATOM -1: X= 0.0000000 Y= 0.0000000 Z= 0.0000000 5

4.3. THE CASE.STRUCT.FILE 39

MULT= 2 ISPLIT= 8 6
ATOM -1: X= 0.5000000 Y= 0.5000000 Z= 0.5000000
Titanium NPT= 781 R0=.000022391 RMT=2.00000000 Z:22.0 7
LOCAL ROT MATRIX: -.7071068 0.7071068 0.0000000 8

0.7071068 0.7071068 0.0000000 9
0.0000000 0.0000000 1.0000000 10

ATOM -2: X= 0.3050000 Y= 0.3050000 Z= 0.0000000
MULT= 4 ISPLIT= 8

ATOM -2: X= 0.6950000 Y= 0.6950000 Z= 0.0000000
ATOM -2: X= 0.8050000 Y= 0.1950000 Z= 0.5000000
ATOM -2: X= 0.1950000 Y= 0.8050000 Z= 0.5000000
Oxygen NPT= 781 R0=.000017913 RMT=1.60000000 Z: 8.0
LOCAL ROT MATRIX: 0.0000000 -.7071068 0.7071068

0.0000000 0.7071068 0.7071068
1.0000000 0.0000000 0.0000000

16 SYMMETRY OPERATIONS: 11
1 0 0 0.00 12
0 1 0 0.00 13
0 0 1 0.00 14

1 15
1 0 0 0.00
0 1 0 0.00
0 0-1 0.00

2
........

15
0 1 0 0.50
-1 0 0 0.50
0 0 1 0.50

16
------------------ bottom of file ---------------------------

Interpretive comments on this file are as follows.

P all primitive lattices except hexagonal [a sin(γ) sin(β), a cos(γ) sin(β), cos(β)], [0, b sin(α), b
cos(α)], [0, 0, c]

F face-centered [a/2, b/2, 0], [a/2, 0, c/2], [0, b/2, c/2]
B body-centered [a/2, -b/2, c/2],[a/2, b/2, -c/2], [-a/2, b/2, c/2]
CXY C-base-centered (orthorhombic only) [a/2, -b/2, 0], [a/2, b/2, 0], [0, 0, c]
CYZ A-base-centered (orthorhombic only) [a, 0, 0], [0, -b/2, c/2], [0, b/2, c/2]
CXZ B-base-centered (orthorh. and monoclinic

symmetry)
[a sin(γ)/2, a cos(γ)/2, -c/2], [0, b, 0], [a sin(γ)/2, a
cos(γ)/2, c/2]

R rhombohedral [a/
√

3/2, -a/2, c/3],[a/
√

3/2, a/2, c/3],[-a/
√

3, 0, c/3]
H hexagonal [

√
3a/2, -a/2, 0],[0, a, 0],[0, 0, c]

Table 4.4: Lattice type, description and bravais matrix used in WIEN2k

line 1: format (A80)
title (compound)

line 2: format (A4,23X,I3)
lattice type, NAT

lattice type as defined in table 4.4. For definitions of the triclinic lattice see
SRC nn/dirlat.f

NAT number of inequivalent atoms in the unit cell

line 3: format (13X,A4)
mode

RELA fully relativistic core and scalar relativistic valence
NREL non-relativistic calculation

line 4: format (6F10.6)
a, b, c, α, β, γ

40 CHAPTER 4. FILES AND PROGRAM FLOW

a, b, c unit cell parameters (in a.u., 1 a.u. = 0.529177 Å). In face- or body-centered
structures the non-primitive (cubic) lattice constant, for rhombohedral (R) lat-
tices the hexagonal lattice constants must be specified. (The following may help
you to convert between hexagonal and rhombohedral specifications:
ahex = 2cos(π−αrhomb

2
)arhomb

chex = 3
q
a2
rhomb −

1
3
a2
hex

and (for fcc-like lattices) arhomb = acubic/
√

2
α, β, γ angles between unit axis (if omitted, 90◦ is set as default). Set it only for P and

CXZ lattices

line 5: format (4X,I4,4X,F10.8,3X,F10.8,3X,F10.8)
atom-index, x, y, z

atom-
index

running index for inequivalent atoms

positive in case of cubic symmetry
negative for non-cubic symmetry
this is set automatically using symmetry

x,y,z position of atom in internal units, i.e. as positive fractions of unit cell parame-
ters. (0 ≤ x ≤ 1; the positions in the unit cell are consistent with the convention
used in the International Tables of Crystallography 64. In face- (body-) centered
structures only one of four (two) atoms must be given, eg. in Fm3m position 8c
is specified with 0.25, 0.25, 0.25 and .75, 0.75, 0.75). For R lattice use rhombo-
hedral coordinates. (To convert from hexagonal into rhombohedral coordinates
use the auxiliary program hex2rhomb, which can be called at a command-line:

~Xortho = ~Xhex

0@ 0 1 0√
3

2
−1
2

0
0 0 1

1A
~Xrhomb = ~Xortho

0@ 1√
3

1√
3

−2√
3

−1 1 0
1 1 1

1A
line 6: format (15X,I2,17X,I2)

multiplicity, isplit

multiplicity number of equivalent atoms of this kind
isplit this is just an output-option and is used to specify the decomposition of the

lm-like charges into irreducible representations, useful for interpretation in
case.qtl). This parameter is automatically set by symmetry:

0 no split of l-like charge
1 p-z, (p-x, p-y) e.g.:hcp
2 e-g, t-2g of d-electrons e.g.:cubic
3 d-z2, (d-xy,d-x2y2), (d-xz,dyz) e.g.:hcp
4 combining option 1 and 3 e.g.:hcp
5 all d symmetries separate
6 all p symmetries separate
8 combining option 5 and 6
-2 d-z2, d-x2y2, d-xy, (d-xz,d-yz)
88 split lm like charges (for telnes)
99 calculate cross-terms (for telnes)

>>>: line 5 must now be repeated MULT-1 times for the other positions of each equivalent atom according
to the Wyckoff position in the “International Tables of Crystallography”.

line 7: format (A10,5X,I5,5X,F10.8,5X,F10.5,5X,F5.2)
name of atom, NPT, R0, RMT, Z

name of
atom

Use the chemical symbol. Positions 3-10 for further labeling of nonequivalent
atoms (use a number in position 3)

4.4. THE CASE.SCF FILE 41

NPT number of radial mesh points (381 gives a good mesh for LDA calculations,
but for GGA twice as many points are recommended; always use an odd number
of mesh points!) the radial mesh is given on a logarithmic scale: r(n) = R0 ∗
e[(n−1)∗DX]

R0 first radial mesh point (typically between 0.0005 and 0.00005, smaller for heavy
elements, bigger for light ones; a struct-file generated by w2web will have
proper R0 values.)

RMT atomic sphere radius (muffin-tin radius), can easily be estimated after running
nn (see 6.1) and are set automatically with setrmt lapw see 5.2.6). The follow-
ing guidelines will be given here: Choose spheres as large as possible as this
will save MUCH computer time. But: Use identical radii within a series of cal-
culations (i.e. when you want to compare total energies) — therefore consider
first how close the atoms may possibly come later on (volume or geometry op-
timization); do NOT make the spheres too different (even when the geometry
would permit it), instead use the largest spheres for f-electron atoms, 10-20 %
smaller ones for d-elements and again 10-20 % smaller for sp-elements; H is a
special case, you may choose it much smaller (e.g. 0.6 and 1.2 for H and C) and
systems containing H need a much smaller RKMAX value (3-5) in case.in1.

Z atomic number

line 8-10: format (20X,3F10.7)

ROTLOC local rotation matrix (always in an orthogonal coordinate system). Transforms
the global coordinate system (of the unit cell) into the local at the given atomic
site as required by point group symmetry (see in the INPUT-Section 7.5.3 of
LAPW2). SYMMETRY calculates the point group symmetry and determines
ROTLOC automatically. Note, that a proper ROTLOC is required, if the LM
values generated by SYMMETRY are used. A more detailed description with
several examples is given in the appendix A and sec. 10.3

>>>: lines 5 thru 10 must be repeated for each inequivalent atom
line 11: format (I4)

nsym number of symmetry operations of space group (see International Tables of
Crystallography 64)
If nsym is set to zero, the symmetry operations will be generated automatically
by SYMMETRY.

line 12-14: format (3I2,F10.7)
matrix, tau (as listed in the International Tables of Crystallography 64)

matrix matrix representation of (space group) symmetry operation
tau non-primitive translation vector

line 15: format (I8)
index of symmetry operation specified above

>>>: lines 12 thru 15 must be repeated for all other symmetry operations
(the complete list is contained in sample inputs)

4.4 The “history“ file case.scf

During the self-consistent field (SCF) cycle the essential data are appended to the file case.scf
in order to generate a summary of previous iterations. For an easier retrieval of certain quantities
the essential lines are labeled with :LABEL:, which can be used to monitor these quantities during
self-consistency as explained below. The most important :LABELs are

42 CHAPTER 4. FILES AND PROGRAM FLOW

:ENE total energy (Ry)
:DIS charge distance between last 2 iterations (

R
|ρn − ρn−1|dr). Good convergence criterium.

:FER Fermi energy
:FORxx force on atom xx in mRy/bohr (in the local (for each atom) carthesian coordinate system)
:FGLxx force on atom xx in mRy/bohr (in the global coordinate system of the unit cell (in the same

way as the atomic positions are specified))
:DTOxx total difference charge density for atom xx between last 2 iterations
:CTOxx total charge in sphere xx (mixed after MIXER)
:NTOxx total charge in sphere xx (new (not mixed) from LAPW2+LCORE)
:QTLxx partial charges in sphere xx
:EPLxx l-like partial charges and “mean energies” in lower (semicore) energy window for atom

xx. Used as energy parameters in case.in1 for next iteration
:EPHxx l-like partial charges and “mean energies” in higher (valence) energy window for atom xx.

Used as energy parameters in case.in1 for next iteration
:EFGxx Electric field gradient (EFG) Vzz for atom xx
:ETAxx Asymmetry parameter of EFG for atom xx
:RTOxx Density for atom xx at the nucleus (first radial mesh point)
:VZERO Gives the total, Coulomb and xc-potential at z=0 and z=0.5 (meaningfull only for slab

calculations)

To check to which type of calculation a scf file corresponds use:

:POT Exchange-correlation potential used in this calculation
:LAT Lattice parameters in this calculation
:VOL Volume of the unit cell
:POSxx Atomic positions for atom xx (as in case.struct)
:RKM Actual matrix size and resulting RKmax
:NEC normalization check of electronic charge densities. If a significant amount of electrons

is missing, one might have core states, whose charge density is not completely confined
within the respective atomic sphere. In such a case the corresponding states should be
treated as band states (using LOs).

For spin-polarized calculations:

:MMTOT Total spin magnetic moment/cell
:MMIxx Spin magnetic moment of atom xx. Note, that this value depends on RMT.
:CUPxx spin-up charge (mixed) in sphere xx
:CDNxx spin-dn charge (mixed) in sphere xx
:NUPxx spin-up charge (new, from lapw2+lcore) in sphere xx
:NDNxx spin-dn charge (new, from lapw2+lcore) in sphere xx
:ORBxx Orbital magnetic moment of atom xx (needs SO calculations and LAPWDM).
:HFFxx Hyperfine field of atom xx (in kGauss).

One can monitor the energy eigenvalues (listed for the first k-point only), the Fermi-energy or
the total energy. Often the electronic charges per atom reflect the convergence. Charge transfer
between the various atomic spheres is a typical process during the SCF cycles: large oscillations
should be avoided by using a smaller mixing parameter; monotonic changes in one direction sug-
gest a larger mixing parameter.

In spin-polarized calculations the magnetic moment per atomic site is an additional crucial quan-
tity which could be used as convergence criterion.

If a system has electric field gradients and one is interested in that quantity, one should monitor
the EFGs, because these are very sensitive quantities.

It is best to monitor several quantities, because often one quantity is converged, while another still
changes from iteration to iteration. The script run lapw has three different convergence criteria
built in, namely the total energy, the atomic forces and the charge distance (see 5.1.2, 5.1.3).

4.5. FLOW OF PROGRAMS 43

We recommend the use of UNIX commands like :

grep :ENE case.scf or use “Analysis” from w2web

for monitoring such quantities.

You may define an alias for this (see sec. 11.2), and a csh-script grepline lapw is also available
to get a quantity from several scf-files simultaneously (sec. 5.2.16 and 5.3).

4.5 Flow of programs

The WIEN2k package consists of several independent programs which are linked via C-SHELL
SCRIPTS described below.

The flow and usage of the different programs is illustrated in the following diagram (Fig. 4.2):

The initialization consists of running a series of small auxiliary programs, which generates the
inputs for the main programs. One starts in the respective case/ subdirectory and defines the
structure in case.struct (see 4.3). The initialization can be invoked by the script init lapw
(see sec. 3.7 and 5.1.2), and consists of running:

NN a program which lists the nearest neighbor distances up to a specified limit (defined by a
distance factor f) and thus helps to determine the atomic sphere radii. In addition it is a
very usefull additional check of your case.struct file (equivalency of atoms)

SGROUP determines the spacegroup of the structure defined in your case.struct file.
SYMMETRY generates from a raw case.struct file the space group symmetry operations, deter-

mines the point group of the individual atomic sites, generates the LM expansion for the
lattice harmonics and determines the local rotation matrices.

LSTART generates free atomic densities and determines how the different orbitals are treated in
the band structure calculations (i.e. as core or band states, with or without local orbitals,. . .).

KGEN generates a k-mesh in the irreducible part of the BZ.
DSTART generates a starting density for the scf cycle by a superposition of atomic densities

generated in LSTART.

Then a self-consistency cycle is initiated and repeated until convergence criteria are met (see 3.8
and 5.1.3). This cycle can be invoked with a script run lapw, and consists of the following steps:

LAPW0 (POTENTIAL) generates potential from density
LAPW1 (BANDS) calculates valence bands (eigenvalues and eigenvectors)
LAPW2 (RHO) computes valence densities from eigenvectors
LCORE computes core states and densities
MIXER mixes input and output densities

4.5.1 Core, semi-core and valence states

In many cases it is desirable to distinguish three types of electronic states, namely core, semi-core
and valence states. For example titanium has core (1s, 2s, 2p), semi-core (3s, 3p) and valence (3d,
4s, 4p) states. In our definition core states are only those whose charge is entirely confined inside
the corresponding atomic sphere. They are deep in energy, e.g., more than 7-10 Ry below the Fermi
energy. Semi-core states lie high enough in energy (between about 1 and 7 Ry below the Fermi
energy), so that their charge is no longer completely confined inside the atomic sphere, but has a
few percent outside the sphere. Valence states are energetically the highest (occupied) states and
always have a significant amount of charge outside the spheres.

44 CHAPTER 4. FILES AND PROGRAM FLOW

old ρcoreρval(+)ρnew =

ρnew

ρval

Ek ψ k

ψ k Ek ψ k− 2
+ V =

ρcore

VMT

Ecore

ψnl Enl ψnl=H

ρval
E < Ek F

= Σ ψψ∗k k

ρold

VC VXCV= +

VXC ρ LDA()
VC

2 = −8 Poissonπρ

ρ

k−mesh

LAPW0

ψnl Enl ψnl=H

SYMMETRYSGROUP

converged ?

no

MIXER

LAPW2

V

LAPW1

atomic calculation

LCORE

LAPWSO

STOP
yes

atomic calculation

LSTARTNN

atomic densities

input files

DSTART

superposition of

atomic densities

ρ

check for
overlap. spheres

input files
struct filesstruct files

KGEN

generation

add spin−orbit interaction

LAPWDM
calculates density matrix

ORB
LDA+U, OP potentials

Figure 4.2: Program flow in WIEN2k

4.5. FLOW OF PROGRAMS 45

The energy cut-off specified in lstart during init lapw (usually -6.0 Ry) defines the separation
into core- and band-states (the latter contain both, semicore and valence). If a system has atoms
with semi-core states, then the best way to treat them is with “local orbitals“, an extension of the
usual LAPW basis. An input for such a basis set will be generated automatically. (Additional LOs
can also be used for valence states which have a strong variation of their radial wavefunctions with
energy (e.g. d states in TM compounds) to improve the quality of the basis set, i.e. to go beyond
the simple linearization).

4.5.2 Spin-polarized calculation

For magnetic systems spin-polarized calculations can be performed. In such a case some steps are
done for spin-up and spin-down electrons separately and the script runsp lapw consists of the
following steps:

LAPW0 (POTENTIAL) generates potential from density
LAPW1 -up (BANDS) calculates valence bands for spin-up electrons
LAPW1 -dn (BANDS) calculates valence bands for spin-down electrons
LAPW2 -up (RHO) computes valence densities for spin-up electrons
LAPW2 -dn (RHO) computes valence densities for spin-down electrons
LCORE -up computes core states and densities for spin-up electrons
LCORE -dn computes core states and densities for spin-down electrons
MIXER mixes input and output densities

The use of spin-polarized calculations is illustrated for fcc Ni (section 10.2), one of the test cases
provided in the WIEN2k package.

4.5.3 Fixed-spin-moment (FSM) calculations

Using the script runfsm lapw -m XX it is possible to constrain the total spin magnetic moment
per unit cell to a fixed value XX and thus force a particular ferromagnetic solution (which may
not correspond to the equillibrium). This is particularly useful for systems with several metastable
(non-) magnetic solutions, where conventional spin-polarized calculation would not converge or
the solution may depend on the starting density. Additional SO-interaction is not supported.

Please note, that once runfsm lapw has finished, only case.vectordn is ok, but
case.vectorup is NOT the proper up-spin vector and MUST NOT be used for the calculations
of QTLs (and DOS). It must be regenerated by x lapw1 -up (see also the comments for iterative
diagonalization in section 5.2.18).

4.5.4 Antiferromagnetic (AFM) calculations

Several considerations are necessary, when you want to perform an AFM calculation. Please have
also a look into $WIENROOT/SRC afminput/afminput test.

I You must construct a unit cell which allows for the desired AF ordering. For example for
bcc Cr you must select a “P” lattice and specify both atoms, Cr1 at (0,0,0) and Cr2 at (.5,.5,.5),
corresponding to a CsCl structure. Note, that it is important to label the two Cr atoms with
“Cr1” and “Cr2”, since only then the symmetry programs can detect that those atoms should
be different (although they have the same Z). If sgroup has interchanged some axis, try to undo
these changes, since afminput may not properly find the correct symmetry operations in such a case.

46 CHAPTER 4. FILES AND PROGRAM FLOW

I When you generate case.inst you must specify the correct magnetic order and flip the
spin of the AF atoms (i.e. invert the spin up and dn occupation numbers). In addition you
should set a zero moment (identical spin up and dn occupations) for all “non-magnetic”
atoms. This can be done conveniently using instgen lapw -ask or during “initialization”
using w2web.

I Now you can run either a “normal” spinpolarized initialization (without AFM option) and
runsp lapw or:

I Create a struct file of the non-magnetic (or ferro-magnetic) supergroup (run init lapw up to
lstart). Name it case.struct supergroup. (For example for bcc Cr, this would be a struct
file with the ordinary cubic lattice parameters, “B” type lattice and just one Cr at (0,0,0).)

I Run init lapw. At the end AFMINPUT creates an input file for the program CLMCOPY.
Depending on the presence of case.struct supergroup and the specific symmetry it
may/may not ask you to supply a symmetry operation/nonprimitive translation (see Sect.
9.5 .

I Run runafm lapw. This script calls LAPW1 and LAPW2 only for spin-up but the corre-
sponding spin-dn density is created by CLMCOPY according to the rules defined during
initialization. This reduces the required cpu time by a factor of 2 (and in addition the scf
cycle is much more stable).

I It is highly recommended that you save your work (save lapw) and check the results by
continuing with a regular runsp lapw. If nothing changes (E-tot and other properties), then
you are ok, otherwise make sure the scf calculation is well converged (-cc 0.0001 or better).
Eventually the system may not want to be antiferromagnetic (but for instance it is ferrimag-
netic!).

runafm lapw saves you more than a factor of 2 in in computer time, since only spin-up is cal-
culated and in addition the scf-convergence may be MUCH faster. It works also with LDA+U
(case.dmatup/dn are also copied), but does NOT work with Hybrid-DFT nor spin-orbit cou-
pling, since this requires the presence of both vector files in the LAPWSO step.

4.5.5 Spin-orbit interaction

You can add spin-orbit interaction in LAPWSO (called directly after LAPW1) using a second-
variational method with the scalar-relativistic orbitals (from LAPW1) as basis. The number of
eigenvalues will double since SO couples spin-up and dn states, so they are no longer separable.
In addition, LOs with a “p1/2” radial basis can be added. (Kunes et al. 2001)

To assist with the generation of the necessary input files and possible changes in symmetry, a script
initso lapw exists. For non-spinpolarized cases nothing particular must be taken into account
and SO can be easily applied by running run lapw -so. It will automatically use the complex
version of LAPW2.

However, for spin-polarized cases, the SO interaction may change (lower) the symmetry depend-
ing on how you choose the direction of magnetization and care must be taken to get a proper setup.
initso lapw together with symmetso generates the proper symmetry.

Just a few hints what can happen:

I Suppose you have a cubic system and put the magnetization along [001]. This will create
a tetragonal symmetry (and you can temporarely tell this to the initialization programs by
changing the respective lattice parameter c to a tetragonal system).

I If you put the magnetization along [111], this creates most likely a rhombohedral (or hexag-
onal) symmetry. (Try to visualize this for a fcc lattice, XCRYSDEN is very usefull for this
purpose).

4.5. FLOW OF PROGRAMS 47

I Symmetry operations can be classified into operations which invert the magnetization,others
which leave it unchanged and some which do some arbitrary rotation. The program
symmetso (part of initso lapw) sorts these operations in the proper way.

I If you don’t have inversion symmetry in the original structure, you must not “add inversion”
in KGEN.

The recommended way to include SO in the calculations is to run a regular scf calculation first,
save the results, initialize SO and run another scf cycle including SO:

I run[sp] lapw
I save lapw case nrel
I initso lapw
I run[sp] lapw -so

For spin-polarized systems you may want to add the “-dm” switch to calculate also the orbital
magnetic moment.

4.5.6 Orbital potentials

In WIEN2kit is possible to go beyond standard LDA (GGA) and include orbital dependent po-
tentials in methods like LDA+U or the ”Orbital-Polarization”, which are very usefull for strongly
correlated systems.

To use these features you need to create input-files for LAPWDM and ORB (case.indm,
case.inorb). You may copy a template from SRC templates, but must modify it according to
your needs. In particular you must select for which atoms and which orbitals (usually d-Orbitals
of late transition metal atoms or f-orbitals for 4f/5f atoms) you want to add such a potential and
also choose the proper U and J values for them. Once this is done, you can include this using the
-orb switch. The density matrix (case.dmatup/dn) will be calculated after lapw2 in lapwdm, it
will be mixed in mixer (consistently with the “regular” charge density) and the orbital dependend
potentials will be calculated on orb (after lapw0). Note, you must run spin-polarized in order to
use orbital potentials.

I runsp lapw -orb [-so]

If you want to force a non-magnetic solution you can constrain the spin-polarization to zero using
runsp c lapw.

Without SO, case.vorbup/dn will be considered in LAPW1(c). With SO, it will be applied in
LAPWSO (and allows coupling of nondiagonal spin-terms).

4.5.7 Exact-exchange and Hybrid functionals for correlated electrons

In WIEN2kit is also possible to go beyond standard LDA (GGA) and include on-site exact-exchange
(Hartree-Fock), which is very usefull for strongly correlated systems. The exact-exchange/hybrid
methods are implemented only inside the atomic spheres, therefore it is recommended to us them
only for localized electrons (see Tran et al. 2006 for details). They will NOT improve gaps in sp-
semiconductors.

Examples of implemented functionals include:

I LDA-Hartree-Fock
Functional 5 in case.in0. mode = EECE and fraction = 1 in case.ineece.

ELDA-HF
xc [ρ] = ELDA

xc [ρ] + EHF
x [Ψcorr]− ELDA

xc [ρcorr]

48 CHAPTER 4. FILES AND PROGRAM FLOW

I LDA-Fock-α
Functional 5 in case.in0. mode = HYBR and fraction = α in case.ineece.

ELDA-Fock-α
xc [ρ] = ELDA

xc [ρ] + α
(
EHF
x [Ψcorr]− ELDA

x [ρcorr]
)

I PBE-Fock-α
Functional 13 in case.in0. mode = HYBR and fraction = α in case.ineece.

EPBE-Fock-α
xc [ρ] = EPBE

xc [ρ] + α
(
EHF
x [Ψcorr]− EPBE

x [ρcorr]
)

The PBE0 functional corresponds to α = 0.25.
I PBEsol-Fock-α

Functional 19 in case.in0. mode = HYBR and fraction = α in case.ineece.

EPBEsol-Fock-α
xc [ρ] = EPBEsol

xc [ρ] + α
(
EHF
x [Ψcorr]− EPBEsol

x [ρcorr]
)

I WC-Fock-α
Functional 11 in case.in0. mode = HYBR and fraction = α in case.ineece.

EWC-Fock-α
xc [ρ] = EWC

xc [ρ] + α
(
EHF
x [Ψcorr]− EWC

x [ρcorr]
)

I TPSS-H-Fock-α
Functional 27 in case.in0. mode = HYBR and fraction = α in case.ineece.

ETPSS-H-Fock-α
xc [ρ] = ETPSS

xc [ρ] + α
(
EHF
x [Ψcorr]− ETPSS

x [ρcorr]
)

It is similar to PBE0, but uses the meta-GGA TPSS.
I B3PW91

Functional 18 in case.in0. mode = HYBR and fraction = 0.2 in case.ineece.

EB3PW91
xc [ρ] = ELDA

xc [ρ] + 0.2
(
EHF
x [Ψcorr]− ELDA

x [ρcorr]
)

+0.72
(
EB88
x [ρ]− ELDA

x [ρ]
)

+0.81
(
EPW91
c [ρ]− ELDA

c [ρ]
)

In addition to the input files which are necessary for an usual LDA or GGA calculation, the
input file case.ineece is necessary to start a calculation. You may copy a template from
SRC templates, but must modify it according to your needs. In particular you must select for
which atoms and which orbitals (usually d-Orbitals of late transition metal atoms or f-orbitals for
4f/5f atoms) you want to add such a potential and which type of functional you want to use.

A sample input for calculations with exact exchange is given below.

------------------ top of file: case.ineece -----------
-9.0 2 emin, natorb
1 1 2 1st atom index, nlorb, lorb
2 1 2 2nd atom index, nlorb, lorb
HYBR HYBR / EECE mode
0.25 fraction of exact exchange
------------------ bottom of file ---------------------

Interpretive comments on this file are as follows:
line 1: free format
emin, natom

4.5. FLOW OF PROGRAMS 49

emin lower energy cutoff, to be selected so that the energy of correlated states
is larger than emin

natorb number of atoms for which the exact exchange is calculated

line 2: free format
iatom(i), nlorb(i), (lorb(li,i), li=1,nlorb(i))

iatom index of atom in struct file
nlorb number of orbital moments for which exact exchange shall be calcu-

lated
lorb orbital numbers (repeated nlorb-times)

2nd line repeated natorb-times
line 3: free format
mode

HYBR means that LDA/GGA exchange will be replaced by exact exchange
EECE means that LDA/GGA exchange-correlation will be replaced by exact

exchange

line 4: free format

alpha This is the fraction of Hartree-Fock exchange (between 0 and 1)

As with LDA+U , hybrid functionals can be used only for spin-polarized calculations (runsp lapw
with the switch -eece). runsp lapw will internally call runeece lapw, which will cre-
ate all necessary additional input files (it requires a case.in0 file including the op-
tional IFFT line as generated by init lapw): case.indm (case.indmc), case.inorb,
case.in0eece, case.in2eece (case.in2ceece) and once this is done, calculates in a se-
ries of lapw2/lapwdm/lapw0/orb calculations the corresponding orbital dependend potentials.

I runsp lapw -eece [-so]

4.5.8 modified Becke-Johnson potential (mBJ) for band gaps

The modified Becke-Johnson exchange potential + LDA-correlation (Tran and Blaha 2009) allows
the calculation of band gaps with an accuracy similar to very expensive GW calculations. It is a
local approximation to an atomic “exact-exchange”-potential and a screening term. This is just a
XC-potential, not a XC-energy functional, thus Exc is taken from LSDA and the forces cannot be
used with this option.

We recommend the following steps to perform such calculations:

I run a regular initialization and scf cycle using LDA or PBE,
I create case.inm vresp (cp $WIENROOT/SRC templates/case.inm vresp

case.inm vresp.
I edit case.in0 and set ”R2V” option (instead of ”NR2V”).
I run one more scf-cycle (use run lapw -NI -i 1) to generate the required case.vresp*

files.
I “save” the LDA (PBE) calculation.
I edit case.in0 and change the functional to option indxc=28.

50 CHAPTER 4. FILES AND PROGRAM FLOW

I cp case.in0 case.in0 grr and change indxc in case.in0 grr to 50. This option will
calculate the average of ∇ρ/ρ over the unit cell. (The presence of case.in0 grr will
be detected during the scf-cycle and lapw0 will be called twice, first with the input file
case.in0 grr, then with case.in0.)

I edit case.inm and change to PRATT mixing.
I run another scf cycle.

As mentioned above, you should use PRATT mixing since in most cases MSEC1 mixing will lead
to convergence problems of the scf cycle (V also depends on the kinetic energy density and this is
not mixed in mixer). PRATT mixing can be slow, or can start to oszillate and diverge.Thus, first
using a smaller mixing factor (eg. 0.2), later increasing it to about 0.50 to make sure that you do not
stop at false convergence.

The TB-mBJ potential uses an average of ∇ρ/ρ over the unit cell. This does not make sense for
surfaces or molecules. In such cases, run a similar bulk structure first, then cp case bulk.grr to
case.grr and remove case.in0 grr. This runs mBJ with a fixed value of “c”.

5 Shell scripts for running programs

Contents
5.1 Job control . 51
5.2 Utility scripts . 55
5.3 Structure optimization . 61
5.4 Phonon calculations . 66
5.5 Parallel Execution . 67
5.6 Getting on-line help . 72
5.7 Interface scripts . 73

5.1 Job control (c-shell scripts)

In order to run WIEN2k several c-shell scripts are provided which link the individual programs to
specific tasks.

All available (user-callable) commands have the ending lapw so you can easily get a list of all
commands using

ls $WIENROOT/∗ lapw

in the directory of the WIEN2k executables. (Note: all of the more important commands have a link to a
short name omitting “ lapw”.) All these commands have at least one option, -h, which will print a
small help indicating purpose and usage of this command.

5.1.1 Main execution script (x lapw)

The main WIEN2kscript, x lapw or x, executes a single WIEN2kprogram. First it creates the corre-
sponding program.def-file, where the connection between Fortran I/O-units and filenames are
defined. One can modify its functionality with several switches, modifying file definitions in case
of spin-polarized or complex calculations or tailoring special behaviour. All options are listed with
the help switch

x -h or x lapw -h

With some of the options the corresponding input files may be changed temporarely, but are set
back to the original state upon completion.

51

52 CHAPTER 5. SHELL SCRIPTS

USAGE: x PROGRAMNAME [flags]

PURPOSE:runs WIEN executables: afminput,aim,arrows,broadening,cif2struct,
clmaddsub,clmcopy,clminter,dipan,dstart,eosfit,eosfit6,filtvec,init_xspec,
hex2rhomb,irrep,joint,join_vectorfiles, kgen,kram,lapw0,lapw1,lapw2,lapw3,
lapw5,lapw7,lapwdm,lapwso,lcore,lorentz,lstart,mini,mixer,nn,pairhess,,
plane,qtloptic,optimize,orb,rhomb_in5,sgroup,spaghetti,struct_afm_check,
sumpara,supercell,symmetry,symmetso,telnes3,tetra,txspec,xspec, dmftproj

FLAGS:
-f FILEHEAD -> FILEHEAD for path of struct & input-files
-t/-T -> suppress output of running time
-h/-H -> help
-d -> create only the def-file
-up -> runs up-spin
-dn -> runs dn-spin
-du -> runs up/dn-crossterm
-sc -> runs semicore calculation
-c -> complex calculation (no inversion symmetry present)
-p -> run lapw1/2/so in parallel (needs .machines file)
-orb -> runs lapw1 with LDA+U/OP or B-ext correction
-it -> runs lapw1 with iterative diagonalization
-noHinv -> runs lapw1 with iterative diag. without Hinv
-noHinv0 -> runs lapw1 with iterative diag. writing new Hinv
-nohns-> runs lapw1 without HNS
-nmat_only-> runs lapw1 and yields only the matrixsize
-in1orig -> runs lapw2 but does not modify case.in1
-emin X -> runs lapw2 with EMIN=X (in bin9_blaha.in2)
-all X Y -> runs lapw2 with ALL and E-window X-Y (in bin9_blaha.in2)
-qtl -> calculates QTL in lapw2
-alm -> calculates ALM,BLM in lapw2
-almd -> calculates ALM,BLM in lapw2 for DMFT (Aichhorn/Georges/Biermann)
-qdmft -> calculates charges including DMFT (Aichhorn/Georges/Biermann)
-help_files -> creates case.helpXX files in lapw2
-vresp-> creates case.vrespval (for TAU/meta-GGA) in lapw2
-eece -> for hybrid-functionals (lapw0,lapw2,mixer,orb,sumpara)
-grr -> lapw0 for grad rho/rho (using SRC.in0_grr with ixc=50)
-band -> for bandstructures: unit 4 to 5 (in1), sets QTL and ROOT (in2)
-fermi-> calculates Fermi energy and weights in lapw2
-efg -> calculates lapw2 with EFG switch
-so -> runs lapw2 with def-file for spin-orbit calculation
-fbz -> runs kgen and generates a full mesh in the BZ
-fft -> runs dstart only up to case.in0_std creation
-super-> runs dstart and creates new_super.clmsum (and not case.clmsum)
-sel -> use reduced vector file in lapw7
-settol 0.000x -> run sgroup with different tolerance
-sigma-> run lstart with case.inst_sigma (autogenerated) for diff.dens.
-rxes-> run tetra using case.rxes weight file for RXES-spectroscopy.
-rxesw E1 E2-> run tetra and create case.rxes file for RXES for energies E1-E2
-delta-> run arrows program with difference between two structures
-lcore-> runs dstart with SRC.rsplcore (produces SRC.clmsc)
-copy -> runs pairhess and copies .minpair to .minrestart and .minhess
-telnes -> run qtl after generating case.inq based on case.innes
USE: x -h PROGRAMNAME for valid flags for a specific program

Note: To make use of a scratch file system, you may specify such a filesystem in the environment variable
SCRATCH (it may already have been set by your system administrator). However, you have to make sure
that there is enough disk-space in the SCRATCH directory to hold your case.vector* and case.help*
files.

5.1.2 Job control for initialization (init lapw)

In order to start a new calculation, one should make a new subdirectory and run all calculations
from there. At the beginning one must provide at least one file (see 3), namely case.struct
(see 4.3) (case.inst can be created automatically on the “fly”, see 6.4.3), then one runs a series of
programs using init lapw. This script is described briefly in chapter 4.5) and in detail in “Getting
started” for the example TiC (see chapter 3). You can get help with switch -h. All actions of this
script are logged in short in :log and in detail in the file case.dayfile, which also gives you a
“restart” option when problems occurred. In order to run init lapw starting from a specific point
on, specify -s PROGRAM.

5.1. JOB CONTROL 53

Ignoring ERRORS and in many cases also WARNINGS during the execution of this script, most
likely will lead to errors at a later stage. Neglecting warnings about core-leakage creates .lcore,
which directs the scf-cycle to peform a superposition of core densities.

init lapw supports switch -b, a “batch” mode (non-interactive) for trivial cases AND experi-
enced users. You can supply various options and specify spin-polarization, XC-potential, RKmax,
k-mesh or mixing. See init lapw -h for more details. Changes to case.struct by nn will be
accepted, but by sgroup will be neglected. Please check the terminal output for ERRORS and WARN-
INGS !!!

5.1.3 Job control for iteration (run lapw or runsp lapw)

In order to perform a complete SCF calculation, several types of scripts are provided with the
distribution. For the specific flow of programs see chapter 4.5.

I For non-spinpolarized calculations use: run lapw,
I for spin-polarized calculations use: runsp lapw.
I for antiferromagnetic calculations use: runafm lapw
I for FSM (fixed-spin moment) calculations use: runfsm lapw
I for a spin-polarized setup, where you want to constrain the moment to zero (e.g. for LDA+U

calculations) use: runsp c lapw

Cases with/without inversion symmetry and with/without semicore or core states are handled au-
tomatically by these scripts. All activities of these scripts are logged in short in :log (appended)
and in detail together with convergence information in case.dayfile (overwriting the old “day-
file“). You can always get help on its usage by invoking these scripts with the -h flag.

run lapw -h

PROGRAM: /zeus/lapw/WIEN2k/bin/run_lapw

PURPOSE: running the nonmagnetic scf-cycle in WIEN
to be called within the case-subdirectory
has to be located in WIEN-executable directory

USAGE: run_lapw [OPTIONS] [FLAGS]

OPTIONS:
-cc LIMIT -> charge convergence LIMIT (0.0001 e)
-ec LIMIT -> energy convergence LIMIT (0.0001 Ry)
-fc LIMIT -> force convergence LIMIT (1.0 mRy/a.u.)

default is -ec 0.0001; multiple convergence tests possible
-e PROGRAM -> exit after PROGRAM ()
-i NUMBER -> max. NUMBER (40) of iterations
-s PROGRAM -> start with PROGRAM ()
-r NUMBER -> restart after NUMBER (99) iterations (rm *.broyd*)
-nohns NUMBER ->do not use HNS for NUMBER iterations
-in1new N -> create "new" in1 file after N iter (write_in1 using scf2 info)
-ql LIMIT -> select LIMIT (0.05) as min.charge for E-L setting in new in1
-qdmft NP -> including DMFT from Aichhorn/Georges/Biermann running on NP proc

FLAGS:
-h/-H -> help
-I -> with initialization of in2-files to "TOT"
-NI -> does NOT remove case.broyd* (default: rm *.broyd* after 60 sec)
-p -> run k-points in parallel (needs .machine file [speed:name])
-it -> use iterative diagonalizations
-it1 -> use iterative diag. with recreating H_inv (after basis change)
-it2 -> use iterative diag. with reinitialization (after basis change)
-noHinv -> use iterative diag. without H_inv
-vec2pratt -> use vec2pratt instead of vec2old for iterative diag.
-so -> run SCF including spin-orbit coupling
-renorm-> start with mixer and renormalize density
-in1orig-> if present, use case.in1_orig file; do not modify case.in1

54 CHAPTER 5. SHELL SCRIPTS

CONTROL FILES:
.lcore runs core density superposition producing case.clmsc
.stop stop after SCF cycle
.fulldiag force full diagonalization
.noHinv remove case.storeHinv files
case.inm_vresp activates calculation of vresp files for meta-GGAs
case.in0_grr activates a second call of lapw0 (mBJ pot., or E_xc analysis)

ENVIRONMENT VARIBLES:
SCRATCH directory where vectors and help files should go

Additional flags valid only for magnetic cases (runsp lapw) include:

-dm -> calculate the density matrix (when -so is set, but -orb is not)
-eece -> use "exact exchange+hybrid" methods
-orb -> use LDA+U, OP or B-ext correction
-orbc -> use LDA+U correction, but with constant V-matrix

Calling run lapw (after init lapw) from the subdirectory case will perform up to 40 iterations
(or what you specified with switch -i) unless convergence has been reached earlier. You can choose
from three convergence criteria, -ec (the total energy convergence is the default and is set to 0.0001
Ry for at least 3 iterations), -fc (magnitude of force convergence for 3 iterations, ONLY if your
system has “free” structural parameters!) or -cc (charge convergence, just the last iteration), and
any combination can also be specified. Be careful with these criteria, different systems will require
quite different limits (e.g. fcc Li can be converged to µRy, a large unit cell with heavy magnetic
atoms only to 0.1 mRy). You can stop the scf iterations after the current cycle by generating an
empty file .stop (use eg. touch .stop in the respective case-directory).

The scf-cycle creates case.broyd* files which contain the ”charge-history”. Once run lapw has
finished, you should usually ”save lapw” (see below) the results. When you continue with an-
other run lapw without ”save lapw” (because the previous run did not fulfill the convergence
criteria or you want to specify a more strict criterium) the ”broyden-files” will be deleted unless
you specify -NI.

With -e PROGRAM you can run only part of one scf cycle (e.g. run lapw0, lapw1 and lapw2),
with -s PROGRAM you can start at an arbitrary point in the scf cycle (e.g. after a previous cycle
has crashed and you want to continue after fixing the problem) and continue to self-consistency.
Before mixer is invoked, case.clmsum is copied to case.clmsum old, and the final “important“
files of the scf calculation are case.clmsum and case.scf.

Invoking

run lapw -I -i 30 -fc 0.5

will first set in case.in2 the TOT-switch (if FOR was set) to save cpu time, then run up to 30 scf cycles
till the force criterion of 0.5 mRy/a.u. is met (for 3 consecutive iterations). Then the calculation of
all terms of the forces is activated (setting FOR in case.in2) for a final iteration.

By default the file case.in1 is updated after lapw2 and the current Fermi-energy is inserted.
This will force lapw1 to use instead of the default energy parameters (0.30) an energy “EF −0.2”.
The switch -in1orig can be used to keep the present case.in1 file unmodified (or to copy
case.in1 orig back after -in1new).

The switch -in1new N preserves for N iteration the current case.in1 file. After the first N
iterations write in1 lapw is called and a new case.in1 file is generated, where the energy pa-
rameters are set according to the :EPLxx and :EPHxx values of the last scf iteration and the -ql
value (see sections 4.4 and 7.3). In this way you may select in some cases better energy-parameters
and also additional LOs to improve the linearization may be generated automatically. Note, how-
ever, that this option is potentially unsave and dangerous, since it may set energy-parameters of
LOs and APW+lo too close (leading to ghostbands) or in cases where you have a “bad” last iter-
ation (or large changes from one scf iteration to the next. The original case.in1 file is saved in
case.in1 orig and is used as template for all further scf-cycles.

5.2. UTILITY SCRIPTS 55

Parallelization is described in Sec. 5.5.

Iterative diagonalization, which can significantly save computer time (in particular for cases with
“few electrons” (like surfaces) and “large matrices (larger than 2000)” a factor 2-5 ! is possible),
is described in Sec. 7.3. It needs the case.vector.old file from the previous scf-iteration
(and this file is created from case.vector when the -it switch is set) and an inverse of a
previous Hamiltonian (H−1

0) stored in case.storeHinv. When you change the Hamiltonian
significantly (changing RKmax or local orbitals), reinitialize the iterative diagonalization either
by “touch .fulldiag” (performs one full diagonalization) or “touch .noHinv” (recreates
case.storeHinv files) or using the -it1|-it2 switch.

You can save computer time by performing the first scf-cycles without calculating the non-spherical
matrix elements in lapw1. This option can be set for N iterations with the -nohns N switch.

The presence of the file .lcore directs the script to superpose the radial core densities using
dstart and generating case.clmsc. It is created automatically during init lapwwhen charge-
leakage warnings are ignored. This option allows to reduce the number of semi-core states, but still
keeping a good charge density. Unfortunately, dstart is not parallelized and thus can be slow for
big cases.

The presence of the file case.in0 grr activates a second call of lapw0, which is necessary for
modified Becke-Johnson potentials (see Section 4.5.8) or Exc analysis.

If you have a previous scf-calculation and changed lattice parameters or positions (volume opti-
mization or internal positions minimization), one could use -renorm to renormalize the density
prior to the first iteration., but the recommended way is to use clmextrapol lapw.

For magnetic systems which are difficult to converge you can use the script runfsm lapw -m M
(see section 4.5.3) for the execution of fixed-spin moment (FSM) calculations.

5.2 Utility scripts

5.2.1 Save a calculation (save lapw)

After self-consistency has been reached, the script

save lapw head of save filename

saves case.clmsum, case.scf, case.dmat, case.vorb and case.struct under the new
name and removes the case.broyd* files. Now you are ready to modify structural parameters
or input switches and rerun run lapw, or calculate properties like charge densities (lapw5), total
and partial DOS (tetra) or energy bandstructures (spaghetti).

For more complicated situations, where many parameters will be changed, we have extended
save lapw so that calculations can not only be saved under the head of save filename but
also a directory can be specified. If you use any of the possible switches (-a, -f, -d, -s) all input files
will be saved as well (and can be restored using restore lapw).

Options to save lapw can be seen with

save lapw -h

Currently the following options are supported
-h help
-a save all input files as well
-f force save lapw to overwrite previous saves
-d directory save calculation in directory specified
-s silent operation (no output)

56 CHAPTER 5. SHELL SCRIPTS

5.2.2 Restoring a calculation (restore lapw)

To restore a calculation the script restore lapw can be used. This script restores the struct,
clmsum, vorb and dmat files as well as all input files. Note: The input files will only be restored
when save lapw -d was used, i.e. when you have saved a calculation in an extra directory.

After restore lapw you can continue and either run an scf cycle (run lapw) or recreate the
scf-potential (x lapw0) and the corresponding eigenvectors (x lapw1) for further tasks (DOS,
electron density,...).

Options to restore lapw are:
-h help
-f force restore lapw to overwrite previous files
-d directory restore calculation from directory specified
-s silent operation (no output)
-t only test which files would be restored

5.2.3 Remove unnecessary files (clean lapw)

Once a case has been completed you can clean up the directory with this command. Only the most
important files (scf, clmsum, struct, input and some output files) are kept. It is very important to
use this command when you have finished a case, since otherwise the large vector and helpXX files
will quickly fill up all your disk space.

5.2.4 Migrate a case to/from a remote computer (migrate lapw)

This script migrates a case to a remote computer (to be called within the case-dir). Needs working
ssh/scp without password; local and remote case-dir must have the same name.

Call it within the desired case-dir as:

migrate lapw [FLAGS OPTIONS] [user@]host:path/case-dir

with the following options:

-put -> transfer of files to a remote host (default)
-get -> transfer of files from a remote host

-all -> the complete directory is copied
-start -> only files to start an scf cycle are copied (default for put)
-end -> only new files resulting from an scf cycle are copied

(default for get)
-save savedir -> "save_lapw -d save_dir" is issued and only save_dir is copied

FLAGS:
-h -> help
-clean -> a clean_lapw is issued before copying
-r -> files in source directory are removed after copying
-R -> source directory (and all files) are removed after copying
-s -> do it silent (in batch mode)
-z -> gzip files before scp (slow network)

5.2. UTILITY SCRIPTS 57

5.2.5 Generate case.inst (instgen lapw)

This script generates case.inst from a case.struct file. It is used automatically in init lapw,
if case.inst is not present. Using some options (see below) it allows to define the spin-state of
all/certain atoms. Note: the label “RMT” is necessary in case.struct.

instgen_lapw [-h -s -up -dn -nm -ask]
-h: generate this message
-s: silent operation (do not ask)
-up: generates spin-up configuration for all atoms (default)
-dn: generates spin-dn configuration for all atoms
-nm: generates non-magnetic configuration for all atoms
-ask: asks for each atom which configuration it should generate

5.2.6 Set R-MT values in your case.struct file (setrmt lapw)

This perl-script executes x nn and uses its output to determine the atomic sphere radii (obeying
recommended ratios for H, sp-, d- and f- elements). It is called automatically within init lapw or
you may call it separately using:

setrmt lapw case [-r X]

where case gives the head of the case.struct file. You may specify a reduction of the RMTs by
X percent in order to allow for structural optimizations. It creates case.struct setrmt.

5.2.7 Create case.int file (for DOS) (configure int lapw)

This script creates the input file case.int for the program tetra and allows to specifiy
which partial DOS (atom, l and m) should be calculated. It was provided by Morteza Jamal
(m jamal57@yahoo.com).

You can specify interactively:

total (for plotting ’Total Dos’)
N (to select atom N)

s,p,d,... (to select a set of PDOS for previously selected atom N)
use labels as listed in the header of your case.qtl file)

end (for exit)

There is also a ”batch” (non-interactive) mode:

configure_int_lapw -b total 1 tot,d,d-eg,d-t2g 2 tot,s,p end

which will prepare case.int (eg. for the TiC example) with:

tic #Title
-1.000 0.00250 1.200 0.003 #Emin, DE, Emax, Gauss-Broad

8 #Number of DOS
0 1 total-DOS
1 1 tot-Ti
1 4 d-Ti
1 5 d-eg-Ti
1 6 d-t2g-Ti
2 1 tot-C
2 2 s-C
2 3 p-C

58 CHAPTER 5. SHELL SCRIPTS

5.2.8 Check for running WIEN jobs (check lapw)

This script searches for .running.* files within the current directory (or the directory specified
with “-d full path directory”) and then performs a ps command for these processes. If the specified
process has not been found, it removes the corresponding .running.* file after confirmation
(default) or immediately (when “-f” has been specified).

5.2.9 Cancel (kill) running WIEN jobs (cancel lapw)

This script searches for .running.* files within the current directory (or the directory specified
with “-d full path directory”) and then kills the corresponding process after confirmation (default)
or immediately (when “-f” has been specified). It is particular usefull for killing “k-point parallel”
jobs.

5.2.10 Extract critical points from a Bader analysis (extractaim lapw)

This script extracts the critical points (CP) after a Bader analysis (x aim (-c)) from
case.outputaim. It sorts them (according to the density), removes duplicate CPs, converts units
into Å, e/Å3, ... and produces critical points ang.

It is used with: extractaim lapw case.outputaim

5.2.11 scfmonitor lapw

This program was contributed by:

	
Hartmut Enkisch
Institute of Physics E1b
University of Dortmund
Dortmund, Germany
enkisch@pop.uni-dortmund.de
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

It produces a plot of some quantities as function of iteration number (a maximum of 6 quantities is
possible at once) from the case.scf file as specified on the commandline using analyse lapw
and GNUPLOT. This plot is updated in regular intervals.

You can call scfmonitor lapw using:

scfmonitor lapw [-h] [-i n] [-f case.scf] [-p] arg1 [arg2 ..
arg6]

-h help switch
-i n show only the last n iterations
-f scf-file use "scf-file" instead of the default "case.scf"
-p produces file "scfmonitor.png" instead of X-window plot
arg1,... arguments to monitor (like ":ENE" or ":DIS" , see analyse_lapw)

5.2. UTILITY SCRIPTS 59

The scfmonitor can also be called directly from w2web using the ”Analyse” tool.

In order to have a reasonable behavior of scfmonitor the GNUPLOT window should stay in back-
ground. This can be achieved by putting a line into your .Xdefaults file like:

gnuplot*raise: off

Note: It does not make sense to start scfmonitor before the first cycle has finished because no case.scf
exists at this point.

5.2.12 analyse lapw

The script analyse lapw is usually called from scfmonitor lapw. It ”greps” from an scf-file
the specified arguments and produces analyse.out.

analyse lapw is called using:

analyse lapw [-h] scf-file arg1 [arg2 arg3 arg4 arg5 arg6]

-h help switch
scf-file "scf-file" to analyse (there’s no default "case.scf" !)
arg1,... arguments to analyse:

atom independend: :ENE :DIS :FER :MMT
atom iii dependend: :CTOiii :CUPiii :CDNiii :NTOiii :NUPiii :NDNiii

:DTOiii :DUPiii :DDNiii :RTOiii :EFGiii :HFFiii
:MMIiii

vector quantities: :FORiii[x/y/z] :POSiii[x/y/z] :FGLiii[x/y/z]
where magnitude z z is the default

For vector quantities like :FGLiii or :POSiii (usefull with case.scf mini) one can specify the
respective coordinate by adding x/y/z to the corresponding labels.

5.2.13 Check parallel execution (testpara lapw)

testpara lapw is a small script which helps you to determine an optimal selection for the file
.machines for parallel calculations (see sec. 5.5).

5.2.14 Check parallel execution of lapw1 (testpara1 lapw)

testpara1 lapw is a small script which determines how far the execution of lapw1para has
proceeded.

5.2.15 Check parallel execution of lapw2 (testpara2 lapw)

testpara2 lapw is a small script which determines how far the execution of lapw2para has
proceeded.

60 CHAPTER 5. SHELL SCRIPTS

5.2.16 grepline lapw

Using

grepline lapw :label ’filename*.scf’ lines for tail or

grepline :label ’filename*.scf’ lines for tail

you can get a list of a quantity “:label” (e.g. :ENE for the total energy) from several scf files at
once.

5.2.17 initso lapw

initso lapw helps you to initialize the calculations for spin-orbit coupling. It helps together
with make inso lapw (contributed by Morteza Jamal, m jamal57@yahoo.com) to create/modify
all required input files (case.inso, case.in1, case.in2c). In a spinpolarized case SO may
reduce symmetry or equivalent atoms may become non-equivalent, and the script calls symmetso
and will help you to find proper symmetries and setup the respective input files. It is called using

initso lapw or

initso

and you should carefully follow the instructions and explanations of the script and the explanations
for case.inso given in section 7.4.

5.2.18 vec2old lapw

vec2old lapw moves case.vector files to case.vector.old. Usually called automatically
just before lapw1 when the iterative diagonalization (run lapw -it) is specified. It also works
for the k-parallel case including local $SCRATCH directories (add -p as first argument, uses
hosts from .processes and requires commensurate k-point/number of processors) and spin-
polarization (-up/-dn switches).

For runfsm lapw the sequence had to be changed and the switches -updn or -dnup forces
vec2old to COPY case.vectorup tocase.vectordn (and vice versa). In the runfsm lapw
case the corresponding case.vector*.old files are generated just AFTER lapw2/lapwdm and
not BEFORE lapw1. Thus after runfsm lapw has finished, the corresponding spin-up/dn vectors
are case.vector*.old and NOT case.vector*.

The switches -p -local will copy $SCRATCH/case.vector* to case.vector*. It will be done auto-
matically when you run x lapw2 -p -qtl.

An alternative script vec2pratt lapw was provided by L.D.Marks (l-marks@northwestern.edu)
which together with SRC vecpratt mixes the last two vectors (Pratt mixing) to generate
case.vector.old. It is activatd using the -vec2pratt switch in run lapw.

5.2.19 clmextrapol lapw

clmextrapol lapw extrapolates the charge density (case.clmsum/up/dn) from old to new po-
sitions (or from old to new lattice parameters). It takes the density from the old positions (copied
into old.clmsum) and subtracts an atomic superposition density (new super.clmsum) fom the
old positions and adds an atomic superposition density fom the new ones (generated by dstart).

5.3. STRUCTURE OPTIMIZATION 61

If new super.clmsum (generated automatically by init lapw) is not present, it will be generated
and for the next geometry step an extrapolation will take place.

It is usually called from “min lapw ” after a geometry step has finished and a new struct file has
been generated.

It can significantly reduce the number of scf-cycles for the new geometry step.

5.3 Structure optimization

5.3.1 Lattice parameters (Volume, c/a, lattice parameters)

Package optimize

The auxilliary program optimize (x optimize) generates from an existing case.struct (or
case initial.struct, which is generated at the first call of optimize) a series of struct files
with various volumes (or c/a ratios, or other modified parameters) (depending on your input):

[1] VARY VOLUME with CONSTANT RATIO A:B:C
[2] VARY C/A RATIO with CONSTANT VOLUME (tetr and hex lattices)
[3] VARY C/A RATIO with CONSTANT VOLUME and B/A (orthorh lattice)
[4] VARY B/A RATIO with CONSTANT VOLUME and C/A (orthorh lattice)
[5] VARY A and C (2D-case) (tetragonal or hexagonal lattice)
[6] VARY A, B and C (3D-case) (orthorhombic lattice)
[7] VARY A, B, C and Gamma (4D-case) (monoclinic lattice)
[8] VARY C/A RATIO and VOLUME (2D-case) (tetr and hex lattices)

It also produces a shell-script optimize.job which looks similar to:

#!/bin/csh -f
foreach i (\

tic_vol_-10.0 \
tic_vol__-5.0 \
tic_vol___0.0 \
tic_vol___5.0 \
tic_vol__10.0 \

)
cp $i.struct tic.struct

cp $i.clmsum tic.clmsum
x dstart
run_lapw -ec 0.0001 -in1new 3 -renorm

run_lapw -ec 0.0001
set stat = $status
if ($stat) then

echo "ERROR status in" $i
exit 1

endif
save_lapw ${i}

save_lapw -f -d XXX $i
end

You may modify this script according to your needs: use runsp lapw or even min lapw, or spec-
ify different convergence parameters; modify the save lapw command and change the save-name
or save into a directory to separate e.g. “gga” and “lda” results. Eventually you may activate the
line “ cp $i.clmsum case.clmsum” to use a previously saved clmsum file, e.g. from a calcula-
tion with smaller RKmax, ... and deactivate the ”clmextrapol lapw” lines, but usually the latter is
so efficient that this is no longer recommended.

Note: You must have a case.clmsum file (either from init lapw or from a previous scf calculation) in
order to run optimize.job.

After execution of this script you should have a series of scf-files with energies corresponding to the
modified parameters, which should allow you to find the corresponding equillibrium parameters.
For the volume optimization an analysis tool is available, other tools are under development).

62 CHAPTER 5. SHELL SCRIPTS

Using the script grepline (or the “Analysis o Analyze multiple SCF-files” menu of w2web) you
get a summary of the total energy vs. volume (c/a). The file case.analysis can be used in
eplot lapw to find the minimum total energy and the equilibrium volume (c/a). Supported
equation of states include the EOS2, Murnaghan and Birch-Murnaghan EOS.

grepline :ENE ’*.scf’ 1 > case.analysis
grepline :VOL ’*.scf’ 1 >> case.analysis

Using such strategies also higher-dimensional optimizations (e.g. c/a ratio and volume) are possi-
ble in combination with the -d option of save lapw.

For optimization of more degrees of freedom (2-4 lattice parameters), you can use the correspond-
ing option and for analysis of the data the script parabolfit lapw together with the program
eosfit6. It performs a non-linear least squares fit, using a parabolic fit-function in your variables
and get an analytic description of your energy surface. Please note, this is only a harmonic fit (no
odd or higher terms) and the description may not be very good if your parameter range is large
and/or the function is quite anharmonic, or you suffer from numerical noise.

For the determination of elastic constants see the description of ELAST in sec 8.14.

Package 2Doptimize

This program was contributed by:

	
Morteza Jamal
email: m jamal57@yahoo.com
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This package performs a convenient 2D structure optimization (Volume and c/a, i.e. tetragonal
or hexagonal spacegroups). After initialization of a case, one generates a set of structures and a
job-file 2Doptimize.job using the command

set2D lapw

This calls setup2D and you have to specify the “order of the fit” (stored in .fordfitcoa) and
the changes in volume and c/a. The resulting 2Doptimize.job script should be adapted (eg. use
min lapw instead of run lapw; insert switches,...) and executed. Finally

ana2D lapw

can be executed and will analyze the results. It uses a set of case.Vconst* files (produced by
2Doptimize.job and stored also in subdirectory Vconst) and the numbvcoa file. You can mod-
ify the order of the fits in .fordfitcoa and rerun ana2D lapw to check the sensitivity of the
results with the fitting. Note: Fits of high order (and few “data points”) may lead to artificial
results due to unphysical oszillations of the fit.

You can see results for
- energy vs. c/a for each volume,
- energy vs. volume (with optimized c/a) and
- c/a vs. volume.

5.3. STRUCTURE OPTIMIZATION 63

Optionally you can specify more cases by rerunning set2D lapw. Specify also your ‘‘old’’
volume and c/a points again (or leave them out on purpose in case they were very bad
(eg. very far from the minimum). The old results will then be taken automatically into account
without recalculation (unless you modify 2Doptimize.job, see the comments at the top of this
file). Thus a “good” strategy is to use only 3x3 points (order of fit = 3) and in a second step you
add points where they are needed.

When you want to rerun such an optimization with different parameters (RKmax, k-mesh, XC-
potentials) modify the top of 2Doptimize.job and set answscf=no and a new savename (eg.
” pbe rk8 1000k”).

5.3.2 Minimization of internal parameters (min lapw)

Most of the more complicated structures have free internal structural parameters, which can either
be taken from experiment or optimized using the calculated forces on the nuclei.

Starting with WIEN2k 11.1 there are two possibilities to determine the equilibrium position of all
individual atoms automatically (obeying the symmetry constraints of a certain space group). One
can use either

I the shell script min lapw, together with the program mini, which will run a scf-cycle, update
the positions using the calculated forces and restarts a new scf cycle. This continues until
forces drop below a certain value;

I or use the normal scf-scripts run lapwwith a special input in case.inm such that the charge
density and the positions are simultaneously optimized during the scf-cycle.

At present we recommend the second (new) option, although there are cases where this scheme
can be slower or may even fail to converge.

A typical sequence of commands for an optimization of the internal positions would look like:

I Generate struct file
I init lapw
I run lapw -fc 1 [another runXX script or additional options are of course also possible]

(this may take some time)
I Inspect the scf file whether you have significant forces (usually at least .gt. 5 mRy/bohr),

otherwise you are more or less at the optimal positions (An experienced user may omit the
run lapw step and proceed directly from init lapw to the next step)

Now you have to decide which method to use:

I min lapw [options] (this may take some time)

– it will generate a default case.inM (if not present) by:
∗ executing “x pairhess -copy ; cp case.inM st case.inM ” (i.e. it sets up the PORT

minimization option and calculates an approximate starting Hessian).
∗ when -nohess is specified, it will generate case.inM from SRC templates with the

NEW1 option (not recommended).
– Without -NI switch min lapw performs an initialization first:
∗ removes ”histories” (case.broyd*, case.tmpM) if present;
∗ copies .min hess to .minrestart (if present from previous min lapw or x

pairhess).

64 CHAPTER 5. SHELL SCRIPTS

I or edit case.inm and put MSR1a (or MSEC1a) as “mixing method”. Then continue with
run lapw -fc 0.5 -ec 0.0001 -cc 0.001 [-it]. It will run x pairhess (unless
case.inM is already present) and then run (several hundreds) scf-cycles, simultaneously
updating positions and charge densities. Once the forces seem to be smaller than the limit
defined in case.inM it will switch to “mixing method” MSR1 and finalize the scf-cycle with
fixed positions. Because of this, the final forces may not be as small as desired and eventually
you have to restart this step using MSR1a again.

When using the second method we recommend you read carefully $WIEN-
ROOT/SRC mixer/Mixer README 4.1.pdf. Overall the method is very good for semiconductors
(or well behaved metals), and allows “tricks” like small k-mesh or small RKMax at the beginning
of the minimization and using higher accuracy only towards the end.

The following text refers (mainly) to the first method using min lapw:

When case.scf is not present, an scf-cycle will be performed first, otherwise the corresponding
forces are extracted into case.finM and the program mini generates a new case.struct with
modified atomic positions. The previous step is saved under case 1/2/3.... Then a new scf-
cycle is executed and this loop continues until convergence (default: forces below 2mRy/bohr) is
reached.
The last iteration of each geometry step is appended to case.scf mini, so that this file contains
the complete history of the minimization and can be used to monitor the progress (grep :ENE *mini;
or :FORxxx ...).

By default (unless switch -noex is specified), min will call the script clmextrapol lapw after the
first geometry step and try to extrapolate the charge density to the new positions. This procedure
usually significantly reduces the number of scf-cycles and is thus highly recommended.

mini requires an input file case.inM (see Sec. 8.15) which is created automatically and MUST
NOT be changed while min lapw is running (except the force tolerance, which terminates the
optimization).

We recommend the PORT minimization method, a reverse-communication trust-region Quasi-
Newton method from the Port library, which seems to be stable, efficient and does not depend too
much on the users input (DELTAs, see below with NEWT). The PORT option also uses/produces a
file .min hess, which contains the (approximate) Hessian matrix (lower-triangle Cholesky factor)
If you restart a minimization with different k-points, RMT, RKmax, ... or do a similar calcula-
tion (eg. for a different volume, ...) it will be copied to .minrestart (unless -nohess is speci-
fied), so that you start with a reasonable approximation for the Hessian. The program pairhess,
which calculates the first Hessian, also prints out the average Hessian eigenvalue for the symmet-
ric, symmetry-preserving modes in mRyd/au2 as well as the minimum and maximum, and also
the vibration frequencies. A list of these is given at the end of case.pairhess. Note that these
are not all possible modes, but only the symmetry preserving ones. Therefore if you have prior
information about the vibrations of the system you can adjust the rescaling term so the average
vibration frequency is about correct. (see the description of pairhess in 9.2). (In addition there is a
program eigenhess, which will analyze the Hessian after the minimization has been completed.
It also prints vibrational frequencies and may give you hints about dynamical instability of your
system. Some more description is given in $WIENROOT/SRC pairhess/README and at the top
of the output file case.outputeig.

When using PORT you may also want to check its progress using

grep :LABEL case.outputM

where :LABEL is :ENE (should decrease), :GRAD (should also go down, but could sometimes also
go up for some time as long as the energy still decreases), :MIN (provides a condensed summary
of the progress), :WARN may indicate a problem), :DD (provides information about the step sizes
and mode used). Some general explanations are:

5.3. STRUCTURE OPTIMIZATION 65

1) The algorithm takes steps along what it considers are good directions (using some internal logic),
provided that these steps are smaller than what is called the trust-region radius. After a good step
(e.g. large energy decrease) it expands the trust-region; after a bad one it reduces it. Sometimes it
will try too large a step then have to reduce it, so the energy does not always go down. You can see
this by using ”:DD” and “:MIN” .
2) A grep on :MIN gives a condensed progress output, in which the most significant terms are
E (energy in some rescaled units), RELDF (last energy reduction), PRELDF (what the algorithm
predicted for the step), RELDX (RMS change in positions in Angstroms) and NPRELDF (predicted
change in next cycle). Near the solution RELDF and RELDX should both become small. However,
sometimes you can have soft modes in your structure in which case RELDX will take a long time
before it becomes small.
3) A warning that the step was reduced due to overlapping spheres if it happens only once (or
twice) is not important; the algorithm tested too large a step. However, if it occurs many times it
may indicate that the RMT’s are too big.
4) A warning ”CURVATURE CONDITION FAILED” indicates that you are still some distance from
the minimum, and the Hessian is changing a lot. If you see many of these, it may be that the forces
and energy are not consistent.

Sometimes PORT gets ”stuck” (often because of inconsistencies of energy and forces due to in-
sufficient scf convergence or a very non-harmonic potential energy surface). A good alternative is
NEW1, which is a ”sophisticated” steepest-descent method with optimized step size. It can be very
efficient in certain cases, but can also be rather slow when the potential energy surface is rather flat
in one, but steep in another direction (eg. a weakly bound molecule on a surface, but constraining
the sensitive parameters, like the bond distance of the molecule, may help).

Another alternative is NEWT, where one must set proper ”DELTAs” and a ”FRICTION” for each
atom. Unfortunately, these DELTAs determine crucially how the minimization performs. Too small
values lead to many (unnecessary) ”geometry steps”, while too large DELTAs can even lead to
divergence (and finally to a crash). Thus you MUST control how the minimization performs. We
recommend the following sequence after 2-3 geometry steps:

grep :ENE *mini
:ENE : ********** TOTAL ENERGY IN Ry = -2994.809124
:ENE : ********** TOTAL ENERGY IN Ry = -2994.813852
:ENE : ********** TOTAL ENERGY IN Ry = -2994.818538

Good, since the total energy is decreasing.

grep :FGL001 *mini
:FGL001: 1.ATOM 0.000 0.000 18.219
:FGL001: 1.ATOM 0.000 0.000 12.375
:FGL001: 1.ATOM 0.000 0.000 7.876

Good, since the force (only a force along z is present here) is decreasing reasonably fast towards
zero. You must check this for every atom in your structure.

When you detect oszillations or too small changes of the forces during geometry optimization, you
will have to decrease/increase the DELTAs in case.inM and rm case.tmpM. (NOTE: You must
not continue with modified DELTAs but keeping case.tmpM.) Alternatively, stop the minimiza-
tion (touch .minstop and wait until the last step has finished), change case.inM and restart.

You can get help on its usage with:

min -h or min lapw -h

66 CHAPTER 5. SHELL SCRIPTS

PROGRAM: min

USAGE: min [OPTIONS]

OPTIONS:
-j JOB -> job-file JOB (default: run_lapw -I -fc 1. -i 40)
-noex -> does not extrapolate the density for next geometry step
-p -> adds -p (parallel) switch to run_lapw
-it -> adds -it (iterative diag.) switch to run_lapw
-it1 -> adds -it1 (it.diag. with recreating H_inv) switch to $job
-it2 -> adds -it2 (it.diag. with reinitialization) switch to $job
-noHinv -> adds -it -noHinv (it.diag. without H_inv) switch to $job
-sp -> uses runsp_lapw instead of run_lapw
-nohess -> removes .minrestart (initial Hessian) from previous minimization
-m -> extract force-input and execute mini (without JOB) and exit
-mo -> like -m but without copying of case.tmpM1 to case.tmpM
-h/-H -> help
-NI -> without initialization of minimization (eg. continue after a crash)
-i NUMBER -> max. NUMBER (50) of structure changes
-s NUMBER -> save_lapw after NUMBER of structure changes

CONTROL FILES:
.minstop stop after next structure change

For instance for a spin-polarized case, which converges more difficultly, you would use:

min -j ‘‘runsp lapw -I -fc 1.0 -i 60’’

5.4 Phonon calculations

Calculations of phonons is based on a program PHONON by K.Parlinski, which runs
under MS-Windows and must be ordered separately (see http://wolf.ifj.edu.pl/phonon/
). Alternatively you may also try the package PHONOPY by Atsushi Togo (see
http://www.wien2k.at//reg user/unsupported/).

You would define the structure of your compound in PHONON together with a supercell of suf-
ficient size (e.g. 64 atoms). PHONON will then generate a list of necessary displacements of the
individual atoms. The resulting file case.d45 must be transfered to UNIX. Here you would run
WIEN2k-scf calculations for all displacements and collect the resulting forces, which will be trans-
fered back to PHONON (case.dat and/or case.dsy). With these force information PHONON
calculates phonon at arbitrary q-vectors together with several thermodynamic properties.

5.4.1 init phonon lapw

init phonon lapw uses case.d45 from PHONON and creates subdirectories case XX and
case XX.struct files for all required displacements. It allows you to define globally RMT values
for the different atoms and
- initializes every case individually (batch option of init lapw is now supported) or
- initializes every second case (useful for pos. and neg. displacements, which have the same sym-
metry and thus only one initialization is necessary), or
- initializes only the first case and copies the files from the first case to all others. This is most
convenient in low symmetry cases with P1 symmetry for all cases and thus just one init lapw needs
to be executed (while for higher symmetry a separate initialization is required (but computational
effort is reduced).

Please use mainly nn to reduce equivalent atoms. sgroup might change the unitcell and than the
collection of forces into the original supercell is not possible (or quite difficult).

A script run phonon has been created. Modify it according to your needs (parallelization,....) and
run all cases to selfconsistency.

5.5. PARALLEL EXECUTION 67

Note that good force convergence is essential (at least 0.1 mRy/bohr) and if your structure has
free parameters, either very good equillibrium positions must have been found before, or even
better, use both, positive and negative displacements to average out any resulting error from non-
equillibrium positions.

5.4.2 analyse phonon lapw

analyse phonon lapw uses the resulting scf files and generates the “Hellmann-Feynman”-file
required by PHONON. When you have positive and negative displacements an automatic averag-
ing will be performed. The resulting case.dat and case.dsy filse should be transfered back to
MS-Windows and imported into PHONON.

5.5 Running programs in parallel mode

This section describes two methods for running WIEN2k on parallel computers.

One method, parallelizing k-points over processors, utilizes c-shell scripts, NFS-file system and
passwordless login ((public/private keys). This method works with all standard flavors of Unix
without any special requirements. The parallelization is very efficient even on heterogeneous com-
puting environments, e. g. on heterogeneous clusters of workstations, but also on dedicated paral-
lel computers and does NOT need large network bandwidth.

The other parallelization method, which comes new with version WIEN2k 07.3, is based on fine
grained methods, MPI and SCALAPACK. It is especially useful for larger systems, if the required
memory size is no longer available on a single computer or when more processors than k-points
are available. It requires a fast network (at least Gb-Ethernet, better Myrinet or Infiniband) or
a shared memory machine. Although not as efficient as the simple k-point parallelization, the
current mpi-version has been enhanced a lot and shows very good scaling with the number of
processors for most parts. In any case, the number of processors and the size of the problem (num-
ber of atoms, matrixsize due to the plane wave basis) must be compatible and typically [NMAT /
sqrt(processors)] .gt. 2000 should hold.

The k-point parallelization can use a dynamic load balancing scheme and is therefore usable also on
heterogeneous computing environments like networks of workstations or PCs, even if interactive
users contribute to the processors’ work load.

If your case is large enough, but you still have to use a few k-points, a combination of both paral-
lelization methods is possible (always use k-point parallelism if you have more than 1 k-point).

5.5.1 k-Point Parallelization

Parts of the code are executed in parallel, namely LAPW1, LAPWSO, LAPW2, LAPWDM, and
OPTIC. These are the numerically intensive parts of most calculations.

Parallelization is achieved on the k-point level by distributing subsets of the k-mesh to different
processors and subsequent summation of the results. The implemented strategy can be used both
on a multiprocessor architecture and on a heterogeneous (even multiplatform) network.

To make use of the k-point parallelization, make sure that your system meets the following require-
ments:

NFS: All files for the calculation must be accessible under the same name and path. Therefore you
should set up your NFS mounts in such a way, that on all machines the path names are the
same.

68 CHAPTER 5. SHELL SCRIPTS

Remote login: rlogin or ssh to all machines must be possible without specifying a password.
Therefore you must either edit your .rhosts file to include all machines you intend to use
(not necessary for a shared memory machine), or correctly specify public/private keys for
ssh. This can be done by running “ssh-keygen -t rsa” and copying the id rsa.pub
key into /̃.ssh/authorized keys at the remote sites.
The command for launching a remote shell is platform dependent, and usually can be ’ssh’,
’rsh’ or ’remsh’. It should be specified during installation when siteconfig lapw is exe-
cuted (see chapter 11).

5.5.2 MPI parallelization

Fine grained MPI parallel versions are available for the programs lapw0, lapw1, and lapw2.
This parallelization method is based on parallelization libraries, including MPI, ScaLapack, PBlas
and FFTW 2.1.5 (lapw0). The required libraries are not included with WIEN2k. On parallel comput-
ers, however, they are usually installed. Otherwise, free versions of these libraries are available1.

The parallelization affects the naming scheme of the executable programs: the fine grained par-
allel versions of lapw0/1/2 are called lapw0 mpi, lapw1[c] mpi, and lapw2[c] mpi. These
programs are executed by calls to the local execution environments, as in the sequential case, by
the scripts x, lapw0para, lapw1para, and lapw2para. On most computers this is done by
calling mpirun and should also be configured using siteconfig lapw.

5.5.3 How to use WIEN2k as a parallel program

To start the calculation in parallel, a switch must be set and an input file has to be prepared by the
user.

I The switch -p switches on the parallelization in the scripts x and run lapw.
I In addition to this switch the file .machines has to be present in the current working direc-

tory. In this file the machine names on which the parallel processes should be launched, and
their respective relative speeds must be specified.

If the .machines file does not exist, or if the -p switch is omitted, the serial versions of the pro-
grams are executed.

Generation of all necessary files, starting of the processes and summation of the results is done
by the appropriate scripts lapw1para, lapwsopara,lapwdmpara and lapw2para (when using
-p), and parallel programs lapw0 mpi, lapw1 mpi, and lapw2 mpi (when using fine grained
parallelization has been selected in the .machines file).

5.5.4 The .machines file

The following .machines file describes a simple example. We assume to have 5 computers, (al-
pha, ... epsilon), where epsilon has 4, and delta and gamma 2 cpus. In addition, gamma, delta and
epsilon are 3 times faster than alpha and beta.:

This is a valid .machines file
#
granularity:1
1:alpha
1:beta

1http://www-unix.mcs.anl.gov/mpi/mpich, http://www.netlib.org/scalapack,http://www.fftw.org/

5.5. PARALLEL EXECUTION 69

3:gamma:2 delta
3:delta:1 epsilon:4
residue:delta:2
lapw0:gamma:2 delta:2 epsilon:4

To each set of processors, defined by a single line in this file, a certain number of k-points is as-
signed, which are computed in parallel. In each line the weight (relative speed) and computers are
specified in the following form:

weight:machine name1:number1 machine name2:number2 ...

where weight is an integer (e.g. a three times more powerful machine should have a three times
higher weight). The name of the computer is machine name[1/2/...], and the number of pro-
cessors to be used on these computers are number[1/2/...]. If there is only one processor on a
given computer, the :1 may be omitted. Empty lines are skipped, comment lines start with #.

Assuming there are 8 k-points to be distributed in the above example, they are distributed as fol-
lows. The computers alpha and beta get 1 each. Two processors of computer gamma and one pro-
cessor of computer delta cooperate in a fine grained parallelization on the solution of 3 k-points,
and one processor of computer delta plus four processors of computer epsilon cooperate on
the solution of 3 k-points. If there were additional k-points, they would be calculated by the first
processor (or set of processors) becoming available. With higher numbers of k-points, this method
ensures dynamic load balancing. If a processor is busy doing other (e. g., interactive) work, the
overall calculation will not stall, but most of its work will be done by other processors (or sets of
processors using MPI). This is, however, not an implementation for fail safety: if a process does
not terminate (e. g., due to shutdown of a computer) the calculation will never terminate. It is up
to the user to handle with such hardware failures by modifying the .machines file and restarting
the calculation at the appropriate point.

During the run of lapw1para the file .processes is generated. This file is used by lapw2para
to determine which case.vector* to read.

By default lapw1para will generate approximately 3 vector-files per processor, if enough k-points
are available for distribution. The factor 3 is called “granularity” and allows for some load bal-
ancing in heterogeneous environments. If you can be sure that load balancing is not an issue (eg.
because you use a queuing-system and can be sure that you will get 100% of the cpus for your jobs)
it is recommended to set

granularity:1

for best performance.

On shared memory machines it is advisable to add a “residue machine” to calculate the surplus
(residual) k-points (given by the expression MOD(klist,

∑
j newweightj) and rely on the operating

system’s load balancing scheme. Such a “residue machine” is specified as

residue:machine name:number

in the .machines file.

Alternatively, it is also possible to distribute the remaining k-points one-by-one (and not in one
junk) over all processors. The option

extrafine:1

70 CHAPTER 5. SHELL SCRIPTS

can be set in the .machines file.

When using “iterative diagonalization” or the $SCRATCH variable (set to a local direc-
tory), the k-point distribution must be “fixed”. This means, the ratio (k-points / processors) must
be integer (sloppy called “commensurate” at other places in the UG) and granularity:1 should be
set.

The line

lapw0:gamma:2 delta:2 epsilon:4

defines the computers used for running lapw0 mpi. In this example the 6 processors of the com-
puters gamma, delta, and epsilon run lapw0 mpi in parallel.

If fine grained parallelization is used, each set of processors defined in the .machines file is con-
verted to a single file .machine[1/2/...], which is used in a call to mpirun (or another parallel
execution environment).

When using a queuing system (like PBS, LoadLeveler or SUN-Gridengine) one can only request
the NUMBER of processors, but does not know on which nodes the job will run. Thus a “static”
.machines file is not possible. On can write a simple shell script, which will generate this file on
the fly once the job has been started and the nodes are assigned to this job. Examples can be found
at our web-site “http://www.wien2k.at/reg users/faq”.

5.5.5 How the list of k-points is split

In the setup of the k-point parallel version of LAPW1 the list of k-points in case.klist (Note, that
the k-list from case.in1 cannot be used for parallel calculations) is split into subsets according to the
weights specified in the .machines file:

newweighti =

⌊
weighti ∗ klist

granularity ∗
∑
j weightj

⌋

where newweighti is the number of k-points to be calculated on processor i. newweighti is always
set to a value greater equal one.

A loop over all i processors is repeated until all k-points have been processed.

Speedup in a parallel program is intrinsically dependent on the serial or parallel parts of the code
according to Amdahl’s law:

speedup =
1

(1− P) + P
N

whereas N is the number of processors and P the percentage of code executed in parallel.

In WIEN2k usually only a small part of time is spent in the programs lapw0, lcore and mixer
which is very small (negligible) in comparison to the times spent in lapw1 and lapw2. The time
for waiting until all parallel lapw1 and lapw2 processes have finished is important too. For a
good performance it is therefore necessary to have a good load balancing by estimating properly
the speed and availability of the machines used. We encourage the use of testpara lapw or “Utils.
o testpara” from w2web to check the k-point distribution over the machines before actually running
the programs in parallel.

While running lapw1 and lapw2 in parallel mode, the scripts testpara1 lapw (see 5.2.14) and
testpara2 lapw (see 5.2.15) can be used to monitor the succession of parallel execution.

5.5. PARALLEL EXECUTION 71

5.5.6 Flow chart of the parallel scripts

To see how files are handled by the scripts lapw1para and lapw2para refer to figures 5.1 and
5.2. After the lapw2 calculations are completed the densities and the informations from the
case.scf2 x files are summarized by sumpara.

Note: parallel lapw2 and sumpara take two command line arguments, namely the case.def file but
also a number of processor indicator.

Figure 5.1: Flow chart of lapw1para

Figure 5.2: Flow chart of lapw2para

5.5.7 On the fine grained parallelization

The following parallel programs use different parallelization strategies:

72 CHAPTER 5. SHELL SCRIPTS

lapw0 mpi is parallelized over the number of atoms. This method leads to good scalability as long
as there are more atoms than processors. For very many processors, however, the speedup is
limited, which is usually not at all critical, since the overall computing time of lapw0 mpi is
quite small.

lapw1 mpi uses a two-dimensional processor setup to distribute the Hamilton and overlap matri-
ces. For higher numbers of processors two-dimensional communication patterns are clearly
preferable to one-dimensional communication patterns.
Let us assume, for example, 64 processors. In a given processing step, one of these processors
has to communicate with the other 63 processors if a one-dimensional setup was chosen. In
the case of a two-dimensional processor setup it is usually sufficient to communicate with
the processors of the same processor row (7) or the same processor column (7), i. e. with 14
processors.
In general the processor array P × Q is chosen as follows: P =

⌊√
number of processors

⌋
,

Q =
⌊

number of processors
P

⌋
. Because of SCALAPACK, often P × P arrays (i.e. 4, 9, 16,...

processors) give best performance and of course it is not recommended to use eg. 17 proces-
sors.

lapw2 mpi is parallelized in two main parts: (i) The density inside the spheres is parallelized over
atoms, and (ii) the fast Fourier transforms are done in parallel.
In addition the density calculation for each atom can be further parallelized by distributing
the eigenvector on a certain subset of processors (ususlly 2-4). This is not so efficient, but
most usefull if the memory requirement is too big otherwise. You set it in .machines using

lapw2 vector split:2

If more than one k-point is distributed at once to lapw1 mpi or lapw2 mpi, these will be treated
consecutively.

Depending on the parallel computer system and the problem size, speedups will vary to some
extend. Matrix setup in lapw1 should scale nearly perfect, while diagonalization (using SCALA-
PACK) will not. Usually, “iterative” scales better than “full” diagonalization and is preferred for
large scale computations. Scalability over atoms will be very good if processor and atom numbers
are compatible. Running the fine grained parallelization over a 100 Mbit/s Ethernet network is not
recommended, even for large problem sizes.

5.6 Getting on-line help

I As mentioned before, all WIEN2k csh-shell scripts have a “help“-switch -h, which gives a
brief summary of all options for the respective script.

I To obtain online help on input-parameters, program description, . . . use

help lapw

which opens the pdf-version of the users guide (using acroread or what is defined in $PDF-
READER). You can search for a specific keyword using “∧f keyword”. This procedure substi-
tutes an “Index” and should make it possible to find a specific information without reading
through the complete users guide.

I In addition there is a html-version of the UG and its starting page is:
$WIENROOT/SRC usersguide html/usersguide.html

I When using the user interface w2web, you have access to the html and pdf-version (the latter
requires an X-windows environment) of the usersguide.

I At our webserver http : //www.wien2k.at/reg user we put informations for the registered
user:

– A ”FAQ” page with answers to some common problems.

5.7. INTERFACE SCRIPTS 73

– Update information: When you think the program has an error, please check wether
newer versions are available, which might have fixed the problem you encounter.

– A mailing list:
Please check the ”digest”! In many cases your questions may have been answered be-

fore.
Locate your problem: If a calculation crashes, please locate the problem. Check

the content of files like case.dayfile, *.error, case.scf, case.scfX,
case.outputX where X specifies the program which crashed.

Posting questions: Please provide enough information so that somebody can help you.
A question like: “My calculation crashed. Please help me!” will most likely not be
answered.

5.7 Interface scripts

We have included a few “interface scripts” into the current WIEN2k distribution, to simplify the
previewing of results. In order to use these scripts the public domain program “gnuplot” has to be
installed on your system.

5.7.1 eplot lapw

The script eplot lapw plots total energy vs. volume or total energy vs. c/a-ratio using the file
case.analysis. The latter should have been created with grepline (using :VOL and :ENE
labels) or the “Analysis o Analyze multiple SCF-files” menu of w2web and the file names must be
generated (or compatible) with “optimize.job”.

For a description of how to use the script for batch like execution call the script using

eplot lapw -h

5.7.2 parabolfit lapw

The script parabolfit lapw is an interface for a harmonic fitting of E vs. 2-4-dim lattice param-
eters by a non-linear least squares fit (eosfit6) using PORT routines. Once you have several scf
calculations at different lattice parameters (usually generated with optimize.job) it generates
the required case.ene and case.latparam from your scf files. Using

parabolfit lapw [-t 2/3/4] [-f FILEHEAD] [-scf ’*xxx*.scf’]

you can optionally specify the dimensionality of the fit or the specific scf-filenames.

5.7.3 dosplot lapw

The script dosplot lapw plots total or partial Density of States depending on the input used
by case.int and the interactive input. A more advanced plotting interface is provided by
dosplot2 lapw, see below.

For a description of how to use the script for batch like execution call the script using

dosplot lapw -h

74 CHAPTER 5. SHELL SCRIPTS

5.7.4 dosplot2 lapw

The script dosplot2 lapw plots total or partial Density of States depending on the input used by
case.int and the interactive input. It can plot up to 4 DOS curves into one plot, and simultane-
ously plot spin-up/dn DOS.

It was provided by Morteza Jamal (m jamal57@yahoo.com).

For a description of how to use the script for batch like execution call the script using

dosplot2 lapw -h

5.7.5 Curve lapw

The script Curve lapw plots x,y data from a file specified interactively. It asks for additional
interactive input. It can plot up to 4 curves into one plot and is a simple gnuplot interface.

It was provided by Morteza Jamal (m jamal57@yahoo.com).

5.7.6 specplot lapw

specplot lapw provides an interface for plotting X-ray spectra from the output of the xspec or
txspec program.

For a description of how to use the script for batch like execution call the script using

specplot lapw -h

5.7.7 rhoplot lapw

The script rhoplot lapw produces a surface plot of the electron density from the file case.rho
created by lapw5.

Note: To use this script you must have installed the C-program reformat supplied in SRC reformat.

5.7.8 opticplot lapw

The script opticplot lapw produces XY plots from the output files of the optics package us-
ing the case.joint, case.epsilon, case.eloss, case.sumrules or case.sigmak. For a
description of how to use the script for batch like execution call the script using

opticplot lapw -h

5.7.9 addjoint-updn lapw

The script addjoint-updn lapw adds the files case.jointup and case.jointdn together
and produces case.joint. It uses internally the program add columns. It should be called for
spin-polarized optics calculations after x joint -up and x joint -dn, because the Kramers-
Kronig transformation to the real part of the dielectric function (ε1) is not a simple additive quan-
tity concerning the spin (see Ambrosch-Draxl 06). The KK transformation should then be done
non-spinpolarized (x kram) resulting in files: case.epsilon, case.eloss, case.sumrules
or case.sigmak.

6 Programs for the initialization

Contents
6.1 NN . 75
6.2 SGROUP . 76
6.3 SYMMETRY . 76
6.4 LSTART . 77
6.5 KGEN . 79
6.6 DSTART . 80

In sections (6.1-6.6) we describe the initial utility programs. These programs are used to set up a
calculation.

6.1 NN (nearest neighbor distances)

This program uses the case.struct file (see 4.3) in which the atomic positions in the unit cell are
specified, calculates the nearest neighbor distances of all atoms, and checks that the corresponding
atomic spheres (radii) are not overlapping. If an overlap occurs, an error message is shown on
the screen. In addition, the next nearest-neighbor distances up to f times the nearest-neighbor
distance (f must be specified interactively) are written to an output file named case.outputnn.
For negative f values only the distances of non-equivalent atoms are printed. , but equivalent ones
are not listed again. Optionally one can specify also a “dlimit” parameter, which helps nn to find
equivalent atoms in case of “inaccuarate” structural data.

It is highly recommended in most cases that you change your sphere sizes and do NOT use the
default of 2.0. An increase from 2.0 to 2.1 may already result in drastically reduced computing
time. More recommendations are given in chapter 4.3.

nn also checks if equivalent atoms are specified correctly in case.struct. At the bottom of
case.outputnn the coordination shell-structure is listed and from that a comparison with the
input is made verifying that equivalent atoms really have equivalent environments. If this is not the
case, an ERROR will be printed and a new structure file case.struct nn is generated. You have
to recheck your input and then decide whether you want to accept the new structure file, or reject
it (because the equivalency may just be an artefact due to a special choice of lattice parameters).
It also may be that you have made a simple input error. If you want to force two atoms of the
same kind (e.g. 2 Fe atoms) to be nonequivalent (e.g. because you want to do an antiferromagnetic
calculation), label the atoms as “Fe1” and “Fe2” in case.struct.

Thus this program helps to generate proper struct-files especially in the case of artificial unit
cells, e.g. a supercell simulating an impurity or a surface.

It also prints the “bond-valences” (see also the comments in $WIENROOT/SRC nn/BVA).

75

76 CHAPTER 6. INITIALIZATION

6.1.1 Execution

The program nn is executed by invoking the command:

nn nn.def or x nn

6.2 SGROUP

This program was contributed by:

	
Bogdan Yanchitsky and Andrei Timoshevskii
Institute of Magnetism, Kiev, Ukraine
email: yan@imag.kiev.ua and tim@ukron.kiev.ua
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

It was published in Yanchitsky and Timoshevskii 2001, and is written in C.

This program uses information from case.struct (lattice type, lattice constants, atomic posi-
tions) and determines the spacegroup as well as all pointgroups of non-equivalent sites. It uses
the nuclear charges Z or the ”label” in the 3rd place of the atomic name (Si1, Si2) to distinguish
different atoms uniquely. It is able to find possible smaller unit cells, shift the origin of the cell and
can even produce a new struct file case.struct sgroup based on your input case.struct
with proper lattice types and equivalency. It is thus most usefull in particular for “handmade”
structures.

For more information see also the README in SRC sgroup.

6.2.1 Execution

The program sgroup is executed by invoking the command:

sgroup -wi case.struct [-wo case.struct sgroup] case.outputsgen
or x sgroup

6.3 SYMMETRY

This program uses information from case.struct (lattice type, atomic positions). If NSYM was
set to zero it generates the space group symmetry operations and writes them to case.struct st
to complete this file. Otherwise (NSYM > 0) it compares the generated symmetry operations
with the already present ones. If they disagree a warning is given in the output. In addition
the point group of each atomic site is determined and the respective symmetry operations and
LM values of the lattice harmonics representation are printed. The latter information is written
into case.in2 sy, while the local rotation matrix, the positive or negative IATNR values and the
proper ISPLIT parameter are written to case.struct st. (See appendix A and Sec. 4.3).

6.4. LSTART 77

6.3.1 Execution

The program symmetry is executed by invoking the command:

symmetry symmetry.def or x symmetry

6.4 LSTART (atomic LSDA program)

lstart is a relativistic atomic LSDA code originally written by Desclaux (69, 75) and modified
for the present purpose. Internally it uses Hartree atomic units, but all output has been converted
to Rydberg units. lstart generates atomic densities which are used by dstart to generate a
starting density for a scf calculation and all the input files for the scf run: in0, in1, in2, inc
and inm (according to the atomic eigenvalues). In addition it creates atomic potentials (which
are truncated at their corresponding atomic radii and could be used to run lapw1) and optional
atomic valence densities, which can be used in lapw5 for a difference density plot. The atomic
total energies are also printed, but it can only be used for cohesive energy calculations of light
elements. Already for second-row elements the different treatment of relativistic effects in lstart
and lapwso yields inconsistent data and you must calculate the atomic total energy consistently
by a supercell approach via a “bandstructure calculation (Put a single atom in a sufficiently large
fcc-type unit cell).

If the program stops with some lines:

NSTOP=

in case.outputst, this means, that a proper solution for at least one orbital could not be ob-
tained. In such a case the input must be changed and one should provide different occupation
numbers for these states (e.g. Cu can not be started with 3d104s1, but it works with 3d94s2).

The program produces “WARNINGS” if R0 is too big or core-density leaks out of RMT.

6.4.1 Execution

The program lstart is executed by invoking the command:

lstart lstart.def or x lstart [-sigma]

The files case.rsp(up|dn) are generated and contain the atomic (spin) densities, which will be
used by DSTART later on.
Using -sigma generates case.inst sigma with modified input to generate case.sigma used
for difference densities (see below).

6.4.2 Dimensioning parameters

The following parameters are defined in file param.inc (static and not allocatable arrays):

NPT total number of radial mesh points, must be gt.(NRAD+NPT00), where NRAD is
the number of mesh-points up to RMT specfied in case.struct.

NPT00 max. number of radial mesh points beyond RMT
RMAX0 max. distance of radial mesh

78 CHAPTER 6. INITIALIZATION

6.4.3 Input

When running lstart you will first be asked interactively to specify an XC-potential switch. Cur-
rently 5 (LSDA, Perdew and Wang 92) as well as 11, 13 and 19 (three GGAs, Wu,Cohen 06; the
standard “PBE” Perdew et al. 96, as well as “PBEsol”, Perdew et al. 08; respectively) are officially
supported, 13 is the “standard PBE-GGA”.

In addition the program asks for an energy cut-off, separating core from valence states. Usually
-6.0 Ry is a good choice, but you should check for each atom how much core charge leaks out of the
sphere (WARNINGS in case.outputs). If this is the case one should lower this energy cut-off
and thus include these low lying states into the valence region. Alternatively you can also select
a “charge localization” criterium (usually between 0.97 and 0.9999). This allows a more localized
state (like a 4f of 5d elements) to be core, while a more delocalized state at lower energy (like the
5p states of 5d elements) to be semi-core.

The rest of the input is described in the sample input below.

Note: Only the data at the beginning of the line are read whereas the comment describes the respective
orbitals. This file can be generated automatically in w2web during “Initialize calc. or using “Sin-
glePrograms o instgen lapw” or with the script instgen lapw. To edit this file by hand choose
“View/Edit o Input Files” and choose case.inst.

------------------ top of file: case.inst -------------------
ZINC
Ne 6 (inert gas, # OF VALENCE ORBITALS not counting spin)
3,-1,1.0 N (N,KAPPA,OCCUP; = 3S UP, 1 ELECTRON)
3,-1,1.0 N 3S DN
3,-2,2.0 N 3P UP
3,-2,2.0 N 3P DN
3, 1,1.0 N 3P*UP
3, 1,1.0 N 3P*DN
3,-3,3.0 P 3D UP
3,-3,3.0 P 3D DN
3, 2,2.0 P 3D*UP
3, 2,2.0 P 3D*DN
4,-1,1.0 P 4S UP
4,-1,1.0 P 4S DN

**** END OF Input

**** END OF Input
------------------- bottom of file ---------------------------

Interpretive comments follow:

line 1: format(a4,a6)
title, keyword

title
keyword The keyword Watson enables a stabilization of negative ions using a

“Watson”-sphere of radius R-wat with charge Q-wat, which must be
given in the next line when this keyword is specified.
The keyword PRATT enables a scf mixing using standard PRATT
scheme. It might be usefull if a certain atomic configuration does not
converge with the standard mixing scheme and requires a (usually
quite small) mixing factor, which must be given in the next line when
this keyword is specified.

line 2: free format
config

6.5. KGEN 79

config specifies the core state configuration by an inert gas (He, Ne, Ar, Kr,
Xe, Rn) and the number of (valence) orbitals (without spin). (In the
example given above one could also use Ar 3 and omit the 3s and 3p
states.) The atomic configurations are listed in the appendix and can
also be found online using periodic table, a shell script which dis-
plays SRC/periodic.ps with ghostview)

line 3: format(i1,1x,i2,1x,f5.3,a1)
n, kappa, occup, plot

n the principle quantum number
kappa the relativistic quantum number (see below)
occup occupation number (per spin)
plot P specifies that the density of the respective orbital is written to the file

case.sigma, which can be used for difference density plots in lapw5.
N or an empty field will exempt density of the respective orbital from
being printed to file.

>>>:line 3 is repeated for the other spin and for all orbitals specified above by config.
>>>: the last two lines must be

optional inserted as line 2 when “Watson” has been specified in line 1: free format
R-wat, Q-wat

R-wat radius of a charged sphere used to stabilize otherwise unstable negative
ions (e.g. 2.5 for O2−)

Q-wat charge of the stabilizing sphere, (e.g. 2 for O2−)

The quantum numbers are defined as follows (see e.g. Liberman et al 65):

Spin quantum number: s = +1 or s = −1

Orbital quantum number j = l + s/2

Relativistic quantum number κ = −s(j + 1/2)

j = l + s/2 κ max. occupation
l s = −1 s = +1 s = −1 s = +1 s = −1 s = +1

s 0 1/2 -1 2
p 1 1/2 3/2 1 -2 2 4
d 2 3/2 5/2 2 -3 4 6
f 3 5/2 7/2 3 -4 6 8

Table 6.6: Relativistic quantum numbers

6.5 KGEN (generates k mesh)

This program generates the k-mesh in the irreducible wedge of the Brillouin zone (IBZ) on a special
point grid, which can be used in a modified tetrahedron integration scheme (Blöchl et al 1994).

kgen needs as interactive input the total number of k-points in the BZ. If this is set to zero, you
are asked to specify the divisions of the reciprocal unit-cell vectors (3 numbers, be careful not
to ”break” symmetry and choose them properly according to the inverse lenght of the reciprocal

80 CHAPTER 6. INITIALIZATION

lattice vectors) for a mesh yourself. If inversion symmetry is not present, it will be added auto-
matically unless you specified the “-so” switch (for magnetic cases with spin-orbit coupling). The
k-mesh is then created with this additional symmetry. If symmetry permits, it further asks whether
or not the k-mesh should be shifted away from high symmetry directions. The file case.klist is
used in lapw1 and case.kgen is used in tetra and lapw2, if the EF switch is set to TETRA, i.e.
the tetrahedron method for the k-space integration is used. For the format of the case.klist see
page 94.

6.5.1 Execution

The program kgen is executed by invoking the command:

kgen kgen.def or x kgen [-so]

With the switch -so it uses a file case.ksym (usually generated by symmetso) instead of
case.struct and does not add inversion symmetry.

6.5.2 Dimensioning parameters

The following parameters are used in main.f, ord1.f (static arrays):

IDKP number of inequivalent k-points (like NKPT in other programs)
NWX internal parameter, must be increased for very large k-meshes
INDEXM internal parameter, must be increased for very large k-meshes

6.6 DSTART (superposition of atomic densities)

This program generates an initial crystalline charge density case.clmsum by a superposition of
atomic densities (case.rsp) generated with lstart. Information about LM values of the lattice
harmonics representation and number of Fourier coefficients of the interstitial charge density are
taken from case.in1 and case.in2. In the case of a spin-polarized calculation it must also be
run for the spin-up charge density case.clmup and spin-down charge density case.clmdn.

6.6.1 Execution

The program dstart is executed by invoking the command:

dstart dstart.def or x dstart [-up|dn -c -fft -super -lcore]

With the switch -fft dstart will terminate after case.in0 std has been created. The switch
-super will produce new super.clmsum instead of case.clmsum, which is necessary for
charge extrapolation (clmextrapol lapw). -lcore produces case.clmsc from the radial core
densities case.rsplcore.

6.6.2 Dimensioning parameters

The following parameters are collected in file module.f, but usually need not to be changed:

6.6. DSTART 81

NPT number of r-mesh points in atomic density (should be the same as in LSTART)
LMAX2 max l in LM expansion
NCOM number of LM terms in density

82 CHAPTER 6. INITIALIZATION

7 Programs for running an SCF cycle

Contents
7.1 LAPW0 . 83
7.2 ORB . 86
7.3 LAPW1 . 90
7.4 LAPWSO . 95
7.5 LAPW2 . 97
7.6 SUMPARA . 101
7.7 LAPWDM . 102
7.8 LCORE . 103
7.9 MIXER . 105

In sections 7.1-7.9 we describe the main programs to run an SCF cycle as illustrated in figure 4.1.

7.1 LAPW0 (generates potential)

lapw0 computes the total potential Vtot as the sum of the Coulomb Vc and the exchange-correlation
potential Vxc using the total electron (spin) density as input. It generates the spherical part (l=0)
as case.vsp and the non-spherical part as case.vns. For spin-polarized systems, the spin-
densities case.clmup and case.clmdn lead to two pairs of potential files. These files are called:
case.vspup, case.vnsup and case.vspdn, case.vnsdn.

The Coulomb potential is calculated by the multipolar Fourier expansion introduced by Weinert
(81). Utilizing the spatial partitioning of the unit cell and the dual representation of the charge den-
sity [equ. 2.10], firstly the multipole moments inside the spheres are calculated (Q-sp). The Fourier
series of the charge density in the interstitial also represent SOME density inside the spheres, but
certainly NOT the correct density there. Nevertheless, the multipole moments of this artificial
plane-wave density inside each sphere are also calculated (Q-pw). By subtracting Q-pw from Q-sp
one obtains pseudo-multipole moments Q. Next a new plane-wave series is generated which has
two properties, namely zero density in the interstitial region and a charge distribution inside the
spheres that reproduces the pseudo-multipole moments Q. This series is added to the original in-
terstitial Fourier series for the density to form a new series which has two desirable properties: it
simultaneously represents the interstitial charge density AND it has the same multipole moments
inside the spheres as the actual density. Using this Fourier series the interstitial Coulomb potential
follows immediately by dividing the Fourier coefficients by K2 (up to a constant).

Inside the spheres the Coulomb potential is obtained by a straightforward classical Green’s func-
tion method for the solution of the boundary value problem.

The exchange-correlation potential is computed numerically on a grid. Inside the atomic spheres a
least squares procedure is used to reproduce the potential using a lattice harmonics representation

83

84 CHAPTER 7. SCF CYCLE

(the linear equations are solved with modified LINPACK routines). In the interstitial region a 3-
dimensional fast Fourier transformation (FFT) is used.

The total potential V is obtained by summation of the Coulomb VC and exchange-correlation po-
tentials Vxc.

In order to find the contribution from the plane wave representation to the Hamilton matrix el-
ements we reanalyze the Fourier series in such a way that the new series represents a potential
which is zero inside the spheres but keeps the original value in the interstitial region and this series
is put into case.vns.

The contribution to the total energy which involves integrals of the form ρ ∗V is calculated accord-
ing to the formalism of Weinert et al (82).

The Hellmann-Feynman force contribution to the total force is also calculated (Yu et al 91).

Finally, the electric field gradient (EFG) is calculated in case you have an L=2 term in the density
expansion. The EFG tensor is given in both, the “local-rotation-matrix” coordinate system, and
then diagonalized. The resulting eigenvectors of this rotation are given by columns.

For surface calculations the total and electrostatic potential at z=0 and z=0.5 is calculated and can
be used as energy-zero for the determination of the workfunction. (It is assumed that the middle
of your vacuum region is either at z=0 or z=0.5).

7.1.1 Execution

The program lapw0 is executed by invoking the command:

lapw0 lapw0.def or x lapw0 [-p -eece -grr]

7.1.2 Dimensioning parameters

The following parameters are used (they are collected in file param.inc, but usually need not to
be changed:

NCOM number of lm components in charge density and potential representation; it must
satisfy the following condition: NCOM+3 .gt. {[number of l,m with m = 0] + [2
* number of l,m with m > 0]}

NRAD number of radial mesh points
LMAX2 highest L in the LM expansion of charge and potential
LMAX2X highest L for the gpoint-grid in the xcpot generation (may need large values for

“-eece”)
restrict output for mpi-jobs, limits the number of case.output0xxx files to “restrict output”

7.1.3 Input

The input is very simple. It is generated automatically by init lapw, and needs to be changed
only if a different exchange-correlation potential should be used:

------------------ top of file: case.in0 --------------------
TOT 13 ! MULT/COUL/EXCH/POT /TOT ; VXC-SWITCH
NR2V IFFT 8 ! R2V EECE/HYBR IFFT LUSE
30 30 108 4.00 1 ! min IFFT-parameters, enhancement factor, iprint

0 0.0 (#of FK in E-field expansion, EFELD (Ry)

------------------- bottom of file ---------------------------

7.1. LAPW0 85

Interpretive comments follow:

line 1: free format
switch, indxc

switch
TOT total energy contributions and total potential calculated
KXC total energy contributions and total potential calculated. In addition the

kinetic energy contribution as well as the XC-energy will be printed.
POT total potential is calculated, but not the total energy
MULT multipole moments calculated only
COUL Coulomb potential calculated only
EXCH exchange correlation potential calculated only

NOTE: MULT, COUL, and EXCH are for testing only, whereas POT,
saves some CPU time if total energy is not needed

indxc index to specify type of exchange and correlation potential. Supported
options (for more options see the SRC lapw0/vxclm2.f subroutine) in-
clude:

5 Perdew and Wang 92, reparameterization of Ceperly-Alder data, the
recommended LDA option

13 Generalized Gradient approximation (PBE, Perdew-Burke-Ernzerhof
96)

11 Generalized Gradient approximation (Wu-Cohen 2006, Tran et al. 2007)
19 Generalized Gradient approximation (PBEsol, Perdew 2008)
20 Generalized Gradient approximation (AM05, Mattsson 2008)
12 Meta-GGA PKZB (Perdew et al. 1999). In order to generate the

requiered case.vresp* files, you need case.inm vresp (cp
$WIENROOT/SRC templates/case.inm vresp case.inm vresp
and run one scf cycle with PBE (indxc=13) after creation of
case.inm vresp. Only afterwards change indxc to 12. In addi-
tion you must use very large IFFT parameters, otherwise it might be
numerically unstable.

27 Meta-GGA TPSS (Tao et al. 2003). At present the “best” meta-GGA.
(See also the option above.) Note: Only EXC is obtained that way, VXC
of standard PBE is used.

28 modified Becke-Johnson (mBJ-LDA) potential VXC (Tran and Blaha
2009). Uses a mBJ exchange potential + LDA correlation potential and
yields gaps in very good agreement with experiment. The xc-energy
EXC is from LDA. For detailed usage see chapter about mBJ calcula-
tions (4.5.8).

50 calculates the average of ∇ρ(r)/ρ(r) over the unit cell. This is used for
the mBJ potential mentioned above.

line 2: free format (only blanks are allowed as separator)
RPRINT, H-mod, FFTopt, LUSE

RPRINT NR2V no additional output
R2V Exchange-correlation (case.r2v), Coulomb (case.vcoul) and total

potentials (case.vtotal) are written as (r2V) to a file for plotting with
lapw5 (cp case.vtotal case.clmval; use “VAL” for normalization
in case.in5)

H-mod EECE On-site Hartree-Fock (inside spheres) for selected electrons (see 4.5.7)
HYBR On-site Hybrid functionals (inside spheres) (see 4.5.7)

86 CHAPTER 7. SCF CYCLE

FFTopt IFFT optional keyword, which lets you define the IFFTx mesh and an en-
hancement factor in the next line (necessary for runeece lapw)

LUSE optional l-max value for the angular grid used in xcpot1. For stan-
dard LDA/GGA the recommended value is max L value of LM-list in
case.in2 + 2; for EECE one should use a better, antialiased grid, thus a
large negative LUSE-value is recommended (and set automatically by
runeece lapw)

line 3: free format (must be omitted when IFFT is not specified above)
IFFTx, IFFTy, IFFTz, IFFTfactor, iprint

IFFTx,y,z FFT-mesh parameters in x,y,z directions for the calculation of the
XC-potential in the interstitial region. Usually set automatically in
init lapw (dstart). The ratio of the 3 numbers should be indirect pro-
portional to the lattice parameters. (-1 -1 -1 determines these numbers
automatically and takes only IFFTfactor into account)

IFFTfactor Multiplicative factor to the IFFT grid specified above. It needs to be
enlarged for highly accurate GGA or meta-GGA calculations as well as
for systems with H atoms with small spheres.

iprint optional print switch. iprint=0 will greatly reduce case.output0 (in par-
ticular for lapw0 mpi).

The following line is optional and can be omitted. It is used to introduce an electric field via
a zig-zag potential (see J.Stahn et al. 2001):

line 4: free format
IFIELD, EFIELD, WFIELD

IFIELD number of Fourier coefficients to model the zig-zag potential. Typically
use IEFIELD=30; -999 lists available modes (form) of fields, and these
modes can be specified by mode=IEFIELD/1000. (default: mode=0)

EFIELD value (amplitude) of the electric field. The electric field (in Ry/bohr)
corresponds to EFIELD/c, where c is your c lattice parameter.

WFIELD optional value for lambda (see output of IEFIELD=-999).

7.2 ORB (Calculate orbital dependent potentials)

This program was contributed by:

	
P.Novák
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

orb calculates the orbital dependent potentials, i.e. potentials which are nonzero in the atomic
spheres only and depend on the orbital state numbers l,m. In the present version the potential is
assumed to be independent of the radius vector and needs the density matrix calculated in lapwdm.
Four different potentials are implemented in this package:

7.2. ORB 87

I LDA+U. There are three variants of this method, two of them are discussed in Novák et al.
2001

1. LDA+U(SIC) - introduced by Anisimov et al. 1993, with an approximate correction for
the self-interaction correction. This is probably best suited for strongly correlated sys-
tems and for a full potential method we recommend to use an “effective” Ueff = U − J ;
setting J = 0.

2. LDA+U(AMF) - introduced by Czyzyk and Sawatzky 1994 as ’Around the Mean Field’
method. (In Novák et al. 2001 it is denoted as LDA+U(DFT)). This version is (probably)
more suitable for metallic or less strongly correlated systems.

3. LDA+U(HMF) - in addition the Hubbard model in the mean field approximation, as
introduced by Anisimov et al. 1991 is also implemented. Note, however, that it is to be
used with the LDA (not LSDA) exchange-correlation potential in spin polarized calcu-
lations!

All variants are implemented in the rotationally invariant way (Liechtenstein et al. 1995). If
LDA+U is used in an unrestricted, general way, it introduces an orbital field in the calcu-
lation (in analogy to the exchange field in spin-polarized calculations, but it interacts with
the orbital, instead of spin momentum). The presence of such an orbital field may lower the
symmetry. In particular the complex version of LAPW1 must be used. Care is needed when
dealing with the LDA+U orbital field. It may be quite large, and without specifying its direc-
tion it may fluctuate, leading to oscillations of scf procedure or/and to false solutions. It is
therefore necessary to use it in combination with the spin-orbit coupling, preferably running
first LSDA+(s-o) and then slowly switching on the LDA+U orbital field. If the LDA+U orbital
polarization is not needed, it is sufficient to run real version of LAPW1, which then automat-
ically puts the orbital field equal to zero. For systems without the center of inversion, when
LAPW1 must be complex, an extra averaging of the LDA+U potential is necessary.

I Orbital polarization. The additional potential has the form (Brooks 1985, Eriksson et al. 1989):
VOP = cOP < Lz > lz (7.1)

where cOP is the orbital polarization parameter, < Lz > is projection of the orbital momen-
tum on the magnetization direction and lz is single electron orbital momentum component z
parallel to ~M .

I Exact exchange and Hybrid methods: see Tran et al. 2006 and 4.5.7
I Interaction with the external magnetic field. In this case the additional potential has a simple

form:
VBext = µB ~Bext(~l + 2~s). (7.2)

The interaction with the electronic spin is taken into account by shifting the spin up and spin
down exchange correlation potentials in LAPW0 by the energy +µBBext − µBBext, respec-
tively. The interaction of Bext with spin could be as well calculated using the ’Fixed spin
moment’ method. For an interaction with the orbital momentum it is necessary to specify the
atoms and angular momentum numbers for which this interaction will be considered. Cau-
tion is needed when considering interaction of the orbital momentum with Bext in metallic
or metallic-like systems. For the analysis see the paper by Hirst 1997

In all cases the resulting potential for a given atom and orbital number l is a Hermitian, (2l +
1)x(2l + 1) matrix. In general this matrix is complex, but in special cases it may be real.

For more information see also section 4.5.6.

7.2.1 Execution

The program orb is executed by invoking the command:

x orb [-up/-dn/-du] or orb up/dnorb.def

88 CHAPTER 7. SCF CYCLE

7.2.2 Dimensioning parameters

The following parameters are used (collected in file param.inc):

LABC highest l+1 value of orbital dependent potentials
NRAD number of radial mesh points

7.2.3 Input

Since this program can handle three different cases, examples and descriptions of case.inorb for
all cases are given below:

Input for all potentials

line 1: free format
nmod,natorb,ipr

nmod defines the type of potential 1...LDA+U, 2...OP, 3...Bext
natorb number of atoms for which orbital potential Vorb is calculated
ipr printing option, the larger ipr, the longer the output

line 2: (A5,f8.2)
mixmod,amix

mixmod PRATT or BROYD (should not be changed, see MIXER for more infor-
mation)

amix coefficient for the Pratt mixing of Vorb
This option is now only used for testing. The mixing should be set to
PRATT, 1.0

line 3: free format
iatom(i),nlorb(i),(lorb(li,i),li=1,nlorb(i))

iatom index of atom in struct file
nlorb number of orbital moments for which Vorb shall be applied
lorb orbital numbers (repeated nlorb-times)

3rd line repeated natorb-times

Input for LDA+U (nmod=1)

line 4: free format

nsic defines ’double counting correction’
nsic=0 ’AMF method’ (Czyzyk et al. 1994)
nsic=1 ’SIC method’ (Anisimov et al. 1993, Liechtenstein et al. 1995)
nsic=2 ’HMF method’ (Anisimov et al. 1991)

line 5: free format

U(li,i),
J(li,i)

Coulomb and exchange parameters, U and J, for LDA+U in Ry for atom
type i and orbital number li. We recommend to use Ueff only.

7.2. ORB 89

5th line repeated natorb-times, for each natorb repeated nlorb-times

Example of the input file for NiO (LDA+U included for two inequivalent Ni atoms that have in-
dexes 1 and 2 in the structure file):

---------------- top of file: case.inorb --------------------
1 2 0 nmod, natorb, ipr
PRATT,1.0 mixmod, amix
1 1 2 iatom nlorb, lorb
2 1 2 iatom nlorb, lorb
1 nsic (LDA+U(SIC) used)
0.52 0.0 U J
0.52 0.0 U J
---------------- bottom of file: --------------------

Input for Orbital Polarization (nmod=2)

line 4: (free format)

nmodop defines mode of ’OP’
1 average Lz taken separately for spin up, spin down
0 average Lz is the sum for spin up and spin down

line 5: (free format)

Ncalc(i)
1 Orb.pol. parameters are calculated ab-initio
0 Orb.pol. parameters are read from input

this line is repeated natorb-times
line 6: (free format) (only if Ncalc=0, then repeated nlorb-times)

pop(li,i) OP parameter in Ry

line 7: (free format)
xms(1), xms(2), xms(3)

direction of magnetization expressed in terms of lattice vectors

Example of the input file for NiO (total < Lz > used in (1), OP parameters calculated ab-initio, ~M
along [001]):

---------------- top of file: case.inorb --------------------
2 2 0 nmod, natorb, ipr
PRATT, 1.0 mixmod, amix
1 1 2 iatom nlorb, lorb
2 1 2 iatom nlorb, lorb
0 nmodop
1 Ncalc
1 Ncalc
0. 0. 1. direction of M in terms of lattice vectors
---------------- bottom of file --------------------

Input for interaction with Bext (nmod=3)

line 4: (free format)

Bext external field in Tesla

90 CHAPTER 7. SCF CYCLE

line 5: (free format)
xms(1), xms(2), xms(3)

direction of magnetization expressed in terms of lattice vectors

Example of the input file for NiO, (Bext= 4 T, along [001]):

---------------- top of file: case.inorb --------------------
3 2 0 nmod, natorb, ipr
PRATT, 1.0 mixmod, amix
1 1 2 iatom nlorb, lorb
2 1 2 iatom nlorb, lorb
4. Bext in T
0. 0. 1. direction of Bext in terms of lattice vectors
---------------- bottom of file --------------------

7.3 LAPW1 (generates eigenvalues and eigenvectors)

lapw1 sets up the Hamiltonian and the overlap matrix (Koelling and Arbman 75) and finds by
diagonalization eigenvalues and eigenvectors which are written to case.vector. Besides the
standard LAPW basis set, also the APW+lo method (see Sjöstedt et al 2000, Madsen et al. 2001) is
supported and the basis sets can be mixed for maximal efficiency. If the file case.vns exists (i.e.
non-spherical terms in the potential), a full-potential calculation is performed.

For structures without inversion symmetry, where the hamilton and overlap matrix elements are
complex numbers, the corresponding program version lapw1c must be used in connection with
lapw2c.

Since usually the diagonalization is the most time consuming part of the calculations, two options
exist here. In WIEN2k we include highly optimized modifications of LAPACK routines. We call all
these routines “full diagonalization”, but we also provide an option to do an “iterative diagonal-
ization” using a new preconditioning of a block-Davidson method (see Singh 89 and Blaha et al.
09). The scheme uses an old eigenvector from the previous scf-iteration, and produces approximate
(but usually still highly accurate) eigenvalues/vectors. The preconditioner (inverse of (H − λS)
can be calculated at the first iterative step (which will therefore take longer than subsequent iter-
ative steps), stored on disk (case.storeHinv) and reused in all subsequent scf-iterations (until
the next “full” diagonalization or when it is recreated (x lapw1 -it -noHinv0)). Usually this is
the fastest scheme, but storage of case.storeHinv can be large (and slow when you have a
slow network) and when the Hamiltonian changes too much, performance may degrade. Alter-
natively, the preconditioner can be recalculated all the time (x lapw1 -it -noHinv). Depending on
the ratio of matrix size to number of eigenvalues (cpu time increases linearly with the number
of eigenvalues, but a sufficiently large number is necessary to ensure convergence) a significant
speedup compared to “full” diagonalization (LAPACK) can be reached. Iterative diagonalization
is activated with the -it switch in x lapw1 -it or run lapw -it. Often the preconditioner
is so efficient, that it does not need to be recalculated, even within a structural optimization and
one can use min lapw -j ‘‘run lapw -I -fc 1 -it’’. In some cases it is preferable to use
min lapw -j ‘‘run lapw -I -fc 1 -it1’’, which will recreate case.storeHinv, or do
not store these files at all using min lapw -j ‘‘run lapw -I -fc 1 -it -noHinv ’’

Parallel execution (fine grain and on the k-point level) is also possible and is described in detail in
Sec. 5.5.

The switch -nohns skips the calculation of the nonspherical matrix elements inside the sphere.
This may be used to save computer time during the first scf cycles.

7.3. LAPW1 91

7.3.1 Execution

The program lapw1 is executed by invoking the command:

x lapw1 [-c -up|dn -it -noHinv|-noHinv0 -p -nohns -orb -band
-nmat only] or

lapw1 lapw1.def or lapw1c lapw1.def

In cases without inversion symmetry, the default input filename is case.in1c. For 2-window (not
recommended) semi-core calculations the lapw1s.def file uses a case.in1s file and creates the
files case.output1s and case.vectors. For the spin-polarized case lapw1 is called twice with
uplapw1.def and dnlapw1.def. To all relevant files the keywords “up“ or “dn“ are appended
(see the fcc Ni test case in the WIEN2k package).

7.3.2 Dimensioning parameters

The following parameters (collected in file param.inc r or param.inc c) are used:

LMAX highest l+1 in basis function inside sphere (consistent with input in case.in1)
LMMX number of LM terms in potential (should be at least NCOM-1)
LOMAX highest l for local orbital basis (consistent with input in case.in1)
NGAU number of Gaunt coefficients for the non-spherical contributions to the matrix

elements
NMATMAX maximum size of H,S-matrix (defines size of program, should be chosen accord-

ing to the memory of your hardware, see chapter 11.2.2!)
NRAD number of radial mesh points
NSLMAX highest l+1 in basis functions for non-muffin-tin matrix elements (consistent with

input in case.in1).If set larger than 5, parameter MAXDIM (modules.F) and LO-
MAX=8, P(10,10) (gaunt2.f) must also be increased.

NSYM order of point group
NUME maximum number of energy eigenvalues per k-point
NVEC1 defines the largest triple of integers which define reciprocal
NVEC2 K-vectors when multiplied with the reciprocal Bravais matrix
NVEC3
NLOAT max number of LOs for one l-quantum number
restrict output for mpi-jobs, limits the number of case.output1 X proc XXX files to “re-

strict output”

7.3.3 Input

Below a sample input is shown for TiO2 (rutile), one of the test cases provided in the WIEN2k
package. The input file is written automatically by LSTART, but was modified to set APW only for
Ti-3d and O-2p orbitals.

------------------ top of file: case.in1 --------------------
WFFIL EF=0.5000 (WFPRI,WFFIL,SUPWF ; wave fct. print,file,suppress
7.500 10 4 (R-mt*K-max; MAX l, max l for hns)
0.30 5 0 (global energy parameter E(l), with 5 other choices, LAPW)
0 -3.00 0.020 CONT 0 ENERGY PARAMETER for s, LAPW
0 0.30 0.000 CONT 0 ENERGY PARAMETER for s-local orbital, LAPW-LO
1 -1.90 0.020 CONT 0 ENERGY PARAMETER for p LAPW
1 0.30 0.000 CONT 0 ENERGY PARAMETER for p-local orbitals LAPW-LO
2 0.20 0.020 CONT 1 APW
0.20 3 0 (global energy parameter E(l), with 1 other choice, LAPW)
0 -0.90 0.020 STOP 0 LAPW

92 CHAPTER 7. SCF CYCLE

0 0.30 0.000 CONT 0 LAPW-LO
1 0.30 0.000 CONT 1 APW

K-VECTORS FROM UNIT:4 -9.0 2.0 69 emin/emax/nband
1.d-15 0.0 spro_limit for it.diag., lambda for it.diag
------------------- bottom of file ------------------------

Interpretive comments follow:

line 1: free format
switch, EF

switch WFFIL standard option, writes wave functions to file case.vector (needed
in lapw2)

SUPWF suppresses wave function calculation (faster for testing eigenvalues
only)

WFPRI prints eigenvectors to case.output1 and writes case.vector (pro-
duces long outputs!)

EF optional input. If “EF=” key is present, lapw1 reads EF and sets all
default energy parameters (0.3) to “EF-0.2” Ry.

line 2: free format
rkmax, lmax, lnsmax

rkmax Rmt ∗ Kmax determines matrix size (convergence), where Kmax is the
plane wave cut-off, Rmt is the smallest of all atomic sphere radii. Usu-
ally this value should be between 5 and 9 (APW+lo) or 6 - 10. (LAPW-
basis) (K2

max would be the plane wave cut-off parameter in Ry used
in pseudopotential calculations.) Note that d (f) wavefunctions con-
verge slower than s and p. For systems including hydrogen with short
bondlength and thus a very small Rmt (e.g. 0.7 a.u.), RKmax = 3 might
already be reasonable, but convergence must be checked for a new type
of system.
Note, that the actual matrix size is written on case.scf1. It is determined
by whatever is smaller, the plane wave cut-off (specified with RKmax)
or the maximum matrix dimension NMATMAX, (see previous section).

lmax maximum l value for partial waves used inside atomic spheres (should
be between 8 and 12)

lnsmax maximum l value for partial waves used in the computation of non-
muffin-tin matrix elements (lnsmax=4 is quite good)

line 3: free format
Etrial, ndiff, Napw

Etrial default energy used for all El to obtain ul(r, El) as regular solution of
the radial Schrödinger equation [used in equ.2.4,2.7] (see figure 7.1).

ndiff number of exceptions (specified in the next ndiff lines)
Napw 0 ... use LAPW basis, 1 ... use APW-basis for all “global” l values of this

atom. We recommend to use LAPW here.

line 4: format(I2,2F10.5,A4)
l, El, de, switch, NAPWL

l l of partial wave
El El for L=l
de energy increment

7.3. LAPW1 93

de=0: this E(l) overwrites the default energy (from line 3)
de6= 0: a search for a resonance energy using this increment is done. The
radial function ul(r, E) up to the muffin-tin radius RMT varies with the
energy. A typical case is schematically shown in Fig. 7.1.
At the bottom of the energy bands u has a zero slope (bonding state),
but it has a zero value (antibonding state) at the top of the bands. One
can search up and down in energy starting with El using the increment
de to find where ul(RMT , E) changes sign in value to determine Etop
and in slope to specify Ebottom. If both are found El is taken as the
arithmetic mean and replaces the trial energy. Otherwise El keeps the
specified value. For Etop and Ebottom bounds of +1 and -10 Ry are de-
fined respectively, and if they are not found, they remain at the initial
value set to -200.

switch used only if de.ne.0
CONT calculation continues, even if either Etop or Ebottom are not found
STOP calculation stops if not both Etop and Ebottom are found (especially use-

ful for semi-core states)
NAPWL 0 ... use LAPW basis, 1 ... use APW-basis for this l value of this atom. We

recommend to use APW+lo when the corresponding wavefunction is
“localized” and thus difficult to converge with standard LAPW (like 3d
functions) and/or when the respective atomic sphere is small compared
to the other spheres in the unit cell.

l

Etop

Ebottom

Ebottom

El

Etop

u (r,E)l

RMT

E

DOS
r

E

Figure 7.1: Schematic dependence of DOS and ul(r, El) on the energy

>>>:line 4 is repeated ndiff times (see line 3) for each exception. If the same l value is specified
twice, local orbitals are added to the (L)APW basis. The first energy (E1) is used for the usual
LAPW’s and the second energy (E2) for the LOs, which are formed according to (see equ.
2.7): uE1 + u̇E1 + uE2 .
Note: The default energy parameters (0.30) are replaced by an energy “EF − 0.2” if the EF-switch
was read before. Please read also the comments about run lapw in section 5.1.3. In addition, you may
want to change the automatically created input and add d- or f-local orbitals to reduce the linearization
error (e.g. in late transition metals you could put E3d at 0.0 and 1.0 Ry) or s, p, d, and/or f-LOs at
very high energy (e.g. 2.0 - 3.0 Ry) to better describe unoccupied states.

>>>:lines 3 and 4 are repeated for each non equivalent atom
line 5: format (20x,i1,2f10.1,i6)

unit-number, Emin, Emax nband

94 CHAPTER 7. SCF CYCLE

unit-
number

file number from which the k-vectors in the irreducible wedge of the
Brillouin zone are read. Default is 4, for which the corresponding infor-
mation is contained in case.klist (generated by KGEN). Should not
be changed.

EMIN,
EMAX

energy window in which eigenvalues shall be searched (overrides set-
ting in case.klist. A small window saves computer time, but it also
limits the energy range for the DOS calculation of unoccupied states.

nband number of eigenvalues calculated with iterative diagonalization. Set
automatically to nband = ne ∗ 2.0 + 5 in lstart. Larger values will
lead to more cpu-time. (Optional input)

line 6: free format; optional input line, but necessary if k-vectors are read from unit 5
spro limit, lambda iter

spro limit limit for detection of linear dependency for iterative diagonalization
(optional input), typical around 1.d-15)

lambda iter optional λ value for preconditioner of iterative diagonalization (see
above). By default we use λ = 0, but in some cases convergence can
be improved by a small (around 1.0) positive or negative λ

line 7: format (A10,4I10,3F5.2); (only when unit-number=5, not recommended, use unit 4 and
case.klist)
name, ix,iy,iz, idv, weight

name name of k-vector (optional)
>>>: the last line must be END !!

ix,iy,iz,
idv

defines the k-vector, where x= ix/idv etc. We use carthesian coordi-
nates in units of 2π/a, 2π/b, 2π/c for P,C,F and B cubic, tetragonal
and orthorhombic lattices, but internal coordinates for H and mono-
clinic/triclinic lattices

weight of k-vector (order of group of k)

>>>: line 7 is repeated for each k-vector in the IBZ. The utility program kgen (see section 6.5)
provides a list of such vectors (on a tetrahedral mesh) in case.klist.

>>>: the last line must be END

7.4. LAPWSO 95

7.4 LAPWSO (adds spin orbit coupling)

lapwso includes spin-orbit (SO) coupling in a second-variational procedure and computes eigen-
values and eigenvectors (stored in case.vectorso) using the scalar-relativistic wavefunctions
from lapw1. For reference see Singh 94 and Novák 97. The SO coupling must be small, as it is
diagonalized in the space of the scalar relativistic eigenstates. For large spin orbit effects it might
be necessary to include many more eigenstates from lapw1 by increasing EMAX in case.in1 (up
to 10 Ry!). We also provide an additional basisfunction, namely an LO with a p1/2 radial wave-
function, which improves the basis and removes to a large degree the dependency of the results
on EMAX and RMT (see Kuneš et al. 2001). SO is considered only within the atomic spheres and
thus the results may depend to some extent on the choice of atomic spheres radii. The nonspherical
potential is neglected when calculating dV

dr . Orbital dependend potentials (LDA+U, EECE or OP)
can be added to the hamiltonian in a cheap and simple way.

In spin-polarized calculations the presence of spin-orbit coupling may reduce symmetry and even
split equivalent atoms into non-equivalent ones. It is then necessary to consider a larger part of
the Brillouin zone and the input for lapw2 should also be modified since the potential has lower
symmetry than in the non-relativistic case. The following inputs may change:

I case.struct
I case.klist
I case.kgen
I case.in2c
I case.in1

We recommend to use initso (see Sec.5.2.17) which helps you together with symmetso (see
Sec.9.1) to setup spinorbit calculations.

Note: SO eigenvectors are complex and thus lapw2c must be used in a selfconsistent calculation.

7.4.1 Execution

The program lapwso is executed by invoking the command:

x lapwso [-up -p -c -orb] or
lapwso lapwso.def

where here -up indicates a spin-polarized calculation (no “-dn” is needed, since spin-orbit will mix
spin-up and dn states in one calculation).

7.4.2 Dimensioning parameters

The following parameters are used (collected in file param.inc):

FLMAX constant = 3
LMAX highest l of wave function inside sphere (consistent with lapw1)
LABC highest l of wave function inside sphere where SO is considered
LOMAX max l for local orbital basis
NRAD number of radial mesh points
NLOAT number of local orbitals

96 CHAPTER 7. SCF CYCLE

7.4.3 Input

A sample input for lapwso is given below. It will be generated automatically by initso

------------------ top of file: case.inso --------------------
WFFIL
4 0 0 llmax,ipr,kpot
-10.0000 1.5000 Emin, Emax

0 0 1 h,k,l (direction of magnetization)
2 number of atoms with RLO

1 -3.5 0.005 STOP atom-number, E-param for RLO
3 -4.5 0.005 STOP atom-number, E-param for RLO
1 2 number of atoms without SO, atomnumbers

------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: format(A5)
switch

WFFIL wavefunctions will also be calculated for scf-calculation. Otherwise
only eigenvalues are calculated.

line 2: free format
LLMAX, IPR, KPOT

LLMAX maximum l for wavefunctions
IPR print switch, larger numbers give additional output.
KPOT 0 V(dn) potential is used for < dn|V |dn > elements, V(up) for

< up|V |up > and [V(dn)+V(up)]/2 for < up|V |dn >.
1 averaged potential used for all matrix elements.

line 3: free format
Emin, Emax

Emin minimum energy for which the output eigenvectors and eigenenergies
will be printed (Ry)

Emax maximum energy

line 4: free format

h,k,l vector describing the direction of magnetization. For R lattice use h,k,l
in rhombohedral coordinates (not in hexagonal)

line 5: free format

nlr number of atoms for which a p1/2 LO should be added

line 6: free format
nlri, El, de, switch

nlri atom-number for which RLO should be added
El El for L=l
de energy increment (see lapw1)
switch used only if de.ne.0

CONT calculation continues, even if either Etop or Ebottom are not found

7.5. LAPW2 97

STOP calculation stops if not both Etop and Ebottom are found (especially use-
ful for semi-core states)

>>>: line 6 must be repeated “nlr” times (or should be omitted if nlr=0).
line 7: free format

noff, (iatoff(i),i=1,noff)

noff number of atoms for which SO is switched off (for “light” elements,
saves time)

iatoff atom-numbers

7.5 LAPW2 (generates valence charge density expansions)

lapw2 uses the files case.energy and case.vector and computes the Fermi-energy (for a
semiconductorEF is set to the valence band maximum) and the expansions of the electronic charge
densities in a representation according to eqn. 2.10 for each occupied state and each k-vector;
then the corresponding (partial) charges inside the atomic spheres are obtained by integration. In
addition “Pulay-corrections“ to the forces at the nuclei are calculated here. For systems without
inversion symmetry you have to use the program lapw2c (in connection with lapw1c).

The partial charges for each state (energy eigenvalue) and each k-vector can be written to files
case.help031, case.help032 etc., where the last digit gives the atomic index of inequiva-
lent atoms (switch -help files). Optionally these partial charges are also written to case.qtl
(switch -qtl). For meta-GGA calculations energy densities are written to case.vrepval(switch
-vresp).

In order to get partial charges for bandstructure plots, use -band, which sets the “QTL option and
uses “ROOT” in case.in2. Several other switches change the input file case.in2 temporarely
and are described there.

7.5.1 Execution

The program lapw2 is executed by invoking the command:

x lapw2 [-c -up|dn -p -so -qtl -fermi -efg -band -eece -vresp
-help files -emin X -all X Y] or
lapw2 lapw2.def [proc#] or lapw2c lapw2.def [proc#]

where proc# is the i-th processor number in case of parallel execution (see Fig. 5.2). The -so switch
sets -c automatically.

For complex calculations case.in2c is used. For a spin-polarized case see the fcc Ni test case in
the WIEN2k package.

7.5.2 Dimensioning parameters

The following parameters are used (collected in file modules.F):

IBLOCK Blocking parameter (32-255) in l2main.F, optimize for best performance
LMAX2 highest l in wave function inside sphere (smaller than in lapw1, at present must

be .le. 8)
LOMAX max l for local orbital basis

98 CHAPTER 7. SCF CYCLE

NCOM number of LM terms in density
NGAU max. number of Gaunt numbers
NRAD number of radial mesh points
restrict output for mpi-jobs, limits the number of case.output2 X proc XXX files to “re-

strict output”

7.5.3 Input

A sample input for lapw2 is listed below, it is generated automatically by the programs lstart
and symmetry.

------------------ top of file: case.in2 --------------------
TOT (TOT,FOR,QTL,EFG)
-1.2 32.000 0.5 0.05 (EMIN, # of electrons,ESEPERMIN, ESEPER0)
TETRA 0.0 (EF-method (ROOT,TEMP,GAUSS,TETRA,ALL),value)

0 0 2 0 2 2 4 0 4 2 4 4
0 0 1 0 2 0 2 2 3 0 3 2 4 0 4 2 4 4

14.0 (GMAX)
FILE (NOFILE, optional)
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: format(2A5)
switch, EECE

switch TOT total valence charge density expansion inside and outside spheres
FOR same as TOT, but in addition a “Pulay” force contribution is calculated

(this option costs extra computing time and thus should be performed
only at the final scf cycles, see run lapw script in sec. 5.1.3)

QTL partial charges only (generates file case.qtl for DOS calculations), set
automatically by switch -qtl

EFG computes decomposition of electric field gradient (EFG), contributions
from inside spheres (the total EFG is computed in lapw0), set automat-
ically by switch -efg.

ALM this generates two files, case.radwf and case.almblm, where the
radial wavefunctions and the Alm, Blm, Clm coefficients of the wave-
function inside spheres are listed. The file case.almblm can get very
big.

CLM CLM charge density coefficients only
FERMI Fermi energy only, this produces weight files for parallel execution

and for the optics and lapwdm package, set automatically by switch
-fermi.

>>>: TOT and FOR are the standard options, QTL is used for density of states
(or energy bandstructure) calculations, EFG for analysis, while FOURI,
CLM are for testing only.

EECE if set to “EECE”, calculates the density for specified atoms and angu-
lar momentum only. Used for exact-exchange or hybrid-calculations,
usually set automatically by runsp lapw -eece

line 2: free format
emin, ne, esepermin, eseper0

emin lower energy cut-off for defining the range of occupied states, can be
set termporarely to “X” by switch -emin X or -all X Y

7.5. LAPW2 99

ne number of electrons (per unit cell) in that energy range
esepermin LAPW2 tries to find the “mean” energies for each l channel, for both the

valence and the semicore states. To define “valence” and “semicore” it
starts at (EF - “esepermin”) and searches for a “gap” with a width of
at least “eseper0” and defines this as separation energy of valence and
semicore

eseper0 minimum gap width (see above). The values esepermin and eseper0
will only influence results if the option -in1new is used

line 3: format(a5,f10.5)
efmod, eval

efmod determines how EF is determined
ROOT EF is calculated and k space integration is done by root sampling (this

can be used for insulators, but for metals poor convergence is found)
TEMP EF is calculated where each eigenvalue is temperature broadened using

a Fermi function with a broadening parameter of eval Ry. The total
energy is corrected corresponding to T=0K. (e.g. eval=0.002 Ry gives
good total energy convergence, but has no “physical“ justification)

TEMPS EF is calculated where each eigenvalue is temperature broadened using
a Fermi function with a broadening parameter of eval Ry. The total
energy is corrected by -TS corresponding to the temperature specified
by eval (e.g. eval=0.002 Ry corresponds to about 40 C)

GAUSS EF is calculated as above but a Gaussian smearing method is used with
a width of eval Ry. (e.g. eval=0.002 gives good total energy conver-
gence, but has no “physical“ justification).

TETRA EF is calculated and k space integration is done by the modified (if eval
is .eq. 0) or standard (eval .ge. 100) tetrahedron-method (Blöchl 94).
This “standard” scheme is recommended for optic. In this case the
file case.kgen, consistent with the k-mesh used in lapw1, must be
provided (see Sec. 7.3). This is the recommended option although con-
vergence may be slower than with Gauss- or temperature-smearing.

ALL All states up to eval are used. This can be used to generate charge den-
sities in a specified energy interval, can be set termporarely by switch
-all X Y.

eval when efmod is set to TEMP(S) (eval=0 will lead to room temperature
broadening, 0.0018 Ry) or GAUSS, eval specifies the width of the broad-
ening (in Ry), if efmod is set to ALL, eval specifies the upper limit of the
energy window (in Ry; can be set termporarely by switch -all X Y),
if efmod is set to TETRA, eval .ge. 100 specifies the use of the stan-
dard tetrahedron method instead of the modified one (see above). By
default, TETRA will average over partially occupied degenerate states
at EF with a degeneracy criterium D = 1.d-6. You can modify this by
setting eval equal to your desired D (or 100+D).

optional line 3a: free format (ONLY when EECE is set)

nat rho number of atoms for which a specific density should be calculated

optional line 3b: free format (ONLY when EECE is set)
jatom rho, l rho

jatom rho index of atom for which a specific density should be calculated

100 CHAPTER 7. SCF CYCLE

l rho angular momentum l-value for which a specific density should be cal-
culated

>>>line 3b: must be repeated nat rho times
line 4: format (121(I3,I2))

L,M LM values of lattice harmonics expansion (equ. 2.10), defined accord-
ing to the point symmetry of the corresponding atom; generated in
SYMMETRY, MUST be consistent with the local rotation matrix defined
in case.struct (details can be found in Kara and Kurki-Suonio 81).
CAUTION: additional LM terms which do not belong to the lattice har-
monics will in general not vanish and thus such terms must be omitted.
Automatic termination of the lm series occurs when a second 0,0 pair
appears within the list. When you change the l,m list during an SCF
calculation the Broyden-Mixing is restarted in MIXER.

>>>line 4: must be repeated for each inequivalent atom

Symmetry LM combinations
23 0 0, 4 0, 4 4, 6 0, 6 4,-3 2, 6 2, 6 6,-7 2,-7 6, 8 0, 8 4, 8 8,-9 2,-9 6,-9 4,-9 8,10 0, 10 4,10 8, 10 2, 10 6, 10 10
M3 0 0, 4 0, 4 4, 6 0, 6 4, 6 2, 6 6, 8 0, 8 4, 8 8,10 0, 10 4,10 8, 10 2, 10 6, 10 10
432 0 0, 4 0, 4 4, 6 0, 6 4, 8 0, 8 4, 8 8,-9 4,-9 8,10 0, 10 4,10 8
-43M 0 0, 4 0, 4 4, 6 0, 6 4,-3 2,-7 2,-7 6, 8 0, 8 4, 8 8,-9 2,-9 6,10 0, 10 4,10 8
M3M 0 0, 4 0, 4 4, 6 0, 6 4, 8 0, 8 4, 8 8,10 0, 10 4,10 8

Table 7.41: LM combinations of “Cubic groups” (3‖(111)) direction, requires “positive atomic in-
dex” in case.struct. Terms that should be combined (Kara and Kurki-Suonio 81) must follow one
another.

Symmetry Coordinate axes Indices of Y±LM crystal system
1 any ALL (±l,m) triclinic
-1 any (±2l,m)
2 2‖ z (±l,2m) monoclinic
M m⊥z (±l,l-2m)
2/M 2‖z, m⊥z (±2l,2m)
222 2‖z, 2‖y, (2‖x) (+2l,2m), (-2l+1,2m) orthorhombic
MM2 2‖z, m⊥y, (2⊥x) (+l,2m)
MMM 2⊥z, m⊥y, 2⊥x (+2l,2m)
4 4‖z (±l,4m) tetragonal
-4 -4‖z (±2l,4m), (±2l+1,4m+2)
4/M 4‖z, m⊥z (±2l,4m)
422 4‖z, 2‖y, (2‖x) (+2l,4m), (-2l+1,4m)
4MM 4‖z, m⊥y, (2⊥x) (+l,4m)
-42M -4‖z, 2‖x (m=xy→yx) (+2l,4m), (-2l+1,4m+2)
4MMM 4‖z, m⊥z, m⊥x (+2l,4m)
3 3‖z (±l,3m) rhombohedral
-3 -3‖z (±2l,3m)
32 3‖z, 2‖y (+2l,3m), (-2l+1,3m)
3M 3‖z, m⊥y (+l,3m)
-3M -3‖z, m⊥y (+2l,3m)
6 6‖z (±l,6m) hexagonal
-6 -6‖z (+2l,6m), (±2l+1,6m+3)
6/M 6‖z, m⊥z (±2l,6m)
622 6‖z, 2‖y, (2‖x) (+2l,6m), (-2l+1,6m)
6MM 6‖z, m‖y, (m⊥x) (+l,6m)
-62M -6‖z, m⊥y, (2‖x) (+2l,6m), (+2l+1,6m+3)
6MMM 6‖z, m⊥z, m⊥y, (m⊥x) (+2l,6m)

Table 7.42: LM combination and local coordinate system of “non-cubic groups” (requires “negative
atomic index” in case.struct)

line 5: free format

7.6. SUMPARA 101

GMAX max. G (magnitude of largest vector) in charge density Fourier expan-
sion. For systems with short H bonds larger values (e.g. GMAX up
to 25) could be necessary. Calculations using GGA (potential option
13 or 14 in case.in0) should also employ a larger GMAX value (e.g.
14), since the gradients are calculated numerically on a mesh deter-
mined by GMAX. When you change GMAX during an scf calculation
the Broyden-Mixing is restarted in mixer.

line 6: A4

reclist FILE writes list of K-vectors into file case.recprlist or reuses this list if
the file exists. The saved list will be recalculated whenever GMAX, or a
lattice parameter has been changed.

NOFILE always calculate new list of K-vectors

7.6 SUMPARA (summation of files from parallel execution)

sumpara is a small program which (in parallel execution of WIEN2k) sums up the densities
(case.clmval *) and quantities from the case.scf2 * files of the different parallel runs.

7.6.1 Execution

The program sumpara is executed by invoking the 2 commands as follows:

x sumpara -d [-up/-dn/-du] and then
sumpara sumpara.def # of proc

where # of proc is the numbers of parallel processors used. It is usually called automatically
from lapw2para or x lapw2 -p.

7.6.2 Dimensioning parameters

The following parameters are listend in file param.inc, but usually they need not to be modified:

NCOM number of LM terms in density
NRAD number of radial mesh points
NSYM order of point group

102 CHAPTER 7. SCF CYCLE

7.7 LAPWDM (calculate density matrix)

This program was contributed by:

	
J.Kuneš and P.Novák
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

lapwdm calculates the density matrix needed for the orbital dependent potentials generated in orb.
Optionally it also provides orbital moments, orbital and dipolar contributions to the hyperfine field
(only for the specified atoms AND orbitals). It calculates the average value of the operator X which
behaves in the same way as the spin-orbit coupling operator: it must be nonzero only within the
atomic spheres and can be written as a product of two operators - radial and angular:

X = Xr(r) ∗Xls(~l, ~s)

Xr(r) and Xls(~l, ~s) are determined by RINDEX and LSINDEX in the input as described below:

I RINDEX=0 LSINDEX=0: the density matrix is calculated (this is needed for LDA+U calcula-
tions)

I RINDEX=1 LSINDEX=1: <X> is number of electrons inside the atomic sphere (for test)
I RINDEX=2 LSINDEX=1: <X> is the < 1/r3 > expectation value inside the atomic sphere
I RINDEX=1 LSINDEX=2: <X> is the projection of the electronic spin inside the atomic sphere

(must be multiplied by g=2 to get the spin moment)
I RINDEX=1 LSINDEX=3: <X> is the projection of the orbital moment inside the atomic

sphere (in case of SO-calculations WITHOUT LDA+U)
I RINDEX=3 LSINDEX=3: <X> is the orbital part of the hyperfine field at the nucleus (for a

converged calculation at the very end)
I RINDEX=3 LSINDEX=5: <X> is the spin dipolar part of the hyperfine field at the nucleus

(for a converged calculation at the very end)

To use the different operators, set the appropriate input. More information and extentions to op-
erators of similar behavior may be obtained directly from P. Novák (2006). (RINDEX=3 includes
now an approximation to the relativistic mass enhancement and LSINDEX=5 includes nondiagonal
terms)

lapwdm needs the occupation numbers, which are calculated in lapw2. Note: You must not use
ROOT in case.in2 for that purpose.

7.7.1 Execution

The program lapwdm is executed by invoking the command:

x lapwdm [-up/dn -p -c -so] or
lapwdm lapwdm.def

7.7.2 Dimensioning parameters

The following parameters are used (collected in file param.inc):

7.8. LCORE 103

FLMAX constant = 3
LMAX highest l of wave function inside sphere (consistent with lapw1)
LABC highest l of wave function inside sphere where SO is considered
LOMAX max l for local orbital basis
NRAD number of radial mesh points

7.7.3 Input

A sample input for lapwdm is given below.

------------------ top of file: case.indm --------------------
-9. Emin cutoff energy
1 number of atoms for which density matrix is calculated
1 1 2 index of 1st atom, number of L’s, L1
0 0 r-index, (l,s)-index
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format

emin lower energy cutoff (usually set to very low number).

line 2: free format

natom number of atoms for which the density matrix is calculated

line 3: free format
iatom, nl, l

iatom index of atom for which the density matrix should be calculated
nl number of l-values for which the density matrix should be calculated
l l-values for which the density matrix should be calculated

line 3 is repeated natom times t
line 4: free format, optional

RINDEX, LSINDEX

RINDEX 0-3, as described in the introduction to lapwdm
LSINDEX0-5, as described in the introduction to lapwdm

7.8 LCORE (generates core states)

lcore is a modified version of the Desclaux (69, 75) relativistic LSDA atomic code. It computes the
core states (relativistically including SO, or non-relativistically if “NREL” is set in case.struct)
for the current spherical part of the potential (case.vsp). It yields core eigenvalues, the file
case.clmcor with the corresponding core densities, and the core contribution to the atomic
forces.

7.8.1 Execution

The program lcore is executed by invoking the command:

104 CHAPTER 7. SCF CYCLE

lcore lcore.def or x lcore [-up|-dn]

For the spin-polarized case see fcc Ni on the distribution tape. If case.incup and case.incdn
are present for spin-polarized calculations, different core-occupation (“open core” approximation
for 4f states or spin-polarized core-holes) for both spins are possible.

7.8.2 Dimensioning parameters

The following parameter is listend in file param.inc:

NRAD number of radial mesh points

7.8.3 Input

Below is a sample input (written automatically by lstart)

for TiO2 (rutile), one of the test cases provided with the WIEN2k

package.

In case of a ”open core” calculation (eg. for 4f states) you may need ”spin-polarized” case.inc
files in order to define different configurations for spin-up and dn. Create two files case.incup
and case.incdn with the corresponding occupations. The runsp lapw script will automatically
copy the corresponding files to case.inc.

------------------ top of file: case.inc --------------------
4 0.0 0 # of orbitals, shift of potential, print switch
1,-1,2 n (principal quantum number), kappa, occup. number
2,-1,2 2s
2,-2,4 2p
2, 1,2 2p*
1 0.0 # of orbital of second atom
1,-1,2 1s
0 end switch

------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
nrorb, shift, iprint

nrorb number of core orbitals
shift shift of potential for “positive” eigenvalues (e.g. for 4f states as core

states in lanthanides)
iprint optional print switch to reduce (0) or increase (1) printing to

case.outputc

line 2: free format
n, kappa, occup

n principle quantum number
kappa relativistic quantum number (see Table 6.6)
occup occupation number (including spin), fractial occupations supported

>>>: line 2 is repeated for each orbital (nrorb times; see line 1)
>>>: line 1 and 2 are repeated for each inequivalent atom. Atoms without core states (e.g. H or

Li) must still include a 1s orbital, but with occupation zero.
line 3: free format

7.9. MIXER 105

0 zero indicating end of job

7.9 MIXER (adding and mixing of charge densities)

In mixer the electron densities of core, semi-core, and valence states are added to yield the total
new (output) density (in some calculations only one or two types will exist). Proper normalization
of the densities is checked and enforced (by adding a constant charge density in the interstitial). As
it is well known, simply taking the new densities leads to instabilities in the iterative SCF process.
Therefore it is necessary to stabilize the SCF cycle. In WIEN2k this is done by mixing the output
density with the (old) input density to obtain the new density to be used in the next iteration.
Several mixing schemes are implemented, but we mention only:

1. straight mixing as originally proposed by Pratt (52) with a mixing factor Q

ρnew(r) = (1−Q)ρold(r) +Qρoutput(r)

2. a Multi-Secant mixing scheme contributed by L. Marks (see Marks and Luke 2008), in which
all the expansion coefficients of the density from several preceding iterations (usually 6-10)
are utilized to calculate an optimal mixing fraction for each coefficient in each iteration. It is
very robust and stable (works nicely also for magnetic systems with 3d or 4f states at EF, only
for ill-conditioned single-atom calculations you can break it) and usually converges at least
30 % faster than the old BROYD scheme.

3. Two new variants on the Multi-Secant method including a rank-one update (see Marks 2011)
which appear to be 5-10% faster and equally robust.

At the outset of a new calculation (for any changed computational parameter such as k-mesh, ma-
trix size, lattice constant etc.), any existing case.broydX files must be deleted (since the iterative
history which they contain refers to a “different“ incompatible calculation).

If the file case.clmsum old can not be found by mixer, a “PRATT-mixing“ with mixing factor
(greed) 1.0 is done.

Note: a case.clmval file must always be present, since the LM values and the K-vectors are read from
this file.

The total energy and the atomic forces are computed in mixer by reading the case.scf file and
adding the various contributions computed in preceding steps of the last iteration. Therefore
case.scf must not contain a certain “iteration-number” more than once and the number of it-
erations in the scf file must not be greater than 999.

For LDA+U calculations case.dmatup/dn and for hybrid-DFT (switch -eece) case.vorbup/dn
files will be included in the mixing procedure.

With the new mode MSR1a (or MSECa) (contributed by L. Marks) atomic positions will also be
mixed and thus optimized. This scheme can (unfortunately not in all cases) be a facter or 2-3 faster
then the traditional optimization using min lapw.

7.9.1 Execution

The program mixer is executed by invoking the command:

mixer mixer.def or x mixer [-eece]

A spin-polarized case will be detected automatically by x due to the presence of a case.clmvalup
file. For an example see fccNi (sec. 10.2) in the WIEN2k package.

106 CHAPTER 7. SCF CYCLE

7.9.2 Dimensioning parameters

The following parameters are collected in file param.inc, :

NCOM number of LM terms in density
NRAD number of radial mesh points
NSYM order of point group
traptouch minimum acceptable distance between atoms in full optimization model

7.9.3 Input

Below a sample input (written automatically by lstart) is provided for TiO2 (rutile), one of the
test cases provided with the WIEN2k package.

------------------ top of file: case.inm --------------------
MSEC3 0.d0 YES (PRATT/MSEC1/3/MSR1/a bg charge (+1 for additional e), NORM

0.2 MIXING GREED
1.0 1.0 Not used, retained for compatibility only
999 8 nbroyd nuse
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: (A5,*)
switch, bgch, norm

switch MSEC1 Multi-Secant scheme (Marks and Luke 2008)
MSEC2 similar to MSEC1 (above), but mixes the higher LM values inside

spheres by an adaptive PRATT scheme. This leads to a significant re-
duction of programsize and filesize (case.broyd*) for unitcells with
many atoms and low symmetry (factor 10-50) with only slighly worse
mixing performance.

MSEC3 Similar to MSEC1, but with updated scaling, regularization and other
improvements.

MSEC4 similar to MSEC3 (above), but mixes only the L=0 LM value
MSR1 Recommended. A Rank-One Multisecant that is slightly faster than

MSEC3 in most cases. For MSR1a see later.
MSR2 similar to MSR1 (above), but mixes only the L=0 LM value
MSR1a Similar to MSR1, but in addition it optimizes the atomic positions si-

multaneously (see Sect. 5.3.2)
PRATT Pratt scheme with a fixed greed
PRAT0 Pratt scheme with a greed restrained by previous improvement, similar

to MSEC3

bgch Background charge for charged cells (+1 for additional electron, -1 for
core hole, if not neutralized by additional valence electron)

norm YES Charge densities are normalized to sum of Z
NO Charge densities are not normalized

line 2: free format

7.9. MIXER 107

greed mixing greed Q. Essential for Pratt, rather less important for MSEC1. In
the first iteration using Broyden’s scheme: Q is automatically reduced
by the program depending on the average charge distance :DIS andthe
relative improvement in the last cycle. In case that the scf cycle fails
due to large charge fluctuations, this can be further reduced but this
can lead to stagnation. One should rarely reduce this below 0.05.)

line 3 (optional): (free format)
f pw, f clm

f pw Not used, retained for input compatibility.

f clm Not used, retained for input compatibility.

line 4 (optional): (free format)
nbroyd, nuse

nbroyd Not used, retained for input compatibility.

nuse For all Multisecant methods: Only nuse steps are used during modified
broyden (this value has some influence on the optimal convergence.
Usually 6-10 seems reasonable and 8 is recommended).

108 CHAPTER 7. SCF CYCLE

8 Programs for analysis, calculation of
properties, and geometry
optimization

Contents
8.1 TETRA . 109
8.2 QTL . 111
8.3 SPAGHETTI . 114
8.4 IRREP . 117
8.5 LAPW3 . 118
8.6 LAPW5 . 118
8.7 AIM . 121
8.8 LAPW7 . 124
8.9 FILTVEC . 129
8.10 XSPEC . 131
8.11 TELNES3 . 134
8.12 BROADENING . 141
8.13 OPTIMIZE . 142
8.14 ELAST . 143
8.15 MINI . 144
8.16 OPTIC . 146
8.17 JOINT . 151
8.18 KRAM . 153
8.19 DIPAN . 155
8.20 FSGEN . 157

8.1 TETRA (density of states)

This program calculates total and partial density of states (DOS) by means of the modified tetra-
hedron method (Blöchl et al 1994). Please note, the tetrahedron method will not work with just
one k-point and tetra will automatically switch to a Gaussian broadening scheme (with default
broadening of 0.01 Ry). It can also be selected by input (see below), but is not recommended for
small unit cells.

It uses the partial charges in case.qtl generated by lapw2 (switch QTL) and generates the DOS
in states/Ry (files case.dos1/2/3/...) and in states/eV (with respect to the Fermi energy;

109

110 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

files case.dos1/2/3ev). In spin-polarized calculations the DOS is given in states/Ry/spin (or
states/eV/spin).

Please note: The total DOS is equal to the sum over the atoms of the total-atomic DOS (inside
spheres) and the interstitial-DOS. (Thus in the total-atomic DOS the “multiplicity” of an atom is
considered). On the other hand, in the partial (lm-like) DOS the multiplicity is not considered and
one obtains the total-atomic DOS as a sum over all partial DOS times the multiplicity.

The “m-decomposed” DOS (e.g. pz, py, px) is given with respect to the local coordinate system for
each atom as defined by the local rotation matrix (see Appendix A), unless you have used x qtl
to generate the case.qtl and specified a specific coordinate system in case.inq (see Chapter
8.2).

Using the switches -rxes E1 E2 it is possible to generate a “weight-file”, where each k-point
is weighted according to its contribution to the DOS in the energy range E1-E2. This weight-file
case.rxes can be used using the switch -rexs to calculate the DOS with these weights. This
option might be useful to simulate the E-dependency of RXES spectra, or in general calculate a
“DOS” of regions around selected k-points only.

The density of states in files case.dos1/2/3/... or case.dos1/2/3/...ev can be plotted by
dosplot2 lapw (see 5.7.4).

It is strongly recommended that you use “Run Programs o Tasks o Density of States” from w2web.

8.1.1 Execution

The program tetra is executed by invoking the command:

tetra tetra.def or x tetra [-up|dn -rxes -rxesw E1 E2]

8.1.2 Dimensioning parameters

The following parameters are listed in file param.inc:

MG max. number of DOS cases
LXDOS usually 1, except for “cross-DOS” when using TELNES.2 = 3 (not needed any-

more for TELNES3)

8.1.3 Input

The required input file case.int can optionally be created using the w2webinterface or the
configure int lapw script (see 5.2.7).

An example is given below:

------------------ top of file: case.int ------------------
TiO2 # Title
-1.000 0.00250 1.200 0.003 # EMIN, DE, EMAX for DOS, GAUSS-Broad

7 N 0.000 # NUMBER OF DOS-CASES, G/L/B broadening
0 1 tot # jatom, doscase, description
1 2 Ti-s
1 3 Ti-p
1 4 Ti-px
1 5 Ti-py
1 6 Ti-pz
2 1 O-tot

------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

8.2. QTL 111

line 1: free format
title

line 2: free format
emin, delta, emax, broad

emin,
delta,
emax

specifies the energy mesh (in Ry) where the DOS is calculated. (emin
should be set slightly below the lowest valence band; emax will be
checked against the lowest energy of the highest band in case.qtl,
and set to the minimum of these two values; delta is the energy incre-
ment.

broad Gauss-broadening factor. Must be greater than delta to have any effect.

line 3: free format
ndos, Bmethod, broadening

ndos specifies the number of DOS cases to be calculated. It should be at least
1. The corresponding output is written in groups of 7 to respective
case.dosX files

Bmethod optional input (can be omitted) to select instead of the tetrahedron
method:

G Gaussian broadening
L Lorentzian broadening
B both, Gauss and Lorentzian broadening

broadening parameters in Ry, typically below/around 0.01 (optional, specify two
numbers for B)

line 4: (2i5,3x,a6)
jatom, jcol, description

jatom specifies for which atom the DOS is calculated. 0 means total DOS,
jatom = nat+ 1 means DOS in the interstitial, where nat is the number
of inequivalent atoms. When spin-orbit is included, jatom = nat + 1
gives total spin-up/dn DOS in a spinpolarized SO calculation, but is
meaningless in a non-spinpolarized SO case.

jcol specifies the column to be used in the respective QTL-file. 1 means total,
2 . . . s, 3 . . . p, . . . The further assignment depends on the value of ISPLIT
set in case.struct (see sec. 4.3); the respective description can be
found in the header of case.qtl.

description text used for further identification.

>>>:line 4 is repeated “ndos“ times

8.2 QTL (calculates special partial charges and population matri-
ces)

This program was contributed by:

112 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

	
P. Novák and J.Kuneš
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

qtl creates the input for calculating total and projected density of states of selected atoms and se-
lected l-subshells. It thus provides similar data as lapw2 -qtl, but it allows for additional options.
In particular it supports calculation of DOS projected on relativistic states p1/2, p3/2, d3/2, d5/2,
f5/2, f7/2, DOS projected on states in a rotated coordinate system and DOS projected on individual
f states. qtl also allows to calculate population matrix and energy resolved population matrix.
Comparing to lapwdm population matrix, the matrix created by qtl may contain also the cross
terms between different orbital and spin numbers and it can be energy resolved. Important option
of the qtl is the symmetrization that makes the calculation longer, but must be switched on when-
ever the quantities, which are not invariant are calculated. Detailed description may be found in
QTL - technical report by P. Novák. The calculation is based on the spectral decomposition of a
density matrix on a given atomic site and its transformation to the required basis.

The output is written to case.qtl [up/dn]. For the DOS calculation the file case.qtltext [up/dn] is
created in which the ordering of partial charges is given. Please note, that in contrast to case.qtl
[up/dn] from x lapw2 -qtl the total partial charge of an atom is NOT multiplied with its “mul-
tiplicity” and contains only the sum of the requested l,m terms (eg. s,p,d) and thus not all contri-
butions. Also the interstital charge will usually be NOT correct.

8.2.1 Execution

The program qtl is executed by invoking the command:

x qtl [-up/dn -so -p] or
qtl qtl.def

8.2.2 Input

A sample input (a default is created automatically during init lapw for case.inq is given be-
low.

------------------ top of file: case.inq --------------------
-7. 2. Emin Emax
2 number of selected atoms
1 2 0 0 iatom1 qsplit1 symmetrize loro
2 1 2 nL1 p d
3 3 1 1 iatom2 qsplit2 symmetrize loro
4 0 1 2 3 nL2 s p d f
1. 1. 1. new axis z
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

8.2. QTL 113

Table 8.5: Possible values of QSPLIT and their interpretation
QSPLIT meaning

-2 DOS in basis according to ISPLIT from case.struct
-1 DOS in relativistic |j, l, s,mj > basis
0 DOS in relativistic |j, l, s,mj > basis, summed over mj

1 DOS in |l,ml > basis (no symmetry)
2 DOS in basis of real orbitals (no symmetry)
3 axial symmetry
4 hexagonal symmetry
5 cubic symmetry
6 user written unitary transformation

88 population matrix, no < l|l′ > crossterms corresponds to ISPLIT=88
99 full population matrix including < l|l′ > crossterms (as ISPLIT=99)

line 1: free format
emin,emax energy window

line 2: free format
natom number of atoms selected for calculation

line 3: free format
iatom, QSPLIT, symmetrize, loro
iatom integer, index of atom
QSPLIT integer, analog of ISPLIT in case.struct: see below
symmetrize integer, =0 (no symmetrization), 1 (symmetrization)
loro integer =0 original coord. system preserved

=1 (new z axis)
=2 (new z and x axes)

line 4: free format
Nl(iatom), (l(iatom,i),i=1,Nl(iatom))
Nl number of orbital numbers selected for calculation
l orbital numbers selected for calculation for atom iatom

line 5: free format
hz, kz, lz real*8, direction of new axis z (if loro=1,2)

Lines starting from line 3 are repeated for each selected atom. Line 5 only appears when calculation
in new coordinate system is required (loro 6= 0). Axis z in this system is along hz,kz,lz (in units of
the lattice vectors, need not be normalized). If not only the z axis, but also the x axis need to be
specified, then loro must be equal to 2 and additional line

hx, kx, lx (real*8)

giving the direction of the new axis x, perpendicular to the new axis z must appear. For relativistic
splitting (QSPLIT=0,-1) this rotation is ignored and z points along the direction of magnetization
as defined in case.inso.

Indices of selected atoms, as well as the orbital numbers, must form an ascending sequence.

For QSPLIT=6 (unitary transformation prepared by user) the unitary matrices are read as in
WIEN2k 07 qtl: For the i-th atom selected for qtl calculation, they are stored in case.cf$i and
ordered according to increasing l. The unitary transformation matrix must rotate from the stan-
dard lms-basis to the desired one. A few examples (e.g. jjz , lms, or eg − t2g) are supplied with the
code in $WIENROOT/SRC templates/case.cf * and must be copied to case.cf$i . For less

114 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

common cases these must be generated by hand.

8.2.3 Output

The results in file case.qtl[up/dn] are written in the same format as lapw2 file case.qtl[up/dn] and
thus they may be directly used by tetra.

The data for the interstital DOS correspond to n = nat + 1 (nat is number of atom types). The
ordering of densities for all selected atoms is summarized in the file case.qtltext[up/dn]. The qtltext
file that corresponds to the input data given above is:

Ordering of DOS in QTL file for: HoMnO3 (Munoz)

atom 1 ordering of projected DOS
p,px,py,pz, real basis
d,dz2,d(x2-y2),dxy,dxz,dyz, real basis

atom 3 ordering of projected DOS
s

p,pxy,pz, axial basis
d,dz2,d(x2-y2),d(yz+xz),dxy, axial basis
f,A2,[x(T1)+y(T1)],z(T1),[ksi(T2)+eta(T2)],zeta(T2), axial basis

A2=xyz x(T1)=x(x2-3r2/5) y(T1)=y(y2-3r2/5) z(T1)=z(z2-3r2/5)
ksi(T2)=x(y2-z2) eta(T2)=y(z2-y2) zeta(T2)=z(x2-y2)

Data for interstital DOS correspond to atom index 8

The output for the population matrix integrated over energy is written to case.dmat [up/dn] that
has the same format as analogous file calculated by lapwdm.

8.3 SPAGHETTI (energy bandstructure plots)

This program generates an energy bandstructure plot (postscript file case.spaghetti ps
and xmgrace file case.bands.agr) using the eigenvalues printed in case.output1 or
case.outputso (with switch -so). Using the SCF potentials one runs x lapw1 -band with
a special k-mesh (case.klist band) along some high-symmetry lines (some sample inputs can
be found in SRC templates/*.klist or you create your own k-mesh using Xcrysden). As an
option, one can emphasize the character of the bands by additionally supplying corresponding par-
tial charges (file case.qtl which can be obtained using x lapw2 -qtl -band , see 7.5). This
will be called “band-character plotting“ below, in which each energy is drawn by a circle whose
radius is proportional to the specified character of that state. It allows to analyze the character of
bands (see also figures 3.12 and 3.13).

The file case.bands.agr can be opened directly with xmgrace. Within xmgrace, all features
of the plot, such as the plot range, the plot size, line properties (style, thickness and color), axis
properties, labels, etc. can easily be changed by either using the menu (submenus of the ”Plot”
menu) or double-klicking on the corresponding part of the figure. The size of the characters for a
“band-character plot“ can be changed in the menu ”Plot / Graph appearance / Z normalization”.
The figures can directly be printed or exported in eps, jpg, png and other formats, via the menus
”File / Print setup” and ”File / Print”.

C.Persson has modified this program and it allows now also to draw connected lines. For this pur-
pose it uses the irreducible representations (from file case.irrep produced by program irrep

8.3. SPAGHETTI 115

together with a table of “compatibility relations” to decide which points should be connected (non-
crossing rule !). (Note: This option will NOT work on the surface of the BZ for non-symmorphic space-
groups, because the corresponding group-theory has not been implemented.)

The presence of “incompatible” case.irrep or case.qtl files (from a previous run or qtls from
a DOS calculation) may crash spaghetti. In such cases it is necessary to remove these files explicitly.

It is strongly recommended that you use “Run Programs o Tasks o Bandstructure” from w2web.

8.3.1 Execution

The program spaghetti is executed by invoking the command:

spaghetti spaghetti.def or x spaghetti [-up|dn] [-so] [-p]

The -p switch directs spaghetti to use the case.output1 * files of a k-point parallel lapw1.

8.3.2 Input

An example is given below:

----------------- top of file: case.insp -------------------
Figure configuration
5.0 3.0 # paper offset of plot
10.0 15.0 # xsize,ysize [cm]
1.0 4 # major ticks, minor ticks
1.0 1 # character height, font switch
1.1 2 4 # line width, line switch, color switch
Data configuration
-25.0 15.0 2 # energy range, energy switch (1:Ry, 2:eV)
1 0.74250 # Fermi switch, Fermi-level (in Ry units)
1 999 # number of bands for heavier plotting 1,1
0 1 0.02 # jatom, jtype, size of heavier plotting
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
test

test line must start with ’###’. Begin of figure description. This tests also if
you use the new input (different from WIEN97 or early WIEN2k ver-
sions)

line 2: free format
xoffset, yoffset

xoffset x offset (in cm) of origin of plot
yoffset y offset (in cm) of origin of plot

line 3: free format
xsize,ysize

xsize plotsize in x direction (cm)
ysize plotsize in y direction (cm)

line 4: free format

116 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

eincr, mtick

eincr energy increment where y-axis labels are printed (major ticks)
mtick number of minor ticks of y-axis

line 5: free format
charh, font

charh scaling factor for size of labels
font 0 no text

1 Times and Symbol
2 Times,Times-Italic and Symbol
3 Helvetica, Symbol, and Helvetica-Italic
4 include your own fonts in defins.f

line 6: free format
linew, ilin, icol

linew line width
ilin 0 dots or open circles

1 lines
2 lines and open circles
3 lines and filled circles

icol 0 black
1 one-color plot
2 three-color plot
3 multi-color plot
4 multi-color plot,one color for each irred. representation

line 7: free format
test

test line must start with ’###’. Begin of data description.

line 8: free format
emin, emax, iunits

emin energy minimum of plot
emax energy maximum of plot
iunits

1 energies in Ry (internal scale)
2 energies in eV with respect to Ef

line 9: free format
iferm, efermi

iferm 0 no line at EF
1 solid line at EF
2 dashed line at EF
3 dotted line at EF

efermi Fermi energy (Ry); can be found in the respective case.scf file. If set
to 999., Ef is not plotted (and iunits=2 cannot be used)

line 10: free format

8.4. IRREP 117

nband1,
nband2

lower and upper band index for bands which should show “band-
character plotting“ (if case.qtl is present and the proper switch is
set, see below). In addition the corresponding x and y coordinates are
written to file case.spaghetti ene (which can be used for plotting
with an external xy-plotting program).

line 11: free format
jatom, jcol, jsize

jatom If a case.qtl file is present, jatom indicates the atom whose charac-
ter (selected by jcol) is used for “band-character plotting“ (dots are re-
placed by circles with radii proportional to the corresponding weight,
requires ilin=0,2,3). If set to zero or if case.qtl is not present, “band-
character plotting“ does not occur.

jcol specifies the column to be used in the respective QTL-file. 1 means total,
2 . . . s, 3 . . . p, . . . The further assignment depends on the value of ISPLIT
set in case.struct. (ignored for jatom=0). The description can be
found in the header of case.qtl.

jsize size factor for radii of circles used in “band-character plotting”

if line 11 is repeated, one can average the QTLs for different atoms (but with identical jcol and
jsize).

8.4 IRREP (Determine irreducible representations)

This program was contributed by:

	
Clas Persson
Condensed Matter Theory Group,Department of Physics,
University of Uppsala, Sweden
email: Clas.Persson@fysik.uu.se

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

This program determines the irreducible representation for each eigenvalue and all your k-points.
It is in particular usefull to analyse energy bands and their connectivity.

You need a valid vector file, but no other input is required. The output can be found in
case.outputir and case.irrep. For nonmagnetic SO calculations you must set IPR=1 in
case.inso.

The output of this program is needed when you want to draw bandstructures with connected lines
(instead of “dots”).

It will not work in cases of non-symmorphic spacegroups AND k-points at the surface of the BZ.
See also $WIENROOT/SRC irrep/README.

8.4.1 Execution

The program irrep is executed by invoking the command:

118 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

irrep [up/dn]irrep.def or x irrep [-so -up/dn]

8.4.2 Dimensioning parameters

The following parameters are listend in file param.inc:

LOMAX max. no. of local orbital. should be consistent with lapw1 and lapwso
NLOAT number of different types of LOs
MSTP max. step to describe k as a fraction
MAXDG max. no. of degenerate eigenfunctions
MAXIRDG max. no. of degenerate irr. representations
FLMAX size of flag (FL) array (should be 4)
MAXIR max. no. of irreducible representations
NSYM max. no. of symmetry operations
TOLDG min. energy deviation of degenerate states, in units of Rydberg

8.5 LAPW3 (X-ray structure factors)

This program calculates X-ray structure factors from the charge density by Fourier transformation.

You have to specify interactively valence or total charge density (because of the different normal-
ization of case.clmsum and case.clmval) and a maximum sinθ/λ value.

8.5.1 Execution

The program lapw3 is executed by invoking the command:

lapw3 lapw3.def or lapw3c lapw3.def or x lapw3 [-c]

8.5.2 Dimensioning parameters

The following parameters are listend in file param.inc r or param.inc c :

LMAX2 highest L in in LM expansion of charge and potential
NCOM number of LM terms in density
NRAD number of radial mesh points

8.6 LAPW5 (electron density plots)

This program generates the charge density (or the potential) in a specified plane of the crystal on a
two dimensional grid which can be used for plotting with an external contour line program of your
choice. Depending on the input files one can generate valence (case.clmval) or difference den-
sities (i.e. crystalline minus superposed atomic densities) using the additional file (case.sigma).
In spinpolarized cases one can produce up-, dn- and total densities but also spin densities (differ-
ence up-dn). It is also possible to plot total densities (case.clmsum), Coulomb (case.vcoul),
exchange-correlation (case.r2v) or total (case.vtotal) potentials, but in those cases the file
lapw5.def has to be edited and you must replace case.clmval by the respective filename. The
file case.rho contains in the first line

8.6. LAPW5 119

npx, npy, xlength, ylength;

and then the density (potential) written with:

write(21,11) ((charge(i,j),j=1,npy),i=1,npx)
11 format(5e16.8)

It is strongly recommended that you use “Run Programs o Tasks o Electron density plots” from
w2web, see the TiC example in Fig.3.6 .

8.6.1 Execution

The program lapw5 is executed by invoking the command:

lapw5 lapw5.def or lapw5c lapw5.def or x lapw5 [-c -up|dn]

8.6.2 Dimensioning parameters

The following parameters are listend in file param.inc:

LMAX2 highest L in in LM expansion of charge and potential
NCOM number of LM terms in density
NRAD number of radial mesh points
NPT00 number of radial mesh points beyond RMT
NSYM order of point group

8.6.3 Input

An example is given below. You may want to use XCRYSDEN by T.Kokalj to generate this file (see
sect. 9.23.2).

---------------- top of file: case.in5 --------------------
0 0 0 1 # origin of plot: x,y,z,denominator
1 1 0 1 # x-end of plot
0 0 1 2 # y-end of plot
3 3 3 # x,y,z nshells (of unit cells)
100 100 # nx,ny
RHO # RHO/DIFF/OVER; ADD/SUB or blank
ANG VAL NODEBUG # ANG/ATU, VAL/TOT, DEBUG/NODEBUG
NONORTHO # optional line: ORTHO|NONORTHO
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format

ix,iy,iz,idv The plane and section of the plot is specified by three points in the unit
cell, an origin of the plot, an x-end and an y-end. The first line specifies
the coordinates of the origin, where x=ix/idv, . . . in units of the lattice
vectors (except fc, bc and c lattices, where the lattice vectors of the con-
ventional cell are used)

line 2: free format

120 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

ix,iy,iz,idv coordinates of x-end

line 3: free format

ix,iy,iz,idv coordinates of y-end (The two directions x and y must be orthogonal to
each other unless NONORTHO is selected). Since it is quite difficult to
specify those 3 points for a rhombohedral lattice, an auxiliary program
rhomb in5 is provided, which creates those points when you specify
3 atomic positions which will define your plane. You can find this pro-
gram using “Run Programs o Other Goodies” from w2web.

line 4: free format

nxsh,
nysh,
nzsh

specifies the number of nearest neighbor cells (in x,y,z direction) where
atomic positions are generated (needs to be increased for very large plot
sections, otherwise some “atoms” are not found in the plot)

line 5: free format

npx,
npy

specifies number of grid points in plot. npy=1 produces a file
case.rho onedim containing the distance r (from the origin) and the
respective density, which can be used in a standard x-y plotting pro-
gram.

line 6: format (2a4)
switch, addsub

switch RHO charge (or potential) plots, no atomic density is used (regular case)
DIFF difference density plot (crystalline - superposed atomic densities),

needs file case.sigma (which is generated with LSTART, see section
6.4)

OVER superposition of atomic densities, needs file case.sigma
addsub NO (or blank field): use only the file from unit 9

ADD adds densities from units 9 and 11 (if present), e.g. to add spin-up and
down densities.

SUB subtracts density of unit 11 (if present) from that of unit 9 (e.g. for the
spin-density, which is the difference between spin-up and down densi-
ties).

line 7: format (3a4)
iunits, cnorm, debug

iunits ATU density (potential) in atomic units e/a.u.3 (or Ry)
ANG density in e/Å3 (do not use this option for potentials)

cnorm determines normalization factor
VAL used for files case.clmval, r2v, vcoul, vtotal
TOT used for files case.clmsum

debug DEBU debugging information is printed (large output)

line 8: free format

noorth1 ORTHO (default) enforces directions to be orthogonal
NONORTdirections can be arbitrary; use this option only if your plotting program

supports non orthogonal plots (e.g. for XCRYSDENS).

8.7. AIM 121

In order to plot total densities or potentials (see cnorm as above) you have to create lapw5.def us-
ing x lapw5 -d, then edit lapw5.def and insert proper filenames (case.clmval, case.r2v,
case.vcoul, case.vtotal) for units 9 and 11, and finally run lapw5 lapw5.def.

8.7 AIM (atoms in molecules)

This program was contributed by:

	
Javier D. Fuhr and Jorge O. Sofo
Instituto Balseiro and Centro Atomico Bariloche
S. C. de Bariloche - Rio Negro, Argentina
email: fuhr@cab.cnea.gov.ar and sofo@cab.cnea.gov.ar

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

This program analyses the topology of the electron density according to Bader’s “Atoms in
molecules” theory. For more information see Bader 2001 and Sofo and Fuhr 2001.

The original code has been significantly speeded-up by L.Marks (L-marks@northwestern.edu).
There are some new optional keywords in the input (usually not needed, more for testing) and
also more debugging output. All changes are described in $WIENROOT/SRC aim/Notes.txt.

Basically it performs two different tasks, namely searching for “critical points” (CP) and/or deter-
mination of the atomic basins with an integration of the respective charge density.

It is important that you provide a “good” charge density, i.e. one which is well converged with
respect to LMMAX in the CLM-expansion (you may have to increase the default LM-list to LM=8
or 10) and with as little “core-leakage” as possible (see lstart, sect. 6.4), otherwise discontinuities
appear at the sphere boundary.

8.7.1 Execution

The program aim is executed by invoking the command:

aim aim.def or aimc aim.def or x aim [-c]

8.7.2 Dimensioning parameters

The following parameters are listed in file param.inc:

LMAX2 highest L in in LM expansion of charge and potential
NRAD number of radial mesh points
NSYM order of point group

122 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.7.3 Input

The input file contains “SWITCHES”, followed by the necessary parameters until an END-switch
has been reached.

Examples for “critical-point” searches and “charge-integration” are given below:

---------------- top of file: case.inaim --------------------
CRIT
1 # index of the atom (counting multiplicity)
ALL # TWO/THRE/ALL /FOUR
3 3 3 # x,y,z nshells (of unit cells)
END
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: A4

CRIT Keyword to calculate critical points

line 2: free format

iatom index of the atom from where the search should be started. This count
includes the multiplicity, i.e. if the first atom has MULT=2, the “sec-
ond atom” has iatom=3 (Do not use simply the atom-numbers from
case.struct)

line 3: A4

KEY TWO, THRE, ALL, or FOUR
defines the starting point for the CP search to be in the middle of 2, 3 or
4 atoms. ALL combines option TWO and THRE together.

line 4: free format
nxsh, nysh, nzsh

specifies the number of nearest neighbor cells (in x,y,z direction) where
atomic positions are generated.

lines 1-4 can be repeated with different atoms or KEYs
line 5: A4

END specifies end of job.

In case.outputaim the critical points are marked with a label :PC

:PC a1 a2 a3 l1 l2 l3 c lap rho iat1 dist1 iat2 dist2

where a1,a2,a3 are the coordinates of the CP in lattice vectors; l1 l2 l3 are the eigenvalues of the
Hessian at the CP; c is the character of the CP (-3, -1, 1 or 3); lap is the Laplacian of the density at
the CP (lap=l1+l2+l3) and rho is the density at the CP (all in atomic units). In case of a bond critical
point (c=-1) also the nearest distances (dist1, dist2) to the two nearest atoms (iat1, iat2) are given.

8.7. AIM 123

For convenience run extractaim lapw case.outputaim (see 5.2.10) and get in the file
critical points ang a comprehensive list of the CP (sorted and unique) with all values given
in Å, e/Å3, ... (instead of bohr).

---------------- top of file: case.inaim --------------------
SURF
3 atom in center of surface (including MULT)
40 0.0 3.1415926536 theta, 40 points, from zero to pi
40 -0.7853981634 2.3561944902 phi
0.07 0.8 2 step along gradient line, rmin, check
1.65 0.1 initial R for search, step (a.u)
3 3 3 nshell
IRHO "INTEGRATE" rho
WEIT WEIT (surface weights from case.surf), NOWEIT
30 30 radial points outside min(RMIN,RMT)
END
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: A4

SURF Keyword to calculate the Bader surface.

line 2: free format

iatom index of the atom from where the search should be started. This count
includes the multiplicity, i.e. if the first atom has MULT=2, the “sec-
ond atom” has iatom=3 (Do not use simply the atom-numbers from
case.struct)

line 3: free format
ntheta, thmin, thmax

ntheta number of theta directions for the surface determination. This (and
nphi) determines the accuracy (and computing time).

thmin starting angle for theta
thmax ending angle for theta. If you have higher symmetry, you can change

the angles thmin=0, thmax=π and use only the “irreducible” part, i.e.
when you have a mirror plane normal to z (see case.outputs), restrict
thmax to π/2.

line 4: free format
nphi, phimin, phimax

nphi number of phi directions for the surface determination
phimin starting angle
phimax ending angle. (see comments for theta to reduce phi from the full 0−2π

integration).

line 5: free format
h0, frmin, nstep

h0 step in real space to follow the gradient (˜ 0.1)
frmin defines the radius, for which the routine assumes that the search path

has entered an atom, given as “rmin = frmin * rmt” (0.8-1.0)
nstep number of steps between testing the position being inside or outside of

the surface (2-8).

124 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

line 6: free format
r0, dr0

r0 initial radius for the search of the surface radius (1.5)
dr0 step for the search of the surface radius(0.1)

line 7: free format
nxsh, nysh, nzsh

specifies the number of nearest neighbor cells (in x,y,z direction) where
atomic positions are generated.

line 8: A4

IRHO integrate function on “unit 9” (usually case.clmsum) inside previ-
ously defined surface (stored in case.surf).

line 9: A4

WEIT specifies the use of weights in case.surf.

line 9: free format

npt specifies number of points for radial integration outside the MT (30)

line 8: A4

END specifies end of job.

8.8 LAPW7 (wave functions on grids / plotting)

This program was contributed by:

	

Uwe Birkenheuer
Max-Planck-Institut für Physik komplexer Systeme
Nöthnitzer Str. 38, D-01187 Dresden, Germany
email: birken@mpipks-dresden.mpg.de
and
Birgit Adolph,
University of Toronto, T.O., Canada

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

The program lapw7 generates wave function data on spatial grids for a given set of k-points and
electronic bands. lapw7 uses the wave function information stored in case.vector (or in re-
duced (filtered) form in case.vectorf which can be obtained from case.vector by running
the program filtvec). Depending on the options set in the input file case.in7(c) one can
generate the real or imaginary part of the wave functions, it’s modulus (absolute value) or argu-
ment, or the complex wave function itself. For scalar-relativistic calculations both the large and

8.8. LAPW7 125

the small component of the wave functions can be generated (only one at a time). The wave func-
tions are generated on a grid which is to be specified in the input file(s). The grid can either be
any arbitrary list of points (to be specified free-formatted in a separate file case.grid) or any
n-dimensional grid (n = 0...3). The operating mode and grid parameters are specified in the input
file case.in7(c). As output lapw7 writes the specified wave function data for further process-
ing – e.g. for plotting the wave functions with some graphical tools such as gnuplot – in raw
format to case.psink. For quick inspection, a subset of this data is echoed to the standard out-
put file case.outputf (the amount of data can be controlled in the input). In case, lapw7 is
called many times for one and the same wave function, program overhead can be reduced, by first
storing the atomic augmentation coefficients Alm, Blm (and Clm) to a binary file case.abc. For
the spin-polarized case two different calculations have to be performed using either the spin-up or
the spin-down wave function data as input.

It should be easy to run lapw7 in parallel mode, and/or to apply it to wave function data obtained
by a spin-orbit interaction calculation. None of these options have been implemented so far. Also,
lapw7 has not yet been adapted for w2web.

Please note: lapw7 requires an LAPW basis set and does not work with APW+lo yet.

8.8.1 Execution

The program lapw7 is executed by invoking the command:

lapw7 lapw7.def or lapw7c lapw7.def or x lapw7 [-c] [-up|dn] [-sel]

With the -sel option lapw7 expects data from the reduced (filtered) wave function file
case.vectorf, otherwise the standard wave function file case.vector is used. The reduced
vector file case.vectorf is assumed to resist in the current working directory, while the stan-
dard vector file case.vector (which may become quite large) is looked for in the WIEN scratch
directory. For details see lapw7.def.

8.8.2 Dimensioning parameters

The following parameters are listed in file param.inc (r/c):

NRAD number of radial mesh points
NSYM order of point group
LMAX7 maximum L value used for plane wave augmentation
LOMAX maximum L value used for local orbitals

The meaning of LMAX7 is the same as that of LMAX2 in lapw2 and that of LMAX-1 in lapw1. Rather
than being an upper bound it directly defines the number of augmentation functions to be used.
It may be set different to LMAX2 in lapw2 or LMAX-1 in lapw1, but it must not exceed the latter
one. Note that, the degree of continuity of the wave functions across the boundary of the muffin
tin sphere is quite sensitive to the choice of the parameter LMAX7. A value of 8 for LMAX7 turned
out to be a good compromise.

8.8.3 Input

A sample input is given below. It shows how to plot a set of wave functions on a 2-dim. grid.

126 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

- - - - - - - - - - - - - - - - - top of file - - - - - - - - - - - - - - - - -
2D ORTHO # mode O(RTHOGONAL)|N(ON-ORTHOGONAL)
0 0 0 2 # x, y, z, divisor of origin
3 3 0 2 # x, y, z, divisor of x-end
0 0 3 2 # x, y, z, divisor of y-end
141 101 35 25 # grid points and echo increments
NO # DEP(HASING)|NO (POST-PROCESSING)
RE ANG LARGE # switch ANG|ATU|AU LARGE|SMALL
1 0 # k-point, band index
- - - - - - - - - - - - - - - - - end of file - - - - - - - - - - - - - - - - -

Interpretive comments on this file are as follows.

8.8. LAPW7 127

line 1: format(A3,A1)
mode flag
mode the type of grid to be used

ANY An arbitrary list of grid points is used.
0D, 1D, 2D, or 3D An n-dim. grid of points is used. n = 0, 1, 2, or 3.

flag orthogonality checking flag (for n-dim. grids only)
N The axes of the n-dim. grid are allowed to be non-

orthogonal.
O or 〈blank〉 The axes of the n-dim. grid have to be mutual or-

thogonal.

line 2: free format — (for n-dim. grids only)
ix iy iz idiv Coordinates of origin of the grid, where x=ix/idv

etc. in units of the conventional lattice vectors.

line 3: free format — (for n-dim. grids with n > 0 only)
ix iy iz idiv Coordinates of the end points of each grid axis.

This input line has to be repeated n-times.

line 4: free format — (not for 0-dim. grids)
np ... npo ... In case of an n-dim. grid, first the number of grid

points along each axis, and then the increments
for the output echo for each axis. Zero increments
means that only the first and last point on each
axis are taken. In case of an arbitrary list of grid
points, the total number of grid points and the in-
crement for the output echo. Again a zero incre-
ments means that only the first and last grid point
are taken. Hence, for n-dim. grids, altogether, 2∗n
integers must be provided; for arbitrary lists of
grid points two intergers are expected.

line 5: format(A3)
tool post-processing of the wave functions

DEP Each wave function is multiplied by a complex
phase factor to align it (as most as possible) along
the real axis (the so-called DEP(hasing) option).

NO No post-processing is applied to the wave func-
tions.

line 6: format(A3,1X,A3,1X,A5)
switch iunit whpsi
switch the type of wave function data to generate

RE The real part of the wave functions is evaluated.
IM The imaginary part of the wave functions is eval-

uated.
ABS The absolute value of the wave functions is eval-

uated.
ARG The argument the wave functions in the complex

plane is evaluated.
PSI The complex wave functions are evaluated.

iunit the physical units for wave function output
ANG Å units are used for the wave functions.
AU or ATU Atomic units are used for the wave functions.

whpsi the relativistic component to be evaluated
LARGE The large relativistic component of wave function

is evaluated.
SMALL The small relativistic component of wave function

is evaluated.

128 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

line 7: free format
iskpt iseig
iskpt The k-points for which wave functions are to

be evaluated. Even if the wave function in-
formation is read from case.vectorf, iskpt
refers to the index of the k-point in the original
case.vector file! If iskpt is set to zero, all k-
points in case.vector(f) are considered.

iseig The band index for which wave functions are to
be evaluated. Even if the wave function informa-
tion is read from case.vectorf, iseig refers to
the band index in the original case.vector file!
If iseig is set to zero, all bands (for the selected k-
point(s)) which can found in case.vector(f)
are considered.

line 8: format(A4) — this line is optional
handle augmentation coefficient control flag

SAVE or STOR(E) Augmentation coefficients are stored in
case.abc). No wave function data is gen-
erated in this case. This option is only allowed if
a single wave function is selected in the previous
input line.

READ or REPL(OT) Previously stored augmentation coefficients are
read in (from case.abc). This option is only
allowed if the same single wave function as the
one who’s augmentation coefficients are stored in
case.abc is selected in the previous input line.

anything else Augmentation coefficients are generated from the
wave function information in case.vector(f).

8.9. FILTVEC 129

8.9 FILTVEC (wave function filter / reduction of case.vector)

This program was contributed by:

	

Uwe Birkenheuer
Max-Planck-Institut für Physik komplexer Systeme
Nöthnitzer Str. 38, D-01187 Dresden, Germany
email: birken@mpipks-dresden.mpg.de
and
Birgit Adolph
University of Toronto, T.O., Canada

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

The program filtvec reduces the information stored in case.vector files by filtering out a
user-specified selection of wave functions. Either a fixed set of band indices can be selected which
is used for all selected k-points (global selection mode), or the band indices can be selected individ-
ually for each selected k-point (individual selection mode). The complete wave function and band
structure information for the selected k-points and bands is transferred to case.vectorf. The
information on all other wave functions in the original file is discarded. The structure of the gener-
ated case.vectorf file is identical to that of the original case.vector file. Hence, it should be
possible to use case.vectorf as substitutes for case.vector anywhere in the WIEN program
package. (This has only been tested for lapw7.and filtvec.) To filter vector files from spin-
polarized calculations, filtvec has to be run separately for both the spin-up and the spin-down
files.

filtvec has not yet been adapted for w2web.

8.9.1 Execution

The program filtvec is executed by invoking the command:

filtvec filtvec.def or filtvecc filtvec.def or x filtvec [-c]
[-up|dn]

In accordance with the file handling for lapw1 and lapw7 the input vector file case.vector
is assumed to be located in the WIEN scratch directory, while the reduced output vector file
case.vectorf is written to the current working directory. See filtvec.def for details.

8.9.2 Dimensioning parameters

The following parameters are listed in file param.inc (r/c):

NKPT number of k-points
LMAX maximum number of L values used (as in lapw1)
LOMAX maximum L value used for local orbitals (as in lapw1)

The parameter LMAX and LOMAX must be set precisely as in lapw1; all other parameters must not
be chosen smaller than the corresponding parameters in lapw1.

130 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.9.3 Input

Two examples are given below. The first uses global selection mode; the second individual selection
mode.

I. Global Selection Mode

- - - - - - - - - - - - - - - - - top of file - - - - - - - - - - - - - - - - -
3 1 17 33 # number of k-points, k-points
2 11 -18 # number of bands, band indices
- - - - - - - - - - - - - - - - - end of file - - - - - - - - - - - - - - - - -

Interpretive comments on this file are as follows.

line 1: free format
kmax ik(1) ... ik(kmax) Number of k-point list items, followed by the list items

themselves. Positive list items mean selection of the k-point
with the specified index; negative list items mean selection
of a range of k-points with indices running from the previ-
ous list item to the absolute value of the current one. E.g. the
sequence 2 -5 stands for 2, 3, 4, and 5.

line 2: free format
nmax ie(1) ... ie(nmax) Number of band index items, followed by the list items

themselves. Again, positive list items mean selection of a
single band index; negative list items mean selection of a
range of band indices.

II. Individual Selection Mode

- - - - - - - - - - - - - - - - - top of file - - - - - - - - - - - - - - - - -
2 : # number of k-points
17 4 11 13 15 17 # k-point, number of bands, band indices
33 3 11 -14 18 # k-point, number of bands, band indices
- - - - - - - - - - - - - - - - - end of file - - - - - - - - - - - - - - - - -

8.10. XSPEC 131

Interpretive comments on this file are as follows.

line 1: free format
kmax the number of individual k-points to be selected. This

number must be followed by any text, e.g. ’SELEC-
TIONS’ or simply ’:’, to indicate individual selection
mode.

line 2: free format
ik nmax ie(1) ... ie(nmax) First the index of the selected k-point, then the number

of band index items, followed by the list items for the
current k-point themselves. Positive list items mean se-
lection of the band with the specified index; negative list
items mean selection of a range of band indices running
from the previous list item to the absolute value of the
current one. E.g. the sequence 3 -7 stands for 3, 4, 5, and
7.
This input line has to be repeated kmax-times.

8.10 XSPEC (calculation of X-ray Spectra)

This program calculates near edge structure of x-ray absorption or emission spectra according to
the formalism described by Neckel et al.75, Schwarz et al. 79 and 80. For a brief introduction see be-
low. It uses the partial charges in case.qtl. This file must be generated separately using lapw2.
Partial densities of states in case.dos1ev are generated using the tetra program. Spectra are
calculated for the dipole allowed transitions, generating matrix elements, which are multiplied
with a radial transition probability and the partial densities of states. Unbroadened spectra are
found in the file case.txspec, broadened spectra in the file case.xspec. Other generated files
are: case.m1 (matrix element for the selection rule L+1) and case.m2 (matrix element for the
selection rule L-1) and case.corewfx (radial function of the core state). The calculation is done
with several individual programs (initxspec, tetra, txspec, and lorentz). which are linked
together with the c-shell script xspec.

It is strongly recommended that you use “Run Programs o Tasks o X-ray spectra” from w2web.

8.10.1 Execution

Execution of the shell script xspec

The program xspec is executed by invoking the command:

xspec xspec.def or x xspec [-up|-dn]

Sequential execution of the programs

Besides calculating the X-ray spectra in one run using the xspec script, calculations can be done
“by hand“, i.e. step by step, for the sake of flexibility.

132 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

initxspec This program generates the appropriate input file case.int, according to the dipole
selection rule, for the subsequent execution of the tetra program.
The program initxspec is executed by invoking the command:

initxspec xspec.def or x initxspec [-up|-dn]

tetra The appropriate densities of states for (L+1) and (L-1) states respectively are generated by
execution of the tetra program.
The program tetra is executed by invoking the command:

tetra tetra.def or x tetra [-up|-dn]

txspec This program calculates energy dependent dipole matrix elements. Theoretical X-ray spec-
tra are generated using the partial densities of states (in the case.dos1ev file) and multi-
plying them with the corresponding dipole matrix elements.
The program txspec is executed by invoking the command:

txspec xspec.def or x txspec [-up|-dn]

lorentz The calculated spectra must be convoluted to account for lifetime broadening and for a
finite resolution of the spectrometer before they can be compared with experimental spectra.
In the lorentz program a Lorentzian is used to achieve this broadening.
The program lorentz is executed by invoking the command:

lorentz xspec.def or x lorentz [-up|-dn]

8.10.2 Dimensioning parameters

The following dimensioning parameters are collected in the files param.inc of SRC txspec and
SRC lorentz:

IEMAX0 maximum number of energy steps in the spectrum (SRC lorentz)
NRAD number of radial mesh points
LMAX highest l+1 in basis function inside sphere (consistent with input in case.in1)

8.10.3 Input

Two examples are given below; one for emission spectra and one for absorption spectra:

Input for Emission Spectra:

---------------- top of file: case.inxs --------------------
NbC: C K (Title)
2 (number of inequivalent atom)
1 (n core)
0 (l core)
0,0.5,0.5 (split, int1, int2)
-20,0.1,3 (EMIN,DE,EMAX in eV)
EMIS (type of spectrum, EMIS or ABS)
0.35 (S)
0.25 (gamma0)
0.3 (W)
AUTO (generate band ranges AUTOmatically or MANually
-7.21 (E0 in eV)
-10.04 (E1 in eV)
-13.37 (E2 in eV)
------------------- bottom of file ------------------------

Input for Absorption Spectra:

---------------- top of file: case.inxs --------------------
NbC: C K (Title)

8.10. XSPEC 133

2 (number of inequivalent atom)
1 (n core)
0 (l core)
0,0.5,0.5 (split, int1, int2)
-2,0.1,30 (EMIN,DE,EMAX in eV)
ABS (type of spectrum)
0.5 (S)
0.25 (gamma0)
------------------- bottom of file ------------------------

Interpretive comments on these files are as follows.

line 1: free format

TITLE Title

line 2: free format

NATO Number of the selected atom (in case.struct file)

line 3: free format

NC principle quantum number of the core state

line 4: free format

LC azimuthal quantum number of the core state

The table below lists the most commonly used spectra:

Spectrum n l
K 1 0
LII,III 2 1
MV 3 2

Table 8.50: Quantum numbers of the core state involved in the x-ray spectra

line 5 free format

SPLIT,
INT1,
INT2

split in eV between e.g. LII and LIII spectrum (compare with the re-
spective core eigenvalues), INT1 and INT2 specifies the relative inten-
sity between these spectra. Values of 0, 0.5, 0.5 give unshifted spectra.

line 6: free format

EMIN,
DE,
EMAX

minimum energy, energy increment for spectrum, maximum energy; all
energies are in eV and with respect to the Fermi level

EMIN and EMAX are only used as limits if the energy range created
by the lapw2 calculation (using the QTL switch) is greater than the
selected range.

line 7: Format A4

TYPE EMIS X-ray emission spectrum
ABS X-ray absorption spectrum (default)

134 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

line 8: free format

S broadening parameter for the spectrometer broadening. For absorption
spectra S includes both experimental and core broadening. Set S to zero
for no broadening.

line 9: free format

GAMMA0 broadening parameter for the life-time broadening of the core states.
Set GAMMA0 to zero to avoid lifetime broadening of the core states.

line 10: free format

W broadening parameter for the life-time broadening of valence states. Set
W to zero to avoid lifetime broadening of the valence states.

line 11: format A4

BANDRA
AUTO band ranges are determined AUTOmatically (default)
MAN band ranges have to be entered MANually

line 12: free format

E0 Emission spectra: onset energy for broadening, E0, generated automat-
ically if AUTO was set in line 10
Absorption spectra: not used

line 13: free format

E1 Emission spectra: onset energy for broadening, E1, generated automat-
ically if AUTO was set in line 10
Absorption spectra: not used

line 14: free format

E2 Emission spectra: onset energy for broadening, E2, generated automat-
ically if AUTO was set in line 10
Absorption spectra: not used

8.11 TELNES3 (calculation of energy loss near edge structure)

This program was contributed by:

	
Kevin Jorissen and Cécile Hébert
Ecole Polytechnique Federale de Lausanne

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

8.11. TELNES3 135

The TELNES3 program calculates the double differential scattering cross section (DDSCS) on a
grid of energy loss values and impulse transfer vectors. This double differential cross section is
integrated to yield a differential cross section, which is written to file. The differential cross section
is either a function of energy (ELNES integrated over impulse transfer q); or a function of impulse
transfer (ELNES integrated over energy loss E), which shows the angular behavior of scattering.

The DDSCS is calculated as described in a forthcoming publication by K. Jorissen, C. Hebert, and
J. Luitz. (The Ph.D. thesis of K. Jorissen (http://www.wien2k.at/reg user/textbooks/) also de-
scribes the formalism onto which TELNES3 is built in great detail.) This formalism allows calcu-
lation of relativistic EELS including transitions of arbitrary order (i.e., non-dipole transitions). It
takes into account the relative orientation between sample and beam. If this is not necessary (be-
cause the crystal is isotropic, or the sample is polycrystalline), the formula may be integrated over
4π, simplifying the calculation. Both scenarios are implemented in TELNES3.

A note to our faithful fans from the early days: it used to be necessary to play such tricks as
recompiling lapw2 with lxdos=3 ; to create k-meshes without symmetry ; and to edit case.struct
and set ISPLIT to 99. This is no longer necessary. Just sit back, relax, and press the buttons in
w2web. The integration with the package qtl will do the job.

8.11.1 Execution

Execution

The program telnes3 is executed by invoking the command:

telnes3 telnes3.def or x telnes3 [-up|-dn]

8.11.2 Input

TELNES3 requires one input file - case.innes. We recommend using InnesGenTM of w2web
to create this input file in a clear and intuitive way. If you wish to manually edit the file, please
refer to the following description. Please note that input files created for TELNES2 may or may
not work with TELNES3, depending on which optional keywords were used. There isn’t a shred
of compatibility with the old TELNES program.

The file case.innes consists of two parts: a first block with required input, and a second block
with optional input. In fact, the second part may be omitted altogether. The simplest input file
looks like this:

Graphite C K edge of first atom.
1 (atom)
1, 0 (n, l core)
285 (E-Loss of 1st edge in eV)
300 (energy of the incident electrons in keV)
0.0 20.0 0.1 (the energy mesh)
5.0 1.87 (collection semiangle, convergence semiangle, both in mrad)
10 1 (NR, NT, defining the integration mesh in the detector plane)
0.8 (spectrometer broadening in eV)
END

This first part of the file is not formatted and contains the following information:

136 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

line value explanation
1 ‘Graphite ...’ Title (of no consequence for the calculation)
2 1 Atom number as given in case.struct (the index which numbers inequiva-

lent atoms)
3 1 0 main and orbital quantum number n and l of the core state; eg. 1 0 stands

for 1 s
4 285 energy of the edge onset in eV (here for the C K edge)
5 300 beam energy in keV
6 0.0 20.0 0.1 energy mesh given as EminEmaxEstep; all values in eV. 0.0 is the edge

threshold.
7 5.0 1.87 detector collection semiangle and microscope convergence semiangle in

mrad
8 10 1 parameters NR and NT which determine the mesh used for sampling the

distribution of Q-vectors allowed by collection and convergence angles
9 0.8 spectrometer broadening FWHM in eV
10 END keyword telling the program that there is no more input to read. Optional

keywords and values must be inserted before this line!

There are many other parameters that control the calculation, most of which are set to reasonable
default values. To use these advanced parameters, add corresponding keywords before the END
keyword. We recommend using InnesGenTM of w2web to create this input file.

Currently, the keywords listed below may be used. Although only the first four characters of each
keyword are read, we recommend using the full keyword for clarity.

VERBOSITY
n eg. : 1

Specifies how much output you’ll get. n must be 0 (only basic output; default), 1 (medium output)
or 2 (full output, including more technical information).

ATOMS
n1 n2 eg. : 1 3 (default : 1 0 == 1 mult(natom))

The atom number on line 2 (see above) corresponds to a class of equivalent atoms in case.struct.
Equivalent positions n1 to n2 will contribute to the spectrum (default : sum over all atoms in the
equivalency class). Since all equivalent atoms have identical electronic structure up to a symmetry
operation, this will simply yield a prefactor (n2-n1+1) for the orientation averaged spectrum, but as
each equivalent atom has a different orientation with respect to the beam, this setting will influence
the shape of an orientation sensitive spectrum.

DETECTOR POSITION
theta_x theta_y eg. : 0.5 0.5 (default : 0 0)

By default, the detector is aligned with the incoming beam - i.e., source, sample, and detector are
connected by a straight line. This card shifts the detector in a plane perpendicular to the incoming
beam. The shift is expressed as an angle in mrad. If one draws a line between source and sample,
and another line from the sample to the center of the detector aperture, these 2 lines will form an

angle of
√
theta2

x + theta2
y mrad.

MODUS
m eg. : angles (default is energy)

8.11. TELNES3 137

The output is a spectrum as a function of energy if m=energy. The output is a spectrum as a
function of impulse transfer/scattering angle if m=angle.

SPLIT
splitting energy eg. : 2.7

If the initial state has an orbital quantum number larger than 0, it will generate two superposed
edges: one corresponding to j = l−1/2, and one corresponding to j = l+1/2 (eg., for the 2p initial
state we have a L3 and a L2 edge). The splitting energy sets the energy separation of the two edges
and should be given in eV (here, L3 is at the energy specified in the beginning of case.innes, and L2
is 2.7 eV higher). By default (keyword omitted), the splitting energy is calculated by the program.
It is generally quite accurate.

BRANCHING RATIO
branching ratio eg. : 1.4

The branching ratio is a scaling factor (eg., here the ratio of intensities L3/L2 would be set to 1.4).
By default (keyword omitted), the branching ratio is set to its statistical value of (2l + 2)/2l.

NONRELATIVISTIC

This key tells the program not to use the relativistic corrections to the scattering cross section. This
option generates spectra identical to output of the old TELNES program. This produces incorrect
results in many cases. By default, relativistic calculations are done.

INITIALIZATION
make_dos write_dos eg. N N (default : Y Y)
make_rot.mat. write_rot.mat eg. Y N (default : Y Y)

TELNES3 needs many ingredients for its calculations, and this key defines how it gets two of them:
the density of states, and the rotation matrices (used for transforming q-vectors from one atom to
an equivalent atom). The first entry says whether or not the ingredient has to be calculated (Y :
calculate; N : read from file), and the second entry says whether or not the ingredient has to be
written to file (Y : write; N : don’t write). If make dos=Y, a file case.qtl must be present from which
the dos will be calculated. If make dos=N, then either a file case.dos or a file case.xdos con-
taining the (x)dos must exist. If make rot.mat=N, a file case.rotij containg the rotation matrices
must exist. If write rot.mat=Y, a file case.rotij is written. If write dos=Y, a file case.dos or
case.xdos is written. The calculation of the rotation matrices is computationally negligible, but
it is recommended to write the xdos to file and not calculate it over and over again.

QGRID
qmodus eg. L (U by default)
theta_0 eg. 0.05 (no default value))

A collection angle α and convergence angle β allow scattering angles up to α+β and a correspond-
ing set of Q-vectors. This set (a disk of radius α+ β) is sampled using a discrete mesh. Three types
of meshes are implemented :

U a uniform grid, where each Q-vector samples an equally large part of the disk. Sampling is set
up by drawing NR equidistant circles inside the big circle, and choosing (2i − 1)NT points
on circle i, giving NR2 ∗NT points in total.

138 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

L a logarithmic grid with NR circles. The distance between circles increases exponentially. There
are (2i − 1)NT points on circle i, and NR2NT points in total. Circle i is at radius theta 0
e((i−1)dx), where dx depends on NR, α and β.

1 a one dimensional logarithmic mesh; there are NR circles at exponential positions, and only one
point on each circle (soNR points in total). This means we sample a line in the detector*beam
plane. An economic way of getting spectra as a function of scattering angle in cases with
symmetric scattering.

The line specifying theta 0 is to be omitted for the U grid.

ORIENTATION SENSITIVE
g1 g2 g3 (eg. 0.0 40.0 0.0) (no default value)

This key tells the program not to average over sample to beam orientations, but to use the partic-
ular sample to beam orientation defined by the three Euler angles (to be given in degrees). If the
ORIENTATION SENSITIVE key is not set, the program will average over all orientations (default).

SELECTION RULE
type (eg. : q) (default : n)

The formula for the DDSCS contains an exponential factor in q, which we expand using the
Rayleigh expansion. We identify each term in the expansion by the order lambda of the spheri-
cal Bessel function jλ(q) it contains. This key keeps some terms and discards others. This can be
useful to eliminate unwanted transitions ; to study a spectrum in greater detail ; or simply to speed
up the calculation significantly. Possible settings for ‘type’ are :

m : use lambda = 0 only
d : use lambda = 1 only
q : use lambda = 2 only
o : use lambda = 3 only
n : no selection rule, calculate all transitions
0-3 : all transitions up to lambda (eg., 1 means lambda = 0 and 1)

Be aware that the availability of the DOS limits the possible transitions (WIEN2k gives us the
DOS only up to l=3). In the nonrelativistic limit, the SELECTION RULE and LSELECTION RULE
coincide i.e., the λ = 1 terms correspond to dipole transitions etc. This is no longer true in the
relativistic case.

LSELECTION RULE
type (eg. : q) (default : d)

Whereas the previous key selects transitions by the order of the interaction potential, this key se-
lects them by the L-character of the final states. Possible settings for ‘type’ are (the orbital momen-
tum of the initial state being denoted with l):

m : L=l
d : L=l +/- 1
q : L=l +/- 2
o : L=l +/- 3
n : no selection rule, calculate all transitions
0-3 : |L-l| <= type

8.11. TELNES3 139

Be aware that the availability of the DOS limits the possible transitions (WIEN2k gives us the
DOS only up to l=3). In the nonrelativistic limit, the SELECTION RULE and LSELECTION RULE
coincide i.e., the λ = 1 terms correspond to dipole transitions etc. This is no longer true in the
relativistic case.

EXTEND POTENTIALS
Rmax sampling lmax refine (e.g.: 3.0 15 0 1.0) (no defaults)

Calculate matrix elements beyond the muffin tin radius up to r = rmax (in Bohr units). Refine the
radial grid by a factor refine (1 means default sampling density). This is done by evaluating the
potential as given in case.vtotal, which must be present for this type of calculation, and reexpand-
ing it in spherical harmonics, using an angular grid with step of sampling degrees, and expanding
up to l=lmax. Currently, users should keep lmax to 0 and almost certainly refine to 1.0 . However,
advanced users can play around with the software and tweak it to do interesting things if they
wish. TELNES3 only requires the spherical potential l=0.

FERMI ENERGY
Ef (e.g. 0.75)

Manually set the Fermi energy to Ef (needs to be given in Rydberg units). (The default behavior is
to get Ef from the header of case.qtl.)

CORE WAVEFUNCTION
filename (e.g. case.cwf)

Read the wave function of the initial state from file. (Default behavior is to calculate it instead.)

FINAL STATE WAVEFUNCTION
filename (e.g. case.finalwf)

Read the radial wave functions of the final state from file. (Default behavior is to calculate it in-
stead.)

RELATIVISTIC
Itype (e.g. 1)

Determines which flavor of relativity to use : 0 means nonrelativistic (as in TELNES), 1 means fully
relativistic (default), 2 means using the contracted q-vector (only valid for dipole transitions ; as in
TELNES2).

NOHEADERS

Don’t put headers in output files. This can be helpful if your plotting program doesn’t like the
headers. (Gnuplot doesn’t mind them.)

DOSONLY

Don’t calculate the EELS spectrum halt the program after the calculation of the density of states is
finished.

NBTOT
nb (e.g. 200)

140 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

Arrays for the DOS are first allocated at some initial size, and then reallocated at larger size if
necessary. Unfortunately, these reallocation routines appear unstable in some circumstances. This
card allows the user to set an array size manually and avoid the need to reallocate (nb is the number
of bands). However, very large systems may lead the system to run out of memory and cause a
crash.

The following cards are not yet activated (placeholders): TABULATE, SPIN

The following cards are no longer active and must be removed or renamed: XQTL, WRONG.

8.11.3 Practical considerations

A typical ELNES calculation consists of the following steps:

I initialize (init lapw) and converge a SCF calculation (run lapw)
I provide a suitable case.innes file
I if more excited states are needed than given by the SCF calculation, raise the upper energy

limit in case.in1 and run x lapw1
I create the case.qtl file using x qtl -telnes
I calculate the EELS spectrum using x telnes3. It is generally a smart move to make the

program calculate the DOS on the biggest energy grid you wiill ever need, save this to file,
and simply read it from file for all future calculations (INITIALIZATION key). The same
should be done for calculations using EXTEND POTENTIAL (use CORE WAVEFUNCTION
key to save to file). This saves time. (In case of disk space problems, once the case.qtl file
has been created, the case.vector files can be deleted. Similar, the case.qtl file can be
deleted or compressed once the case.dos file exists.)

I add broadening to the spectrum using x broadening. If you wish, editing the case.inb
file allows tweaking of the broadening.

I study the output (case.elnes or case.broadspec are the place to start).
I if you wish to do more calculations, save the current results using save eels -d

calculation1 . Edit case.innes and run x telnes3 again.

This sequence can conveniently be executed using w2web by simply clicking one button after the
other.

8.11.4 Files

TELNES3 uses a lot of files. Many output files are only written if VERBOSITY is set to a high level.
Many input files are required only for certain input settings in case.innes. We list here all files
possibly used by TELNES3 (and listed in telnes3.def). Each filename is followed by I or O
(input/output), a short description of the file content, and a comment on when the file is used.

I case.innes (I). Defines the ELNES calculation. Always read.
I case.struct (I). Defines the crystal. Always read.
I case.vsp (I). Spherical component of the crystal potential. Read unless core and final state

wavefunctions are read from file.
I case.vtotal (I). Total crystal potential (can be generated by lapw0). Read if EXTEND POTEN-

TIAL is used.
I case.rotij (I). Rotation matrices that transform q-vectors between equivalent atoms. Read if

INITIALIZATION tells the program to do so.
I case.dos (IO). l-resolved density of states. Read or written depending on INITIALIZATION

settings.

8.12. BROADENING 141

I case.xdos (IO). lm,l’m’-resolved density of states. Read or written depending on INITIAL-
IZATION settings; only if the calculation is orientation resolved.

I case.qtl (I). contains partial charge components and Fermi energy. Read if DOS needs to be
calculated (INITIALIZATION) or if Fermi energy is not specified using FERMI.

I case.inc (I). Specifies core states. Only read if core states are calculated.
I case.kgen (I). contains k-mesh to sample the Brillouin Zone. Read if DOS needs to be calcu-

lated.
I case.outputelnes (O). Main log file. Always written. Content depends on VERBOSITY.
I case.elnes (O). Total spectrum. Always written.
I case.sdlm (O). Partial (l,m) spectra. Written if verbosity > 0.
I case.ctr (O). (l,m,l’m’) crossterms. Written if verbosity > 0 and calculation is orientation sen-

sitive.
I case.corewavef (O). Contains core wavefunctions. Written if core wavefunctions were calcu-

lated and verbosity > 1.
I case.final (O). Contains APW radial basis functions for final states at selected energies. Writ-

ten if verbosity > 1.
I case.ortho (O). Contains scalar products of initial and final states. Written if verbosity > 1.
I case.matrix (O). Proportionality between partial DOS and spectrum for each l-value. Written

if verbosity > 0 and MODUS is energy.
I case.cdos (O). Selected (l,m,l’m’) cross-DOS terms. Written if calculation is orientation sensi-

tive and verbosity > 1 or INITIALIZATION causes DOS to be written to file.
I case.sp2 (O). Integrated cross sections as a function of collection angle for all l-values. Written

if calculation is orientation sensitive, MODUS is set to angle and verbosity > 1.
I case.angular (O). Differential cross section as a function of scattering angle for all l-values.

Written if calculation is orientation sensitive, MODUS is set to angle and verbosity > 1.
I case.inb (O). Settings for the broadening program. Always written.
I case.eelstable (O). Placeholder. Not currently used.
I telnes3.def (I). List of files used by TELNES3. Always read.
I telnes3.error (O). Error file containing current error message; empty after successful calcula-

tion. Always written.

8.12 BROADENING (apply broadening to calculated spectra)

This program was contributed by:

	
Joachim Luitz
IAST Austria
wien2k@luitz.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

The broadening program can be used in conjunction with the TELNES3 or the xspec program to
broaden theoretical spectra by applying a lorentzian broadening for core and valence life times and
a gaussian broadening for spectrometer broadening.

8.12.1 Execution

Execution

The program broadening is executed by invoking the command:

142 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

broadening broadening.def or x broadening

8.12.2 Input

broadening needs one input file - case.inb. When running TELNES3 this input file is automat-
ically created from settings given in case.innes.

GaN
ELNES
1 1 0
0.0 1.0 0.0
0.116 0.116
1 2.15000000000000
0.6
dummy
0.0
0.0
0.0

line value explanation
1 ‘GaN ...’ Title (of no consequence for the calculation)
2 ELNES — ABS — EMIS Type of input spectrum
3 NC C1 C2 specification of input file: NC number of columns

to read, C1 and C2 column to broaden (only in
“ELNES” mode)

4 SPLIT XINT1 XINT2 split energy, XINT1—2 relative intensities of spectra
in C1 and C2

5 GA GB core hole lifetime of the two edges
6 W WSHIFT W: type of valence broadening (1: linear with E/10,

2: Muller like E2), edge offset
7 S Spectrometer broadening FWHM in eV
8 dummy dummy keyword for compatibility with lorentz
9-11 E0, E1, E2 quadratic energy dependent broadening (only used

for type ELNES and EMIS when selecting valence
broadening type W=2)

8.13 OPTIMIZE (Volume, c/a or 2-4 dimensional lattice parameter
optimization)

This program generates a series of new struct files corresponding to different volumes, c/a ratios,
or otherwise different lattice parameters (depending on your input choice) from an existing struct
file (either case initial.struct or case.struct). (When case initial.struct is not
present, it will be generated from the original case.struct.

Furthermore it produces a shell script optimize.job. You may modify this script and execute it.
Further analysis of the results (at present only equilibrium volume or c/a ratio are supported in
w2web) allows to find the corresponding equillibrium parameters (see Sec.5.3.1).

8.13.1 Execution

The program optimize is executed by invoking the command:

8.14. ELAST 143

optimize optimize.def or x optimize

8.13.2 Input

You have to specify interactively which task should be performed (volume, c/a, b/a optimization,
or full optimization for tetragonal, orthorhombic or monoclinic structure), how many cases you
want to do and how large the change (+/- xx %) should be for each case.

8.14 ELAST (Elastic constants for cubic cases)

This program was contributed by:

	
Thomas Charpin
Lab. Geomateriaux de l’IPGP, Paris, France
(In September 2001 we received the sad notice that Thomas Charpin died in a
car accident).
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This package calculates elastic constants for cubic crystals. It is described in detail by the author
in Charpin 2001. Please note, at http://www.wien2k.at/reg user/unsupported you can
find a package Hex-elastic by Morteza Jamal, which should calculate elastic constants also for
hexagonal symmetry.

8.14.1 Execution

The package is driven by three scripts:

I init elast:
It prepares the whole calculation and should be run in a directory with a valid case.struct
and case.inst file. It creates the necessary subdirectories elast, elast/eos,
elast/tetra, elast/rhomb, elast/result, the templates for tetragonal and rhombo-
hedral distortion and initializes the calculations using init lapw.

I elast setup:
It should be run in the elast directory, generates the distorted struct-files and eos.job,
rhomb.job and tetra.job. These scripts must be adapted to your needs (spin-
polarization, convergence,...) and run. elast setup can be run several times (for different
distortions,...).

I ana elast:
Once all calculations are done, change into elastresult and run this script. The final
results are stored in elastresultoutputs.

I genetempl, setelast, anaelast:
These three small programs are called by the above scripts.

144 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.15 MINI (Geometry minimization)

This program is usually called from the script min lapw and performs movements of the
atomic positions according to the calculated forces (please read Sec. 5.3.2). It generates a new
case.struct file which can be used in the next geometry/time step. Depending on the input op-
tions, mini helps to find the equilibrium positions of the atoms or performs a molecular dynamics
simulation (which might take very long time).

For finding the equilibrium positions different methods are available. We recommend
PORT, a “reverse-communication trust-region Quasi-Newton method” from the Port library
(http://www.bell-labs.com/project/PORT/doc/port3doc.tar.gz, Gay 1983), which was imple-
mented by L.D.Marks (L-marks@northwestern.edu, http://www.numis.northwestern.edu). It
minimizes the total energy and NOT the forces (using the forces as derivative of E vs. atomic
positions). In cases when energy and forces are not ”compatible”, eg. because of numerical noise
due to limited scf convergence, small RKmax or crude k-mesh, PORT may fail. An interesting al-
ternative is a sophisticated modified steepest-descent method (NEW1), which minimizes the forces
(does not use the total energy). Eventually a damped Newton dynamics is also available.

The forces are read from a file case.finM, while the “history” of the geometry optimization or
MD is stored in case.tmpM

One can constrain individual positions in case.inM or define linear constrains for several posi-
tions using case.constraint (thanks to B.Yanchitsky (Kiev, yan@imag.kiev.ua); for details see
comments in the SRC templates/case.constraint file). In case of calculations with linear constrains
one should use NEW1 (in case.inM). When constraining individual positions and using PORT,
one should after modifications in case.inM rerun x pairhess -copy (which copies .minpair
to .minrestart and .min hess).

8.15.1 Execution

The program mini is executed by invoking the command:

mini mini.def or x mini

8.15.2 Dimensioning parameters

The following dimensioning parameters are collected in the file param.inc:

MAXIT maximum number of geometry steps
NRAD number of radial mesh points
NCOM number of LM terms in density
NNN number of neighboring atoms for nn
NSYM order of pointgroup

8.15.3 Input

Two examples are given below; one for a PORT geometry optimization, and one for molecular
dynamics using a NOSE thermostat:

Input for geometry optimization:

---------------- top of file: xxx.inM --------------------

8.15. MINI 145

PORT 2.0 0.25 (PORT/NEWT tolf step0 (a4,2f5.2))
1.0 1.0 1.0 3.0 (1..3:delta, 4:BO/eta(1=friction zero))
1.0 1.0 1.0 6.0 (1..3=0 constraint)
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows.

line 1: format(a4,2f5.2)

MINMOD Modus of the calculation
PORT Geometry optimization with reverse-communication trust-region

Quasi-Newton routine from the Port library. Recommended option.
NEW1 Performs geometry optimization with ”sophisticated” steepest-descent

method with automatic adaptation of stepsize (still experimental, but
when PORT fails, an interesting alternative)

NEWT Performs geometry optimization with damped Newton scheme accord-
ing to
Rτ+1
m = Rτm + ηm(Rτm −Rτ−1

m) + δmF
τ
m

whereRτm and F τm are the coordinate and force at time step τ . When the
force has changed its direction from the last to the present timestep (or
is within the tolerance TOLF), ηm will be set to 1 − ηm. Please see also
the comments in Sect. 5.3.2

BFGS Performs geometry optimization with the variable metric method of
BFGS. This option works only when a quadratic approximation is a
good approximation to the specific potential surface. Obsolete.

TOLF Force tolerance, geometry optimization will stop when all forces are
below TOLF.

STEP0 Initial ”Trust-region radius”. Determines size of first geometry step.

line 2: free format

DELTA(1-
3)

For PORT (and BFGS): Precondition parameters: rescales the gradient
and thus determines the size of the geometry steps
For NEWT/NEW1: x,y,z-delta parameters. Determines speed of mo-
tion. Good values must be found for each individual system. They de-
pend on the atomic mass, the vibrational frequencies and the starting
point (see Sect. 5.3.2).
DELTA(i) = 0 constrains the corresponding i-th coordinate (for PORT:
after setting a DELTA(i)=0, also rerun pairhess to set a proper Hessian).
The delta-x,y,z correspond to the global coordinates (the same as the
positions in case.struct and the forces :FGL from case.scf).
Whenever you change these DELTA(i) you must remove file case.tmpM !

ETA For NEWT: damping (friction) parameter. ETA=1 means no friction,
ETA=0 means no speed from previous time steps
PORT: changes the strength of the bonds when running pairhess and
ZWEIGHT is negative (see the pairhess description), otherwise not
used
NEW1: ETA is not used

>>> line 2: must be repeated for every atom

Input for Molecular dynamics:

---------------- top of file: nbc.inM --------------------

146 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

NOSE (NOSE/MOLD (a4))
58.9332 400. 1273. 5.0 (Masse, delta t, T, nose-frequency)
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows.

line 1: format(a4,f5.2)

MINMOD Modus of the calculation
MOLD Performs next molecular dynamics timestep
NOSE Performs next molecular dynamics timestep using a NOSE thermostat

line 2: free format

MASS Atomic mass of ith atom
TIMESTEP Time step of MD (in atomic units, depends on highest vibrational fre-

quencies)

TEMP Simulation Temperature (K)

NOSF Nose-frequency

>>>line 2: must be repeated for every atom

8.16 OPTIC (calculating optical properties)

This program was contributed by:

	
Claudia Ambrosch-Draxl
Atomistic Modelling and Design of Materials
University Leoben
A-8700 Leoben, AUSTRIA
email: cad@unileoben.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

The theoretical background is described in detail in Ref. Abt 1994 and Ambrosch-Draxl 06 (Please
cite the latter when publishing optics results!). The calculation of optical properties requires a
dense mesh of eigenvalues and the corresponding eigenvectors. For that purpose start kgen and
generate a fine k-mesh (with many k-points). Run lapw1 and then lapw2 with the option FERMI
(Note: You must also put TETRA / with value=101. for metallic systems case.in2) in order to generate
the weight-file. After the vector-file has been generated by lapw1 run optic in order to produce
the momentum matrix elements. Then the program joint carries out the BZ integration and
computes the imaginary part of the complex dielectric tensor. In order to obtain the real part of the
dielectric tensor kram may be executed which uses the Kramers-Kronig relations.

8.16. OPTIC 147

The program optic generates the symmetrized squared momentum matrix elements

Mi =< n′~k|~p.~ei| n~k >2

between all band combinations for each k-point given in the vector-file and stores them in
case.symmat. For the orthogonal lattices the squared diagonal components can be found in the
file case.mat diag. For non-orthogonal systems all 6 components (Mj)∗Mk can be calculated
according to the symmetry of the crystal. In systems without inversion symmetry the complex
version opticc must be executed.

The matrix elements (and the imaginary part of the dielectric tensor) are given per spin in case
of the spin-polarized calculation and as a sum of both spin directions if the calculation is non-
spinpolarized.

Due to spin-orbit coupling imaginary parts of the nondiagonal elements may occur in spinpolar-
ized cases. Thus in general, up to 9 components can be calculated at the same time.

Since version WIEN2k 11.1 an option for the calculation of XMCD (X-ray magnetic circular dichro-
ism) has been added by Lorenzo Pardini (loren.pard@gmail.com). Please cite Pardini et al. 2011
when using XMCD and check the paper for further details. In the case of the XMCD calcu-
lation, the momentum matrix elements in the dipole approximation between the selected core
state and conduction states are stored in case.symmat1up (higher energy core state, eg. L3) and
case.symmat2up (lower energy core state, eg. L1) for each k-point and every band. For K, L1, and
M1 edges, only case.symmat1up is written, since in these cases there is only one edge, whereas
both case.symmat1up and case.symmat2up are written for the remaining cases.
XMCD calculation can be only performed for system with spin-polarized AND spin-orbit set
up.
In order to calculate XMCD and x-ray absorption spectra, eigenvalues must be evaluated over a
mesh in the whole Brillouin zone; for that porpouse, the following procedure should be followed:

I copy case.struct to case.ksym (cp case.struct case.ksym) and remove all the symmetry
operations but the identity;

I generate a k-mesh in the whole Brilouin zone (x kgen -so);
I change TOT to FERMI in case.in2c;
I set IPRINT=1 in case.inc to activate core-wavefunction output;
I for metallic systems, put TETRA with value 101;
I execute runsp lapw -so -s lapw1 -e lcore;
I run optic: x optic -c -so -up;
I run joint: x joint -up.

You must not use p-1/2 “relativistic” LOs in LAPWSO, since this basis is not supported on OPTICS yet.

8.16.1 Execution

The program optic is executed by invoking the command:

optic(c) optic.def or x optic [-c -up|dn -so -p]

Recommended procedure for spin-orbit coupling:

In order to get the correct matrix elements, the files case.vectorso[up|dn] have to be used.
For that purpose the following procedure is recommended:

I run SCF cycle: run[sp] lapw -so

148 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

I generate a fine k-mesh for the optics part: x kgen [-so (if case.ksym has been
created by symmetso)]

I change TOT to FERMI in case.in2c
I execute run[sp] lapw -so -s lapw1 -e lcore with this fine k-mesh
I run optic: x opticc -so [-up]
I run joint: x joint [-up]
I run kram: x kram [-up]

In cases of non-spinpolarized spin-orbit calculations WITHOUT inversion symmetry one must do
some tricks and “mimick” a spinpolarized calculation:

I cp case.vsp case.vspup
I cp case.vsp case.vspdn
I cp case.vectorso case.vectorsoup
I x lapw2 -fermi -so -c
I cp case.weight case.weightup
I cp case.weight case.weightdn
I x optic -so -up
I x joint -up

Due to the “paramagnetic” weight files (which are normalized to 2 electrons per band instead of
one) all your results (joint/sigma...) must be divided by a factor of two.

Note: In spin-polarized cases with spin-orbit only one call to optic, joint and/or kram (either up or
down) is necessary, since the spins are not independent any more and both vector-files are used at the same
time.

8.16.2 Dimensioning parameters

The following dimensioning parameters (listed in param.inc r and param.inc c) are used:

LMAX highest l+1 in basis function inside sphere (reducing LMAX to 4 or 5 may dra-
matically speed-up optics for large cases, but of course the matrix elements will
be truncated and do not have full precision)

LOMAX highest l for local orbital basis (consistent with input in case.in1)
NRAD number of radial mesh points
NSYM order of point group

8.16.3 Input

An example is given below:

---------------- top of file: case.inop --------------------
99999 1 : NKMAX, NKFIRST
-5.0 2.0 18 : EMIN, EMAX, NBvalMAX
XMCD 1 L23 : optional line: for XMCD of 1st atom and L23 spectrum
2 : number of choices (columns in *symmat)
1 : Re xx
3 : Re zz
OFF : ON/OFF writes MME to unit 4
------------------- bottom of file -------------------------

Interpretive comments on this file are as follows:

line 1: free format

8.16. OPTIC 149

nkmax,
nkfirst

maximal number of k-points , number of k-point to start calculation

line 2: free format

emin,
emax

absolute energy range (Ry) for which matrix elements should be calcu-
lated

nbvalmax optional input. Setting this to the number of occupied bands (see
case.output2) will reduce cpu-time of optics (for large cases, MM only
between occupied and empty bands)

line 3: optional line, must be omitted for ‘‘normal’’ optic; free format

XMCD fixed keyword to indicate XMCD calculation. You should also use
NCOL=6

natom atom number (from case.struct file) for which XMCD should be
calculated

edge specify the edge: must be K, L1, L23, M1, M23 or M45

line 3+: free format

ncol number of choices (columns in case.symmat)

line 4+: free format

icol column to select. Choices are:
1 . . . Re < x >< x >
2 . . . Re < y >< y >
3 . . . Re < z >< z >
4 . . . Re < x >< y >
5 . . . Re < x >< z >
6 . . . Re < y >< z >
7 . . . Im < x >< y >
8 . . . Im < x >< z >
9 . . . Im < y >< z >
Options 7-9 apply only in presence of SO, options 4-6 only in non-
orthogonal cases.

line 5: free format
IMME, NATOMS (optional input)

IMME OFF/ON; optionally prints unsquared momentum matrix elements to
unit 4

NATOMS number of atoms for which the opt. matrix elements should be calcu-
lated (The index of the atoms is read in the next line). Please note, that
since we need the squared matrix elements, the sum of ε2 using atom
“1” and atom “2” separately is NOT the same as using atom “1 and
2” together, since we miss crossterms. Nevertheless this can be a use-
ful option to analyze the origin of certain peaks in ε2. I recommend to
repeat this analysis for all possible combinations, and also for a list of
“all” atoms, since this shows the effect of the interstitial (and crossterms
involving the interstitial).

line 6: (optional) free format

150 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

IATOMS List of NMODUS atoms for which the opt. matrix elements should be
calculated (see above).

8.17. JOINT 151

8.17 JOINT (Joint Density of States)

This program was contributed by:

	
Claudia Ambrosch-Draxl
Atomistic Modelling and Design of Materials
University Leoben
A-8700 Leoben, AUSTRIA
email: cad@unileoben.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program carries out the BZ integration using the momentum matrix elements case.symmat
calculated before by optic. The interband or the intraband contributions to the imaginary part of
the dielectric tensor (ε2) can be computed. Alternatively, the DOS or the joint DOS can be derived.

The output in case.joint can be plotted with any xy-plotting package or opticplot lapw or
Curve lapw.

Warning: Negative values for ε2 may occur due to negative weights in Blöchl’s tetrahedron method.

For optional XMCD calculations (see OPTICS) an integration of the Brillouin zone is carried out
using the momentum matrix elements from case.symmat1up and case.symmat2up (if both edges
are present, otherwise only from case.symmat1up). The broadened and unbroadened spectra are
written in files case.xmcd and case.rawxmcd: in these files, the first coloumn is the energy mesh,
the second and third coloumns the left and right polarized absorption spectra, the fourth column
the XMCD and the last is the XAS. For L2,3, M2,3, and M4,5 edges, the broadened and
unbroadened spectra for the single edges (useful for the application of Carra’s and Thole’s sum
rules) are stored in case.broad1 and case.broad2 and case.raw1 and case.raw2, respectively,
where ”1” and ”2” are refererred to the higher and lower energy core state.

8.17.1 Execution

The program joint is executed by invoking the command:

joint joint.def or x joint [-up|dn]

8.17.2 Dimensioning parameters

The following parameter is listend in files param.inc:

NSYM order of point group
MG0 number of columns (usually 9)

8.17.3 Input

An example is given below:

---------------- top of file: case.injoint -----------------------
1 9999 8 : LOWER,UPPER,upper-valence BANDINDEX

152 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

-0.0000 0.00100 2.0000 : EMIN DE EMAX FOR ENERGYGRID IN ryd
eV : output units eV / ryd
XMCD : omitt these 4 lines for non-XMCD
-49.88 -50.80 : core energies in Ry (grep :2P case.scfc)
1.6 0.6 : core-hole broadening (eV) for both core states
0.1 : spectrometer broadening (eV)
4 : SWITCH
2 : NUMBER OF COLUMNS

0.1 0.1 0.3 : BROADENING (FOR DRUDE MODEL - switch 6,7)
------------------- bottom of file -------------------------------

Interpretive comments on this file are as follows:

line 1: free format

b1, b2,
b3

lower, upper and (optional) upper-valence band-index (Setting b3 may
allow for additional analysis (restricting the occupied bands from b1-
b3) and in big cases it will reduce memory requirements. Otherwise set
b3 equal b2)

line 2: free format

emin,
de,
emax

Energy window and increment in Ry (emin must not be negative)

line 3: free format

units eV output in units of eV
Ry output in units of Ry

line 4: optional line for XMCD, must be omitted for ‘‘normal’’ optic; free
format

XMCD keyword for XMCD calculation, requires 3 more lines

line 4xmcd: must be omitted for ‘‘normal’’ optic; free format

E core1,
E core2

lower and higher core energies (in Ry, get them using eg. “grep :2P
case.scf”)

line 4xmcd: must be omitted for ‘‘normal’’ optic; free format

broad core1,
broad core2

lifetime broadening (eV) of lower and higher core state

line 4xmcd: must be omitted for ‘‘normal’’ optic; free format

broad spectrometer (Gaussian) broadening (eV)

line 4+: free format

switch 0 joint DOS for each band combination
1 joint DOS as sum over all band combinations
2 DOS for each band
3 DOS as sum over all bands
4 imaginary part of the dielectric tensor (ε2)

8.18. KRAM 153

5 imaginary part of the dielectric tensor for each band combination
6 intraband contributions: number of “free“ electrons per unit cell as-

suming bare electron mass (calculated around EF ± 10 ∗ de as defined
in input line 4), plasma-frequency

7 in addition to switch 6 the contributions from different bands to the
plasma frequency are analyzed.

line 5: free format

ncol number of columns

line 6: free format
broadening

x,y,z broadening parameters (in units defined in line 3) for Drude-model

The band analysis for all options (switches 0, 2, 5, and 7) has been improved: For each tensor
component additional files are created, where each column contains the contributions from a
single band or band combination. The file names are e.g. .Im eps xx 1, .Im eps xx 2, or
.jdos 1 etc. where the number of files depend on the number of bands/band combinations.

Warning: The number of band combinations might be quite large!

8.18 KRAM (Kramers-Kronig transformation)

This program was contributed by:

	
Claudia Ambrosch-Draxl
Atomistic Modelling and Design of Materials
University Leoben
A-8700 Leoben, AUSTRIA
email: cad@unileoben.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

The Kramers-Kronig analysis is carried out for the actual number of columns contained in the
case.joint[up|dn] file. For each real component its imaginary counterpart is created and vice
versa. All dielectric tensor components can be found in file case.epsilon[up|dn]. The real
and imaginary parts of the optical conductivity (in 1015/s) are written to file
case.sigmak[up|dn]. In addition, file case.absorp contains the real parts of the optical
conductivity (in 1/(Ωcm) and the absorption coefficients. The loss function is also calculated
(case.eloss), where for the previously calculated Plasma-frequency the intraband
contributions can be added.

Please note, that for spin-polarized calculations, the Kramers-Kronig analysis is NOT really
additive, i.e. most quantities (like ε1) cannot be obtained by simply adding the spin-up and dn
results to get the total contribution (see equations in Ambrosch 06). Thus, one should add up both
spin contributions of ε2 (in case.jointup and case.jointdn) using addjoint-updn lapw
(this will produce case.joint) before calling (non-spinpolarized) x kram.

The 3 sumrules are also checked and written to case.sumrules.

The output in case.epsilon[up|dn] and case.sigmak[up|dn] can be plotted with any
xy-plotting package, opticplot lapw or the ”OPTIC”-task in w2web.

154 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.18.1 Execution

The program kram is executed by invoking the command:

kram kram.def or x kram [-up|dn]

8.18.2 Dimensioning parameters

The following parameters are listed in files param.inc:

MAXDE maximum number of points in energy mesh
MPOL fixed at 6

8.18.3 Input

An example is given below:

---------------- top of file: case.inkram -----------------------
0.0 gamma for Lorentz broadening (in units selected in joint)
0.0 energy shift (scissors operator) (in units selected in joint)
1 add intraband contributions? yes/no: 1/0
12.60 plasma frequencies (for each ‘‘column’’ in case.injoint)
0.20 Gammas for Drude terms (for each ‘‘column’’ in case.injoint)

------------------- bottom of file -------------------------------

Interpretive comments on this file are as follows:

line 1: free format

EGAMM Lorentz broadening (in energy units selected in joint)

line 2: free format

ESHIFT Energy shift (scissors operator) (in energy units selected in joint)

line 3: free format

INTRA 0 Intraband contributions are not added
1 Intraband contributions are added (requires plasma-frequencies calcu-

lated by joint using switch “6”))

line 4: free format

EPL Plasma-frequencies (calculated by joint using SWITCH=6 for all
columns)

line 5: free format

EDRU Broadening for Drude terms (for all columns)

8.19. DIPAN 155

8.19 DIPAN (Dipolar anisotropies)

This program was contributed by:

	
P. Novák
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

This program calculates the magnetic dipolar hyperfine field and the dipolar magnetocrystalline
anisotropy by a direct lattice summation over the magnetic moments of all sites.

According to Wikipedia

~B =
µ0µ

4πr3
[3(~nr̂)r̂ − ~n] (8.1)

where r̂ = ~r/r.
~n = ~M/M is direction of magnetization.
µ0 is permeability of free space; µ0 = 4π10−7 H/m.
~B is the dipolar field in T.
~µ is magnetic dipolar moment in Am2 = J/T, assumed to be parallel to ~n.
r is in m.
We want to express µ in Bohr magnetons µB=9.274078.10−24 J/T and
r in atomic units for length a0 (Bohr radius) a0=5.2917706.10−11 m.
Inserting in (1) gives

~B = 6.258463
µ(µB)
r(a.u.)3

[3(~nr̂)r̂ − ~n]. (8.2)

Total dipolar field acting on atom i is given by the lattice sum

~Bi = 6.258463
∑
j

µj
r3j

[3(~nr̂j)r̂j − ~n]. (8.3)

Dipolar anisotropy energy is given by the sum

Ean = − 1
2V

∑
j

~Bj~µj (8.4)

when the sum is over atoms in the unit cell, V is the unit cell volume, Factor 1/2 appears because
of the double summation.

Expressing Bj in T, µj in µB and V in (a.u.)3 gives

Ean(J/m3) = −3.129232.107

V (a.u.)3
∑
j

~Bj(T)~µj(µB) (8.5)

156 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

8.19.1 Execution

The program dipan is executed by invoking the command:

dipan dipan.def or x dipan

8.19.2 Dimensioning parameters

The following parameters are listed in files dipan.f:

NATO number of inequivalent atoms in unit cell
NDIF total number of atoms in unit cell

8.19.3 Input

An example is given below:

---------------- top of file: case.indipan -----------------------
160. 0 Rmax (a.u.), ipr (printing option)
-0.26 Magnetic moment of 1s atom (Y) in mu_B
1.525 Magnetic moment of 2nd atom (Co(2c))
1.529 Magnetic moments of 3rd atom (Co(3g)) in mu_B
1381. Volume in a.u.**(-3)
2 ndir: numder of magnetization directions
0. 0. 1. first direction for the magnetization
1. 1. 0. second direction

------------------- bottom of file -------------------------------

Interpretive comments on this file are as follows:

line 1: free format
Rmax, IPR

Rmax max distance (bohr) for lattice summation. Vary it for convergence
check.

IPR Print switch. IPR=2 produces very large files case.outputdipan and
case.nn dipan

line 2: free format

mm Magnetic moment (µB) of first atom

line 2 must be repeated for every non-equivalent atom in the unit cell
line 3: free format

VOLUME Unit cell volume in bohr**3 (grep :VOL case.scf)

line 4: free format

NDIR number of magnetization directions for which the dipolar contributions
will be calculated. For NDIR > 1 the differences Ean(diri)−Ean(dirj)
are also calculated.

line 5: free format

8.20. FSGEN 157

h,k,l direction of magnetization

line 5 must be repeated NDIR times

8.20 FSGEN (Fermi-surface generation)

Unfortunately there is no really versatile tool for Fermi surface generation or analyzing FS
properties. We have collected here a series of small programs together with some description on
how to proceed to generate 2D-Fermisurfaces within WIEN.

I As usually, you have to run an scf cycle and determine a good Fermi-energy. ”Good” means
here a Fermi-energy coming from a calculation with a dense k-mesh.

I You should than create a mesh within a plane of the BZ, where you want to plot the FS.
Some utility programs like sc fs mesh, (fcc, bcc, cxz mon and hex are also available) may
help you here, but only some planes of the BZ have been implemented so far. Please check
these simple programs and modify them according to your needs. Copy the generated
k-mesh fort.2 to case.klist.

I Run lapw1 with this k-mesh.
I Run spaghetti with input-options such that it prints the bands which intersect EF to

case.spaghetti ene (line 10, see sec. 8.3)
I Edit case.spaghetti ene and insert a line at the top:

NX, NY, x-len, y-len, NXinter, NYinter, Invers, Flip
where
NX, NY are the number of points in the two directions
x-len, y-len are the length of the two directions of the plane (in bohr−1, you can find this in
case.spaghetti ene)
NXinter, NYinter: interpolated mesh, e.g. 2*NX-1
Invers: 0/1: mirrors x,y
FLIP: 0/1: flips x,y to y,x

I Run spagh2rho < case.spaghetti ene to convert from this format into a format
which is compatible with the case.rho file used for charge density plotting. It generates
files fort.11, fort.12, ... (for each band separately) and you should use your favorite
plotting program to generate a contourplot of the FS (by using a contourlevel = 0).
Alternatively you can use for plotting:

I Run fsgen lapw 11 xx save filename, which is a small shell script that can plot all
fermi surfaces using the data-files fort.11, fort.12, ... fort.xx generated in the
previous steps. It requires the public domain package pgplot and the contour-plot
program plotgenc. (The latter can be obtained from
http://www.wien2k.at/reg user/unsupported/, but you must have installed the
pgplot library before.)

158 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

9 Utility Programs

Contents
9.1 symmetso . 159
9.2 pairhess . 160
9.3 eigenhess . 162
9.4 patchsymm . 162
9.5 afminput . 163
9.6 clmcopy . 163
9.7 reformat . 165
9.8 hex2rhomb and rhomb in5 . 165
9.9 plane . 165
9.10 add columns . 166
9.11 clminter . 166
9.12 eosfit . 166
9.13 eosfit6 . 166
9.14 spacegroup . 167
9.15 join vectorfiles . 167
9.16 arrows . 167
9.17 xyz2struct . 168
9.18 cif2struct . 169
9.19 struct2cif . 169
9.20 StructGen of w2web . 169
9.21 supercell . 170
9.22 structeditor . 170
9.23 Visualization . 172
9.24 Unsupported software . 173

9.1 symmetso

This program helps to setup spin-orbit calculations in magnetic systems. Since SO may break
symmetry in certain spacegroups, it classifies your symmetry operations into operations A, which
do not invert the magnetization (identity, inversion, rotations with the rotation axis parallel to
magnetization), B, which invert it (mirror planes) and C, which change the magnetization in some
other way. (Note: magnetization is a result of a circular current, or equivalently, an axial vector
resulting from a vector product ẑ ∼ x̂× ŷ). symmetso will keep all A-type and throw away all
C-type symmetry operations. Depending on the presence of inversion symmetry it will keep
(inversion is present) or remove the B-type operations. Finally, symmetso uses the remaining

159

160 CHAPTER 9. UTILITY PROGRAMS

symmetry operations to check/generate equivalent atomic positions (it can happen that some
equivalent atoms become non-equivalent after inclusion of SO interaction).

In essence, it reads your case.struct and case.inso (for the direction of magnetization) files
and creates an ordered case.struct orb file with proper symmetry and equivalent atoms. It
also generates a file case.ksym, which is a struct file with valid operations to generate a proper
k-mesh using ’’x kgen -so’’. In addition proper input files case.in1, case.in2,
case.inc, case.vspup/dn, case.vnsup/dn, case.clmsum, case.clmup/dn are
generated, so that you can continue with runsp -so without any further changes.

9.1.1 Execution

The program symmetso is executed by invoking the command:

symmetso symmetso.def or x symmetso [-c]

Usually it is called from the script initso lapw and thus needs not to be invoked manually.

9.2 pairhess

This program was contributed by:

	
James Rondinelli, Bin Deng and Laurence Marks
Dept. Materials Science and Engineering
Northwestern University
Evanston, USA
l-marks@northwestern.edu
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program creates an approximate hessian matrix (in .minpair) for structure minimization
using the PORT option. It uses a harmonic model with exponentially decaying bond strenght and
in many cases reduces the number of geometry steps during min lapw significantly. It is
described in detail in Rondinelli et al. 2006.

For its usage see the comments in sect. 5.3.2.

9.2.1 Execution

The program pairhess is executed by invoking the command:

pairhess pairhess.def or x pairhess [-copy]

The switch -copy copies .minpair to .minrestart and .min hess, which are needed in
min lapw.

9.2.2 Dimensioning parameters

The following parameters are used in param.inc:

9.2. PAIRHESS 161

NATMAX max. number of atoms)
NEIGMAX max number of neighbours

9.2.3 Input

pairhess uses an optional input file case.inpair, which is needed only for an experienced
user for better tailoring of certain default parameters.

An example is given below:

---------------- top of file: case.inpair -----------------------
10.0 2.0 0.25 (Rmax, Decay, ReScale)
0.05 1.0 0 (Cutoff, Diag, mode)
0.2 (ZWEIGHT

Interpretive comments on this file are as follows:

line 1: free format

RMAX Maximum distance (a.u.) for considering neighbors. 8-12 is good.

DECAY Exponential decay applied to neighbors when calculating the pairwise
bond strenghts. 1.5-2.5 is reasonable.

RESCALE A scaling term to multiply the pairwise hessian by. This number is
rather important; 0.25 appears to be best for a system with soft modes,
0.35 for a stiffer system. You can save substantial time by adjusting
RESCALE so it is approximately correct using a .min hess from a previ-
ous run (adjust until numbers for similar multiplicities are similar), or
by adjusting the frequencies (see also eigenhess).

line 2: free format

CUTOFF When the weighting (via an exponential decay) becomes smaller than
this number the pairwise bonds are ignored.

DIAG The value to multiply a unitary matrix by, this is added to the hessian
estimate

MODE 0: Spring model; [1: harmonic model; not so good]

line 3: free format

ZWEIGHT Atomic number weight for bonds of form exp(-Z*ZWeight). Values of
0.1-0.2 are reasonable. The default is 0.1; a negative number (e.g. -1)
turns this off.

162 CHAPTER 9. UTILITY PROGRAMS

9.3 eigenhess

This program was contributed by:

	
Laurence Marks
Dept. Materials Science and Engineering
Northwestern University
Evanston, USA
l-marks@northwestern.edu
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program analyses / manipulates .min hess, which was created by a structural
minimization using min lapw and the “PORT” option. In particular, such an analysis can yield
approximate vibrational frequencies and corresponding eigenmodes, which eventually can give a
hint about a dynamically unstable structure (imaginary frequencies). Some more description is
given in $WIENROOT/SRC pairhess/README.

The program eigenhess is executed by invoking the command:

x eigenhess

9.4 patchsymm

This program was contributed by:

	
James Rondinelli, Bin Deng and Laurence Marks
Dept. Materials Science and Engineering
Northwestern University
Evanston, USA
l-marks@northwestern.edu
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program performs a symmetry check on the positions and produces a new struct file
case.struct new. It is useful in case something went wrong during min lapw (rounding
errors of positions) or the cif/amc file did not have enough digits (eg. “1/3” was prepresented by
“0.33333” only). The file case.outputpatch gives information on how parameters changed.

9.4.1 Execution

The program patchsymm is executed by invoking the command:

patchsymm patchsymm.def or x patchsymm

9.6. CLMCOPY 163

9.5 afminput

This program creates the inputfile case.inclmcopy st for the program clmcopy, which copies
spin-up densities of atom i to spin-down densities of the related antiferromagnetic atom j and vice
versa in an anti-ferromagnetic system. It uses a symmetry operation to find out how and which
atomic densities must be interchanged and how the Fourier coefficients of the density transform.
It is based on the ideas of Manuel Perez-Mato (Bilbao, Spain).

See $WIENROOT/SRC afminput/afminput test for several examples.

The best way is to supply a file case.struct supergroup, which is the struct file of the
nonmagnetic supergroup. If the two spacegroups are “TRANSLATIONENGLEICH”, it will find
out automatically the proper symmetry operation. Please note, this automatic way works only when
the coordinate system remains identical. In some cases sgroup may interchange eg. the y and z axis. In such
cases reverse this change, both, for the lattice parameters as well as for all positions, set NSYM=0 and run
init lapw again (ignoring any suggestion of sgroup).

If the two spacegroups are “KLASSENGLEICH” (i.e. have the same number of symmetry
operations), you will be asked to supply a translation which transforms the AF atoms into each
other. A typical example would be bcc Cr: the bcc supergroup and the AF subgroup (simple
cubic) have both 48 symmetry operations and the proper translation is (0.5,0.5,0.5).

Finally, if you don’t give case.struct supergroup, you have to supply a symmetry operation
(rotation + non-primitive translation) as input. For bcc Cr or the famous NiO-AFII structure this
would be simply 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

 0.5
0.5
0.5

Please see the comments in sect. 4.5.4 on how to proceed in detail for AFM calculations and find
further examples in SRC afminput.

9.5.1 Execution

The program afminput is executed by invoking the command:

afminput afminput.def or x afminput

9.5.2 Dimensioning parameters

The following parameters are used:

NCOM number of LM components in the density (in param.inc)
LMAX max l for LM expansion of the density (in param.inc).

9.6 clmcopy

This program generates the spin-dn density (case.clmdn) from a given spin-up density
(case.clmup) according to rules and symmetry operations in case.inclmcopy (generated
earlier by afminput) for an AFM calculation.

Please see the comments in sect. 4.5.4 on how to proceed in detail for AFM calculations.

164 CHAPTER 9. UTILITY PROGRAMS

9.6.1 Execution

The program clmcopy is executed by invoking the command:

clmcopy clmcopy.def or x clmcopy

9.6.2 Dimensioning parameters

The following parameters are used in param.inc:

NCOM number of LM components in the density
NRAD number of radial mesh points
NSYM number of symmetryoperations

9.6.3 Input

An example is given below:

---------------- top of file: case.inclmcopy -----------------------
2 NUMBER of ATOMS to CHANGE
1 2 INTERCHANGE these ATOMS

-1.00000000000 0.00000000000 0.00000000000 SYMMETRY OPERATION
0.00000000000 -1.00000000000 0.00000000000
0.00000000000 0.00000000000 -1.00000000000
0 NUMBER of LM to CHANGE SIGN
3 4 INTERCHANGE these ATOMS

-1.00000000000 0.00000000000 0.00000000000 SYMMETRY OPERATION
0.00000000000 -1.00000000000 0.00000000000
0.00000000000 0.00000000000 -1.00000000000
9 NUMBER of LM to CHANGE SIGN
1 0 1 0 -1.00
3 0 3 0 -1.00
3 2 3 2 -1.00
-3 2 -3 2 -1.00
5 0 5 0 -1.00
5 2 5 2 -1.00
-5 2 -5 2 -1.00
5 4 5 4 -1.00
-5 4 -5 4 -1.00
1 0 0 0.50000
0 1 0 0.00000
0 0 1 0.50000

Interpretive comments on this file are as follows:

line 1: free format

NATOM Number of atoms for which rules for copying the density will be de-
fined

line 2: free format

N1, N2 Interchange spin-up and dn densities of atoms N1 and N2

line 3-5: free format

SYM Symmetry operation for atom N1 to rotate into N2 (without transla-
tional part)

9.7. REFORMAT 165

line 6: free format

NLM Number of LM values, for which you have to change the sign when
swapping up and dn-densities

line 7ff: free format

L1,M1,L2,M2,Fac NLM pairs of L1,M1 (spin-up), which change into L2,M2 (spin-dn) and
the respecting CLMs are multiplied by Fac

Lines 2-7ff have to be repeated NATOM times.
line 8-10: free format

SYM0 Symmetry operation (one of the operations of the NM-supergroup
missing in the AFM-subgroup (transfers spin-up into spin-dn atom)

9.7 reformat

To produce a surface plot of the electron density using rhoplot lapw (which is an interface to
gnuplot), data from the file case.rho created by lapw5 must be converted using reformat

The sources of the program reformat.c are supplied in SRC reformat.

9.8 hex2rhomb and rhomb in5

hex2rhomb interactively converts the positions of an atom from hexagonal to rhombohedral
coordinates (needed in case.struct).

rhomb in5 interactively helps to generate input case.in5 for density plots with lapw5 for
rhombohedral systems. It defines a plane as needed in the input file when you specify 3 atoms of
that plane.

The sources of these programs are supplied in SRC trig.

9.9 plane

plane helps to generate case.in5 for density plots with lapw5 (for orthogonal and hex lattices
only). The plane will be specified by 3 atoms and you need an auxiliary file plane.input, which
contains:

a,b,c # lattice parameters
x0,y0,z0 # position of atom (fractional coordinates), which will be centered in the plot
x1,y1,z1 # position of atom, which will be ‘‘below’’ the centered atom
x2,y2,z2 # position of atom, which will show to the ‘‘left’’
xl,yl # lenght (in bohr) of plot in x and y direction.
’P’ # defines lattice, either P (carthesian coordinates) or H (hexagonal) supported

The source of this program is supplied in SRC trig.

166 CHAPTER 9. UTILITY PROGRAMS

9.10 add columns

add columns reads a sequence of pairs of 2 numbers (form stdin), adds them together and prints
the sum to stdout. If you have two columns of numbers in 2 files (eg. in colup and coldn) you can
add them using:

paste colup coldn | add columns > col

The source of this program is supplied in SRC trig.

9.11 clminter

clminter interpolates the density in case.clmsum/up/dn to a new radial mesh as defined in
case.struct new. This utility is usefull when you run a structural minimization (min lapw),
some atoms start to overlap and you have to reduce RMT (the size of the atomic spheres) of
certain atoms. In such a case:

I save the calculations
I generate case.struct new with modified RMTs
I x clminter
I in spinpolarized case repeat this line with -up and -dn switches
I cp case.struct new case.struct
I cp case.clmsum new case.clmsum
I eventually copy also case.clmup/dn files)
I run lapw; (it will probably take some iterations until you reach scf again, but it should be

much faster than starting with init lapw)

Note: Please be aware the the total energy will change with modified RMT (by some constant)
and you must not compare energies comming from different RMTs (but most likely you can
determine the constant shift by repeating (at least) ONE calculation with identical structure but
different RMTs).

The source of this program is supplied in SRC trig.

9.12 eosfit

Small program to calculate the Equation of States (EOS; Equilibrium volume V0, Bulk modulus B0

and it’s derivative B′0. The Murnaghan (1944), the Birch-Murnaghan and the EOS2 equation of
states are supported. It relies on the file case.vol (containing lines with ”volume, E-tot”, usually
created from w2web using ”Volume optimization”), or alternatively is called from eplot lapw
using case.analysis (see 5.7.1 and 5.3.1).

The sources are supplied in SRC eosfit.

9.13 eosfit6

Nonlinear least squares fit (using PORT routines) for a parabolic fit of the energy vs. 2-4 dim.
lattice parameters. It requires case.ene and case.latparam, usually generated by
parabolfit lapw. It can optionally produce case.enefit, which contains energies on a

9.14. SPACEGROUP 167

specified grid for plotting purposes (in 2D same format as case.rho, which can be used in
contourplot programs). (See 5.3.1).

The sources are supplied in SRC eosfit6.

9.14 spacegroup

This program was contributed by:

	

Vaclav Petricek
Institute of Physics
Academy of Sciences of the Czech Republic
Na Slovance 2
182 21 Praha (Prague) 8
Czech Republic
petricek@fzu.cz
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

Interactive program to generate equivalent positions for a given spacegroup and lattice. The
program is also used internally from w2web to generate positions when selecting spacegroups in
the StructGen.

9.15 join vectorfiles

This program was contributed by:

	
Phillipp Wissgott
Institute of Solid State Physics
TU Vienna
wissgott@ifp.tuwien.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

Interactive program to combine parallel vector and energy files (case.vector xx and
case.energy xx) into single files (case.vector and case.energy).

Executed by:

I x join vectorfiles [-up/-dn/-so/-soup/-sodn] [-c] case number of parallel files to join

9.16 arrows

This program was contributed by:

168 CHAPTER 9. UTILITY PROGRAMS

	
Evgeniya Kabliman
Institute for MaterialsChemistry
TU Vienna
evgeniya@theochem.tuwien.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

Small program which together with Xcrysden allows to display the “forces acting on all atoms”
or the “differences between two structures” using arrows which indicate the movement of the
atoms. The recommended sequence to visualize forces is:

I Prepare (copy) a struct and scf file with the initial structure using the names
case initial.struct and case initial.scf.

I View case initial.struct in Xcrysden and “File/Save as xsf-structure” with the
name case initial.xsf.

I x arrows
I View the resulting case forces.xsf using: xcrysden --xsf case forces.xsf.

Switch on “Display/Forces” and adjust the length of the arrows in “Modify/Force-settings”.

while differences between the inital and relaxed structure can be viewed by:

I Prepare (copy) two struct files with the initial and the relaxed structure using the names:
case initial.struct and case final.struct.

I View case initial.struct in Xcrysden and “File/Save as xsf-structure” with the
name case initial.xsf.

I x -delta arrows
I View the resulting case delta.xsf using: xcrysden --xsf case delta.xsf. Switch

on “Display/Forces” and adjust the length of the arrows in “Modify/Force-settings”.

9.17 xyz2struct

xyz2struct reads “atomlabel,x,y,z”-data from case.xyz and writes them into
xyz2struct.struct. You may have to edit the xyz-file and insert a few lines at the top:

ANG(default)/BOHR; F/C (fractional or carth. coordinates) and L (lattice information, see
example)

a,b,c lattice parameters, or when L was specified a scaling constant and the bravais matrix.

Since xyz data contain no symmetry information, all atoms with the same “label” will be treated
as equivalent. The nuclear charges ZZ will not be given and you have to insert them manually or
use w2web-StructGen.

It is executed using:

xyz2struct < case.xyz

(I recommend this program only for cases with many non-equivalent atoms and (almost) no
symmetry. If you have spacegroup-information it is probably easier to use StructGen and
copy/paste of the positions).

A proper case.xyz file looks like:

9.18. CIF2STRUCT 169

ang
7.47700 7.47700 7.47700
B 4.98466667 1.24616667 0.00000000
C 6.23083333 2.49233333 0.00000000
.....

or

BOHR F L
17.47700

0.470724637 0.492808141 0.000000000
-0.471118220 0.493012774 0.000000000
0.000000000 0.000000000 0.680559876

B 0.00000000 0.00000000 0.00000000
C 0.14300000 0.14300000 0.25000000
.....

9.18 cif2struct

cif2struct reads structural data in cif-format from case.cif and writes them into
case.struct. It is executed using:

cif2struct case.cif

The required cif files can be for example be obtained from Cystallographic databases (e.g. the
Inorganic Crystal Structure DataBase ICSD) or from other programs.

Alternatively, cif2struct can work with case.txt, which contains the following data:

a # a..Ang, b..Bohr
0.0 0.0 0.0 # shift of origin
4.7554 4.7554 12.991 90. 90. 120. # a,b,c,angles

’R-3c’ # spacegroup-symbol (see \STRUCTGEN{})
’Al’ # atom-name
0.0000000 0.0000000 0.3520000 # atomic position
’O’ # ...
0.3063000 0.0000000 0.2500000 # ...
...

9.19 struct2cif

struct2cif creates a cif-file struct.cif from case.struct. It is executed using:

x struct2cif

and will ask for the name of a struct file and a spacegroup. It was contributed by F. Boucher
(Florent.Boucher@cnrs-imn.fr) and L.D.Marks (L-marks@northwestern.edu). There is also a
similar program struct2xyz available.

9.20 StructGen of w2web

The new StructGen helps to generate the master input file case.struct. It has the following
additional features:

I automatic conversion from/to Å and Bohr
I Use spacegroup information (in conjunction with the spacegroup program (see 9.14 to

generate equivalent positions)

170 CHAPTER 9. UTILITY PROGRAMS

I built in calculator to carry out simple arithmetic operations to specify the position pameters
(of the equivalent atoms). Each position of equivalent atoms can be entered as a number, a
fraction (e.g. 1/3) or a simple expression (e.g. 0.21 + 1/3). The first position defines the
variables x, y and z, which can be using in expression defining the other positions (e.g. −y,
x, −z + 1/2).

9.21 supercell

This program helps to generate supercells from a regular WIEN2k-struct file.

It asks interactively for the name of the original struct file and the number of cells in x, y, and z
direction. (Only integers are allowed, thus no rotations by 45o like sqrt(2) x sqrt(2) cells are
supported yet).

If symmetry permits, one can change the target lattice to P, B or F centered lattices, which allows
to increase the number of atoms in these supercells by a factor of 2, 4, 8, ...

Rhombohedral (R) lattices are converted automatically into H (hexagonal) lattices, which are 3
times larger than the original cell.

If the target lattice is P, one can add some vacuum in each direction for surface slabs (or chains or
isolated molecules) and also add a “top”-layer (repeat the atoms with z=0 at z=1).

You can define an optional shift in x,y,z direction for all the atoms in the cell. (This might be
usefull if you want to arrange the atoms in a certain way, eg. you may want to create a surface
slab such that it is centered around z=0.5 (and not z=0), so that plotting programs (xcrysden)
produce nicer pictures of the structure.

For the experienced user a much more flexible (but also more complicated) tool is available,
namely the structeditor package (see Sect.9.22).

Please note: You cannot make calculations with these supercells (except for surfaces) unless you modify the
created supercell-struct file. You must break the symmetry by introducing some distortions (e.g. for a frozen
phonon) or replace one atom by an impurity/vacancy,

9.21.1 Execution

The program supercell is executed by invoking the command:

supercell or x supercell

9.22 structeditor

This program was contributed by:

	
Robert Laskowski
email: rolask@theochem.tuwien.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

9.22. STRUCTEDITOR 171

This package helps to manipulate structures. Usually one would start from an appropriate
(simple) case.struct file, and this tool allows to add or manipulate atoms (with or without
symmetry considerations), or generate arbitrary supercells or surfaces. It is commandline driven
and targeted for the more experienced user, who “knows what he wants to do” and is just looking
for a convenient tool.

It consists of a couple of octave (mathlab) routines and some fortran code, thus it requires octave
(the free mathlab version) and for visualization the opendx package (http://www.octave.org
and http://www.opendx.org).

A full documentation and some examples can be found in
$WIENROOT/SRC structeditor/doc, but the main commands are:

a2adist * calculates distance between atoms
mina2adist * calculates minimum distance between atoms
addatom * adds an atom to the structure
addeqatom * adds an atom and all equivalent
copyatom * creates a copy of an atom
getaname * converts atomic number into atomic symbol
getar0 * calculates r0 from atomic number
getazz * converts atomic name into atomic number
loadstruct * reads Wien2k structfile
movealla * moves all atoms with vector vec
replaceatom * replaces an atom with other atom
replaceeqatoms * replaces an atom and all equivalent with other atoms
rmatom * removes an atom
rmeqatoms * removes an atom and all equivalent
savestruct * saves crystal structure
showequivalent * outputs list of equivalent atoms
showstruct * displays structure (using DX)
smultatom * creates symmetry equivalent positions
sshift * symmetric shifts of equivalent atoms
makeconventional * converts structure into the conventional form
makeprimitive * converts structure to the primitive form
makesupercell * creates supercell
makesurface * creates surface for a given unitcell

9.22.1 Execution

The structeditor is invoked within the octave environment:

octave

s=loadstruct(”GaN.struct”)

make an orthorhombic supercell and visualize it
a=[1 0 0; 1 1 0; 0 0 2]
sout=makesupercell (s,a);
showstruct(sout);

save it as test.struct
savestruct (sout,”test.struct”);

get help on all commands
helpstruct

172 CHAPTER 9. UTILITY PROGRAMS

9.23 Visualization

9.23.1 BALSAC

balsac (Build and Analyze Lattices, Surfaces and Clusters) was written by Klaus Hermann
(Fritz-Haber Institut, Berlin). It provides high quality postscript files. In SRC balsac-utils we
provide the following interface programs to convert from WIEN2k to balsac:

I str2lat to convert case.struct to case.lat (the BALSAC ”lat” file).
I str2plt to convert case.struct to case.plt (the BALSAC ”plt” file for one unit cell).
I outnn2plt to convert case.outputnn to case.plt (the BALSAC ”plt” file for one unit

cell). You have to select one atom (central atom) and than all nn-atoms are converted into
the plt file.

I In addition converters to the xyz-format (str2xyz, outnn2xyz) for other plotting
programs are also available.

For an example see figure 3.1 For scientific questions concerning BALSAC please contact Klaus
Hermann at hermann@FHI-Berlin.MPG.DE

Balsac is available from:

Garching Innovation GmbH, Mrs. M. Pasecky Hofgartenstr. 8, D-80539 Munich,
Germany
Tel.: +49 89 2909190, Fax.: +49 89 29091999
e-mail: gi@ipp.mpg.de
web: http://www.fhi-berlin.mpg.de/th/personal/hermann/balpam.html

9.23.2 XCrysDen

XCrysDen (Kokalj 1999) is a render and analysis package. It has the following features (see also
http://www.xcrysden.org/doc/wien.html):

I render and analyze (distances, angles) the crystal structure
I generate k-mesh for bandstructure plots
I generate input and render 2D charge densities
I generate input and render 3D charge densities
I generate input and render Fermi surfaces
I render changes between two structures (original and relaxed) with the help of the arrows

program (see 9.16)

XCrysDen is available from:

Tone Kokalj
Jozef Stefan Institute, Dept. of Physical and Organic Chemistry
Jamova 39, SI-1000 Ljubljana, Slovenia
Tel.: +386 61 177 3520, Fax: +386 61 177 3811
Tone.Kokalj@ijs.si
http://www.xcrysden.org/

9.24. UNSUPPORTED SOFTWARE 173

Figure 9.1: 3D electron density in TiC generated with XCrysDen

9.24 Unsupported software

On our website http://www.wien2k.at/reg users you can find a link to Unsupported
software goodies, where references to various software packages are given. Most of those
packages are contributions from WIEN2k-users and you may check this site from time to time if
you find some useful tools for you.

In case you develop some goodies yourself and want to share this development with the WIEN2k
community, please send an email to pblaha@theochem.tuwien.ac.at and we will add it to
this page.

174 CHAPTER 9. UTILITY PROGRAMS

10 How to run WIEN2k for selected
samples

Three test cases are provided in the WIEN2k package. They contain the two starting files
case.struct and case.inst and all the output so that you can compare your results with
them.

The test cases are the following (where the names correspond to what was called CASE in the rest
of this User’s Guide)

TiC
Fccni
TiO2

We recommend to run these test cases (in a different directory) and compare the output to the
provided one. All test cases are setup such that the CPU-time remains small (seconds). For real
production runs the value of RKMAX in case.in1 must be increased and a better (denser)
k-mesh should be used.

In addition we provide a subdirectory example struct files were various more complicated
struct files can be found.

10.1 TiC

The TiC example is described in detail in chapter 3 (Quickstart).

10.2 Fcc Nickel (spin polarized)

Ferromagnetic Nickel is a test case for a spin-polarized calculation. Ni has the atomic
configuration 1s2, 2s2, 2p6, 3s2, 3p6, 3d8, 4s2 or [Ar] 3d8, 4s2. We treat the 1s, 2s, 2p and 3s as core
states, and 3p (as local orbital), 3d, 4s and 4p are handled as valence states. In a spin-polarized
calculation the file structure and the sequence of programs is different from the
non-spin-polarized case (see 4.5.2).

Create a new session and its corresponding directory. Generate the structure with the following
data (we can use a large sphere as you will see from the output of nn):

175

176 CHAPTER 10. EXAMPLES

Title fcc Ni
Lattice F
a 6.7 bohr
b 6.7 bohr
c 6.7 bohr
α, β, γ 90
Atom Ni, enter position (0,0,0) and RMT = 2.3

Initialize the calculation using the default RKmax and use 3000 k-points (a ferromagnetic metal
needs many k-points to yield reasonably converged magnetic moments). Allow for
spin-polarization.

Start the scf cycle (runsp lapw) with ”-cc 0.0001” (in particular for magnetic systems charge
convergence is often the best choice). At the bottom of the converged scf-file (Fccni.scf) you
find the magnetic moments in the interstital region, inside the sphere and the total moment per
cell (only the latter is an “observable”, the others depend on the sphere size).

:MMINT: MAGNETIC MOMENT IN INTERSTITIAL = -0.03130
:MMI001: MAGNETIC MOMENT IN SPHERE 1 = 0.66198
:MMTOT: TOTAL MAGNETIC MOMENT IN CELL = 0.63068

10.3 Rutile (TiO2)

This example shows you how to “optimize internal parameters” and do a k-point parallel
calculation.

Create a new session and its corresponding directory. Generate the structure with the following
data (we use a smaller O sphere because Ti-d states are harder to converge then O-p):

Title TiO2
Spacegroup P42/mnm (136)
a 8.682 bohr
b 8.682 bohr
c 5.592 bohr
α, β, γ 90
Atom Ti, enter position (0,0,0) and RMT = 2.0
Atom O, enter position (0.3,0.3,0) and RMT = 1.6

StructGenshould automatically add the equivalent positions.

Initialize the calculation using RKmax=6.5 in tio2.in1 st and use 100 k-points and a “shift“ in
kgen.

If you have more cpus available (a parallel machine or simply a couple of PCs with a common
NFS filesystem, for details see 5.5), you can use “Execution o Run scf”, activate the “parallel”
button” and “start scf” in w2web. This will create and open a .machines file and you should
insert lines with the proper names of your PCs (possibly use 9 (or 3) processors since we have 9
k-points,). Save this file and click on “Execution o Run scf”, activate “-fc 1.0” for
force-convergence and “start scf” to submit the scf-cycle.

Alternatively at the command-line you can use the UNIX command

cp $WIENROOT/SRC_templates/.machines .

and edit this file. You would start the scf-cycle (in background) simply by typing

run_lapw -p -fc 1.0 &

10.4. SUPERCELL CALC 177

During the scf-cycle monitor tio2.dayfile and check convergence (:ENE, :DIS, :FGL002),
either using “Utils/Analysis” in w2web, or ‘‘grep :ENE tio2.scf’’. You should see some
convergence of :FGL002 and then a big jump in the final cycle, when the valence-force corrections
are added. Only the last force (including this correction) is valid.

Since this force is quite large, you can now optimize the position of the O-atom:

Start the structure minimization in w2web using “Execution omini.positions”. This will generate
TiO2.inM, and you can try option PORT with tolf=1.0 (instead of 2.0), otherwise stay with the
default parameters. Repeat “Execution omini.positions” and start the minimization.

Alternatively you can use

min_lapw -p

which is identical to:

min_lapw -j ‘‘run_lapw -I -fc 1 -p’’

This will create TiO2.inM automatically, call the program min, which generates a new struct file
using the calculated forces, and continues with the next scf cycle. It will continue until the forces
are below 1 mRy/bohr (TiO2.inM) and the final results are not “saved” automatically but can be
found in the “current” calculation.

You should watch the minimization (:ENE, :FGL002, :POS002) using the file TiO2.scf mini,
which contains the final iteration of each geometry step (see also Sec.5.3.2). If the forces in this file
oscillate from plus to minus and seem to diverge, or if they change very little, you can edit
TiO2.inM (change the method, reduce or increase the stepsize), and remove TiO2.tmpM
(contains the “history” of the minimization and is used to calculate the velocities of the moving
atoms). (This should not be neceaasry for the rutile example, but may occur in more complex
minimizations. See comments in Sec. 5.3.2).

The final structural parameter of the O-atom should be close to x=0.304, which compares well
with the experimental x=0.305.

10.4 Supercell calculations on TiC

This example shows you how to create a supercell of TiC, which could be used to simulate a
TiC-surface or vacancies, impurities or core-holes for X-ray absorption / ELNES spectroscopy. I’ll
describe the procedure using Unix and WIEN2k commands in an xterm, but of course you can do
the same in w2web.

Create a new directory, copy the original TiC struct file into it and run supercell program:

mkdir super
cd super
cp ../TiC/TiC.struct .
x supercell

Specify “TiC.struct”, a “2x2x2” supercell, “F” lattice (this will create a cell with 16 atoms, you can
also create 32 or 64 atom cells using B or P lattice type. Note: surfaces require a P supercell).

cp TiC_super.struct super.struct

and edit this file to make some changes. You could eg.

178 CHAPTER 10. EXAMPLES

I delete an atom (to simulate a vacancy)
I replace an atom by another element (impurity)
I “label” an atom (put a 1 in the 3rd column next to the element name) to make this atom

unique (needed eg. for core-holes)
I displace an atom (for phase transitions or phonons)

Note: it is important to make at least one of these chages. Otherwise the initialization will restore the
original unit cell (or the calculations will fail later on because symmetry is most likely not correct)

Run init lapw. You will see that nn complains and finds a new set of equivalent atoms
(originally all atoms were non-equivalent, but nn finds that some atoms have identical neighbors,
thus should be in an equivalent set). Accept the automatically generated struct file and continue.
Remember, supercells normally require less k-points than the original small cell.

After the complete initialization you may in principle restore the original struct file (eg. without a
displacement) in case you want to “repeat” the undistorted structure in supercell geometry.

For a “core-hole” calculation you would now edit super.inc and remove one core electron from
the desired atom and state (1s or 2p, ...). In addition you should add the missing electron either in
super.inm (background charge) or super.in2 (add it to the valence electrons). In the latter
case, you should remove this extra electron AFTER scf and BEFORE calculation of the spectra.

Once this has been done, you could start a scf-cycle (for impurities, vacancies,.. you should most
likely also optimize the internal positions).

10.5 Further examples

Further examples can be found on our web-site:

http://www.wien2k.at/events/ws2008/talks/Exercises 08.pdf

Part III

Installation of the WIEN2k package
and Dimensioning of programs

179

11 Installation and Dimensioning

Contents
11.1 Requirements . 181
11.2 Installation of WIEN2k . 182
11.3 w2web . 186
11.4 Environment Variables . 188

11.1 Requirements

WIEN2k is written in FORTRAN 90 and requires a UNIX operating system since the programs are
linked together via C-shell scripts. It has been implemented successfully on the following
computer systems: Intel and AMD based PCs running under Linux, IBM RS6000, HP, SGI, DEC
Alpha and SUN. Hardware requirements will change from case to case (small cases with 10 atoms
per unit cell can be run on a Pentium-II PC with 128 MB under Linux), but we recommend a more
powerful PC or workstation with at least 256 MB (better 512 MM or more) memory and plenty of
disk space (a few Gb).

For coarse grain parallization on the k-point level, a cluster of PCs with a 100 Mb/s (better 1Bg/s)
network is sufficient. Faster communication (Infiniband) is recommended for the fine grain
(single k-point) parallel version.

For Intel (AMD) based systems we recommend the Intel ifort compiler and the Intel
mkl library (which includes blas, lapack and Scalapack) (see http://www.intel.com). If you
have installed ifort yourself on your local PC, don’t forget to configure your environment
properly. Add some thing like:

source /opt/intel/11.0/074/bin/ifortvars.csh intel64
source /opt/intel/11.0/074/mkl/tools/environment/mklvarsem64t.csh

to your .cshrc file (or similar statements for .bashrc).

In order to use all options and features (such as the new graphical user interface w2web or some
of its plotting tools) the following public domain program packages in addition to a F90 compiler
must be installed:

I perl 5 or higher (for w2web only)
I emacs or another editor of your choice
I ghostscript (with jpg support)
I gnuplot (with png support)
I www-browser

181

182 CHAPTER 11. INSTALLATION AND DIMENSIONING

I pdf-reader, acroread
I Tcl/Tk-Toolkit (for Xcrysden only)
I MPI+SCALAPACK (for fine grain parallelization only)
I FFTW-2.1.5 (mpi-version for fine grain parallelization only)

Usually these packages should be available on modern systems. If one of these packages is not
available it can either be installed from public domain sources (ask your computing center, use the
WWW to search for the nearest location of these packages) or the corresponding configuration
may be changed (e.g. using vi instead of emacs). Brief installation instructions for mpich and fftw
are given below. None of the principal components of WIEN2k requires these packages, only
w2web needs them.

11.1.1 Installation tips for mpich and fftw-2.1.5

This is only a brief guidance, you may need some Linux experience for this.

I Download the mpich1.2.7p1 and fftw-2.1.5 sources from
http://www-unix.mcs.anl.gov/mpi/mpich1/ and http://www.fftw.org/download.html
(Please note, the fftw-3.x versions are incompatible with fftw-2.x)

I unzip and untar the downloaded file
I Change into the expanded directories and configure the compilation. Define your fortran

compiler (setenv FC ifort, or export FC=ifort) and use “./configure −−prefix=/pathname”
to configure compilation. /pathname is the directory where the libraries should be installed
(could be /opt/local or /usr/local or similar, you will have to specify this path again in the
LDFLAGS). For fftw configuration add the “−−enable-mpi“ switch.

I make
I make install (if you specified a “system-directory” like /usr/local you must have proper

permissions for this step, eg. become root user)
I add the mpi-directory to your path (set path = (/opt/mpich/mpich-1.2.7p1/bin $path))

Optionally, one can also use in the sequential (non-mpi) version of lapw0 and lapw2 the fftw
routines. However, there is some speedup only when you use the MKL-fft routines, not the
self-compiled fftw-binaries. The mkl-interface to fftw is not active by default, but you may have to
compile it yourself. To do so (syntax ifort12):

I cd $MKLROOT/interfaces/fftw2xf
I make libintel64 (or make libia32)
I in case you do not have icc installed, but use GNU-C (gcc) you must:

– edit makefile, and remove -D GNU from the line “ CC=gcc -D GNU” (to remove
additional from the object names)

– make libintel64 compiler=gnu

I add -DFFTW2 to FOPT in the Makefile of lapw0 and lapw2
I add -lfftw2xf or -lfftw2xf gnu to R LIBS in the Makefile of lapw0 and lapw2

This may speedup the fft-parts of these programs a bit.

11.2 Installation of WIEN2k

11.2.1 Expanding the WIEN2k distribution

The WIEN2k package comes as a single tar file (or you can download about 50 individual tar files
separately), which should be placed in a subdirectory which will be your $WIENROOT directory

11.2. INSTALLATION OF WIEN2K 183

(e.g. ./WIEN2k). In addition you can download three examples, namely TiC.tar.gz,
TiO2.tar.gz and Fccni.tar.gz.

Uncompress and expand all files using:

tar -xvf wien2k 00.tar (skip this if you downloaded files separately)
gunzip *.gz
chmod +x ./expand lapw
./expand lapw

You should have gotten the following directories:

./SRC
SRC_2Doptimize
SRC_afminput
SRC_aim
SRC_arrows
SRC_balsac-utils
SRC_broadening
SRC_cif2struct
SRC_clmaddsub
SRC_clmcopy
SRC_dipan
SRC_dstart
SRC_elast
SRC_eosfit
SRC_eosfit6
SRC_filtvec
SRC_fsgen
SRC_initxspec
SRC_irrep
SRC_joint
SRC_kgen
SRC_kram
SRC_lapw0
SRC_lapw1
SRC_lapw2
SRC_lapw3
SRC_lapw5
SRC_lapw7
SRC_lapwdm
SRC_lapwso
SRC_lcore
SRC_lib
SRC_lorentz
SRC_lstart
SRC_mini
SRC_mixer
SRC_nn
SRC_optic
SRC_optimize
SRC_orb
SRC_pairhess
SRC_phonon
SRC_qtl
SRC_reformat
SRC_sgroup
SRC_spacegroup
SRC_spaghetti
SRC_structeditor
SRC_sumpara
SRC_supercell
SRC_symmetry
SRC_symmetso
SRC_telnes3
SRC_templates
SRC_tetra
SRC_trig
SRC_txspec
SRC_usersguide_html
SRC_vecpratt
example_struct_files
TiC
TiO2
fccni

184 CHAPTER 11. INSTALLATION AND DIMENSIONING

Thus, each program has its source code (split into several files) in its own subdirectory. All
programs are written in FORTRAN90 (except SRC sgroup and SRC reformat, which are in C).

/SRC contains the users guide (in form of a postscript file usersguide.ps and as pdf-file
usersguide.pdf), all c-shell scripts and some auxiliary files.

/SRC usersguide html contains the html version of the UG.

/Fccni, /TiC and /TiO2 contain three example inputs and the respective outputs.

/example struct files contains a collection of various struct files, which could be of use
especially for the less experienced user.

/SRC templates contains various input templates.

In addition to the expansion of the tar-files ./expand lapw copies also all csh-shell scripts from
/SRC to the current directory and creates links for some abbreviated commands.

11.2.2 Site configuration for WIEN2k

At the end of expand lapw you will be prompted to start the script

./siteconfig lapw

When you start this script for the first time (file INSTALLDATE not present), you will be guided
through the setup process.

Later on you can use siteconfig lapw to redimension parameters, update individual packages
and recompile the respective programs.

During the first run, you will be asked to specify:

I your system; at this point system specific files (e.g. cputim.f will be installed. If your
system is not listed, use the system generic, which should compile on any machine.

I your FORTRAN90 and C compilers;
I your compiler and linker options as well as the place for LAPACK and BLAS libraries.

Depending on the system you selected, we have included some recommended compiler and
linker options, which are known to work on our systems (use generic when you have
problems here; see also sec. 11.2.4). On some systems it is required to specify LAPACK and
BLAS libraries twice (i.e. R LIBS:-llapack lapw -lblas lapw -llapack lapw -lblas lapw). This
generates Makefiles from the corresponding Makefile.orig in all subdirectories.

I configuration of parallel execution will ask whether your system is shared memory, so that
default parameters can be set accordingly ($WIENROOT/parallel options is the file
where this information is stored).

I to configure parallel execution for distributed systems, specify the command to open a
remote shell, which on most systems is rsh or ssh.

I You will then be asked wether you want to run fine-grained parallel. This is only possible if
FFTW, MPI and SCALAPACK (included in newer mkl-versions) are installed on your
system and requires a fast network (100Mb/s is not enough) or a shared memory machine.
It pays off only for bigger cases (matrixsize > 5000).

I You should define NMATMAX, i.e. the maximum matrixsize (number of basisfunctions).
This value should be adjusted according to the memory of your hardware. Rough estimates
are:
NMATMAX= 5000 ==> 256MB (real, i.e. with inversion symmetry)
NMATMAX=10000 ==> 1GB (real) (==> cells with about 80-150 atoms/unitcell)
If you choose it too large, lapw1 will start to “page” leading to inacceptable performance or
a crash. NMATMAX will be automatically recuced (by

√
2) for complex (without inversion)

cases and increased by
√
NPE for mpi-parallel cases.

11.2. INSTALLATION OF WIEN2K 185

I Now you are prompted to compile all programs (this will be done using make) and the
executables are copied to the $WIENROOT directory. Compilation might take quite some
time.

I During compilation watch for error messages on the screen. If there are errors, you may
need to change into the corresponding SRC * directory and examine file compile.msg for
details.
Common errors are wrong specification of compiler, linking or library options. In such
cases, adopt the Makefile in this directory and recompile using make. Once you have proper
options, correct them globally in siteconfig lapw and recompile.

Later on you can use siteconfig lapw to change parameters, options or to update a package.

11.2.3 User configuration

Each WIEN2k user should run the script userconfig lapw. This will setup a proper
environment.

The script userconfig lapw will do the following for you:

I set a path to WIEN2k programs
I set the stacksize to “unlimited”
I add aliases
I add environment variables ($WIENROOT, $SCRATCH)

to your ˜/.cshrc or˜/.bashrc file. Eventually you should also edit these files and set the
$LD LIBRARY PATH variable (path where compiler-libs or blas-libraries are located).

Note: This will work only when the csh, tcsh or bash-shell is your login shell. Depending on your settings
you may have to add similar lines also in your .login file. If you are using a different login-shell, edit
your startup files manually.

11.2.4 Performance and special considerations

The script siteconfig lapw is provided for general configuration and compilation of the
WIEN2k package. When you call this script for the first time and follow the suggested answers,
WIEN2k should run on your system (see 11.2.2).

The codes in the individual subdirectories /SRC program are compiled using make. The file
Makefile is generated during installation using Makefile.orig as template.

In some directories the source files *.frc, *.F and param.inc r/c contain both, the real and
complex (for systems without inversion symmetry) version of the code. You create the
coresponding versions with make and make complex, respectively. (The *.frc and *.F files
will then be preprocessed automatically).

The fine-grained parallel versions lapw0 mpi; lapw1 mpi, lapw1c mpi, lapw2 mpi,
lapw2c mpi are created using make para (lapw0) and make rp; make cp.

For timing purposes a subroutine CPUTIM is used in several programs and specific routines for
IBM-AIX, HP-UX, DEC-OSF1, SGI and SUN are available. On other systems cputim generic.c
should work.

On some HP systems you may encounter problems like: “stack growth failure”. You may
recompile with -K, reconfigure your Unix-kernel (with increased stack-size) or put large arrays in
the respective program into COMMONS.

Most of the CPU time will be spent in lapw1 and (to a smaller extent) in lapw2 and lapw0.
Therefore we recommend to optimize the performance for these 3 programs:

186 CHAPTER 11. INSTALLATION AND DIMENSIONING

I Find out which compiler options (man f90) make these programs run faster. You could
specify a higher optimization (-O3), or specify a particular processor architecture
(-qarch=pwr5 or -R10000,).

I Good performance depends on highly optimized BLAS (and much less on LAPACK)
libraries. Whenever it is possible, replace the supplied libraries (SRC lib/blas lapw
SRC lib/lapack lapw), by routines from your vendor (mkl for Intel or AMD processors,
aclm for AMD, essl for IBM, sunperf for SUN, complib.sgimath on SGI, ...). If such libraries
are not available use the GOTO-library
(http://www.tacc.utexas.edu/tacc-projects/gotoblas2/) which is a very competitive
alternative. (Eventually you may try to optimize them yourself using the “ATLAS” system
(see http://math-atlas.sourceforge.net), but this is no longer recommended. We provide an
“old” ATLAS-BLAS for a Pentium3 with WIEN2k.

11.2.5 Global dimensioning parameters

WIEN2k is written in Fortran 90 and all important arrays are allocated dynamically. The only
important parameters left are NMATMAX and NUME, specifying the maximum matrixsize
(should be adjusted to the memory of your hardware, see above) and the maximum number of
eigenvalues (must be increased for unitcells with large number of electrons)

Some less important parameters are still present and described in chapter “dimensioning
parameters“ of the respective section in chapter 6.

We recommend to use siteconfig lapw for redimensioning and recompilation. In order to
work properly, the parameter XXXX in the respective param.inc files must obey the following
syntax:

PARAMETER(XXXX=)

Note: between “(“, XXXX and “=” there must be no space.

11.3 Installation and Configuration of w2web

11.3.1 General issues

w2web requires perl, which should be available on most systems. (If not contact your system
administrator or install it yourself from the WWW)

When you start w2web for the first time on the computer where you want to execute WIEN2k
(you may have to telnet, ssh,.. to this machine) with the command w2web [-p xxxx], you will
be asked for a username/password (I recommend you use the same as for your UNIX login).

You must also specify a “port” number (which can be changed the next time you start w2web). If
the default port (7890) used to serve the interface is already in use by some other process, you will
get the error message w2web failed to bind port 7890 - port already in use!.
Then you will have to choose a different port number (between 1024 and 65536) . Please
remember this port number, you need it when connecting to the w2web server.

Note: Only user root can specify port numbers below 1024!

Once w2webhas been started, use your favorite WWW-browser to connect to w2web, specifying
the correct portnumber, e.g. firefox http://hostname where w2web runs:7890

On certain sites a firewall may block all high ports and one cannot connect to this machine. In
these cases you can create a ssh-tunnel using the following commands:

11.3. W2WEB 187

At your “local host” (the PC in front of you) connect to the “w2web host” (where you started
w2web) using

ssh -fNL 2000:w2web_host:7890 user@w2web_host

On your local host use a web browser and connect with: firefox http:127.0.0.1:2000.

Using “Configuration ” you can further tailor the behaviour according to your wishes. In particular
you can define new “execution types” to adjust to your queuing system.

For example the line

batch=batch < %f

defines an execution type “batch” using the UNIX batch command. (w2web collects its
commands in a temporary script and you can access it using %f).

If you run on a machine with a queuing system (like loadleveler, sun-grid-engine, or pbs) you
may define an “execution type”

qsub=cat %f > w2web-job;qsub-wienjob_lapw

The following scripts may serve as templates: qsub-wienjob lapw in $WIENROOT needs a
master-job-template qsub-job0 lapw and examples for loadleveler and SGE are provided in
$WIENROOT (you may need to adapt them ! Other examples you can find on our FAQ-page on the
web). Of course, with some small modifications you can define several “execution types” with eg.
different number of processors or mpi vs. k-point parallel runs,....

w2web saves several variables in startup files which are in the (˜/.w2web) directory.

11.3.2 How does w2web work?

w2web acts like a normal web-server - except that it runs on a ”user level port” instead of the
default http-port 80. It serves html-files and executes perl-scripts or executes system or user
commands on the server host.

11.3.3 w2web-files in you home directory

w2web creates on the first start of w2web on host “hostname” the directory .w2web/hostname
in your home directory with the following content:

I .w2web/hostname/conf
I .w2web/hostname/logs
I .w2web/hostname/sessions

11.3.4 The configuration file conf/w2web.conf

In this file various configuration parameters are stored by w2web. To restrict the access to certain
IP addresses you can add lines like:

deny=*.*.*.*
allow=128.130.134.* 128.130.142.10

188 CHAPTER 11. INSTALLATION AND DIMENSIONING

11.3.5 The password file conf/w2web.users

This file is created during the first run of w2web.

If you remove this file, the next start of w2webwill activate the installation procedure again.

11.3.6 Using the https-protocol with w2web

In order to use the https-protocol the perl-library Net::SSLeay in addition to the OpenSSL package
must be installed on your system. Both are freely available.

Then you must include a line with ssl=1 in w2web.conf.

If you run w2web-server in ssl-mode you need a site certificate for your server. You may use the
supplied certificate in $WIENROOT/SRC w2web/bin/w2web.pem (copy this file to your
conf-directory and set the keyfile= /.w2web/¡hostname¿/conf/w2web.pem line in your
w2web.conf).

This certificate will not expire until 2015, but usually browsers will complain that they do not
know the Certificate Authority who issued this certificate - if you don’t like this message, you
must buy a certificate from VeriSign, Thawte or a similar CA.

Of course you must connect to https: instead of http:, i.e. use:

netscape https://hostname where w2web runs:7890.

11.4 Environment Variables

WIEN2k uses the following environment variables:

WIENROOT base directory where WIEN2k is installed
PDFREADER specifies program to read pdf files (acroread, xpdf,...)
SCRATCH directory where case.vector and case.help?? are stored.
EDITOR path and name of your prefered editor
STRUCTEDIT PATH path where the structeditor tool is located
OCTAVE PATH path where the structeditor tool is located
OCTAVE EXEC PATH path where octave looks for executables (structeditor)
XCRYSDEN TOPDIR if this variable is set WIEN2k will activate all interface extensions to

XCrysDen.
USE REMOTE [0|1] determines whether parallel jobs are run in background (on shared memory

machines) or using rsh. It is overridden by settings in $WIENROOT/parallel options
WIEN GRANULARITY Default granularity for parallel execution. It is overridden by setting the

granularity in the .machines file or in $WIENROOT/parallel options
WIEN EXTRAFINE if set, the residual k-points are spread one by one over the processors.

In addition on some systems variables like:

LD LIBRARY PATH path to libraries of compiler and math-libs
OMP NUM THREADS on multi-core machines for parallelization in certain libraries (mkl, goto)

12 Trouble shooting

In this chapter hints are given for solving some difficulties that have occurred frequently. This
chapter is by no means complete and the authors would appreciate further suggestions which
might be useful for other users. Beside the printed version of the users guide, an online pdf
version is available using help lapw. You can search for a specific keyword (use ∧f keyword)
and hopefully find some information.

There is a mailing list for WIEN2k related questions. To subscribe
to this list send mail to:
majordomo@theochem.tuwien.ac.at
with the text “subscribe wien”. You will then automatically be
added to the mailing list
wien@theochem.tuwien.ac.at
Please make use of this list!

If an error occurs in one of the SCF programs, a file program.error is created and an error message
is printed into these files. The run lapw script checks for these files and will automatically stop if
a non-empty error file occurs.

Check the files case.dayfile (which is written by init lapw and run lapw), :log (where a
history of all commands using x is given) and *.error for possible explanations.

In several places the dimensions are checked. The programs print a descriptive error message and
stop.

case.outputnn: This file gives error messages if the atomic spheres overlap. But it should also be
used to check the distances between the atoms and the coordination number (same
distance). If inconsistencies exists, your case.struct file may contain an error. A check
for overlapping spheres is also included in mixer and lapw1.

case.outputd: Possible stops or warnings are:
“NO SYMMETRY OPERATION FOUND IN ROTDEF“: This indicates that in your

case.struct file either the positions of equivalent atoms are not specified correctly (only
positive coordinates allowed!!) or the symmetry operations are wrong.

case.output1: Possible stops or warnings are:

“NO ENERGY LIMITS FOUND IN SELECT“: This indicates that Etop or Ebottom could
not be found for some ul(r, El). Check your input if it happens in the zeroth iteration.
Later, (usually in the second to sixth iteration) it may indicate that in your SCF cycle
something went wrong and you are using a crazy potential. Usually it means that
mixing of the charge densities was diverging and large charge fluctuations occured.
Check previous charges for being physically reasonable (grep for labels :NTOxx
:CTOxx :DIS :NEC01). Usually this happens when your input is not ok, or for very ill
conditioned problems (very rare), or more likely, when “Ghostbands” appeared (or

189

190 CHAPTER 12. TROUBLE SHOOTING

some states were missing) because of bad energy parameters in case.in1. You will
probably have to delete case.broy* and case.scf, rerun x dstart and then
change some calculational parameters. These could be: fixing some energy parameter
(modify both, case.in1 and case.in1 orig or try the -in1orig switch if you have
used -in1new); switch to a broadening method (TEMP with eg. 0.010 mRy); or increase
the k-mesh (magnetic metals); or reduce the mixing parameter in case.inm slightly
(eg. to 0.1). In very difficult (magnetic) cases a PRATT mixing with eg. 0.01 mixing
might be helpful at the beginning of the scf cycle (but later switch to MSEC1 again) !

“STOP RDC 22“: This indicates that the overlap matrix is not positive definite. This
usually happens if your case.struct file has some error in the structure or if you
have an (almost) linear dependent basis, which can happen for large RKMAX values
and/or if you are using very different (extremely small and large) sphere radii RMT .

“X EIGENVALUES BELOW THE ENERGY emin“: This indicates that X eigenvalues were
found below emin. Emin is set in case.in1 (see sec. 7.3.3) or in case.klist
generated by KGEN, see 6.3, 6.5). It may indicate that your value of emin is too high or
the possibility of ghostbands, but it can also be intentional to truncate some of the low
lying eigenvalues.

If you don’t find enough eigenvalues (e.g.: in a cell with 4 oxygens you expect 4 oxygen s
bands at roughly -1 Ry) check the energy window (given at the end of the first k-point
in case.in1 or in case.klist) and make sure your energy parameters are found by
subroutine SELECT or set them by hand at a reasonable value.

case.output2: Possible stops or warnings are:

“CANNOT BE FOUND“: This warning, which could produce a very long output file,
indicates that some reciprocal K-vector would be requested (through the k-vector list of
lapw1), but was not present in the list of the K generated in lapw2. You may have to
increase the NWAV, and/or KMAXx parameters in lapw2 or increase GMAX in
case.in2. The problems could also arise from wrong symmetry operations or a
wrong structure in case.struct.

“QTL-B VALUE“: If larger than a few percent, this indicates the appearance of ghost bands,
which are discussed below in section 12.1.
The few percent message (e.g up to 10 %) does not indicate a ghost band, but can
happen e.g. in narrow d-bands, where the linearization reaches its limits. In these cases
one can add a local orbital to improve the flexibility of the basis set. (Put one energy
near the top and the other near the bottom of the valence band, see section 7.3.3).

FERMI LEVEL not converged (or similar messages). This can have several reasons: i) Try a
different Fermi-Method (change TETRA to GAUSS or TEMP in case.in2). ii) Count
the number of eigenvalues in case.output1 and compare it with the number of
valence electrons. If there are too few eigenvalues, either increase EMAX in
case.klist (from 1.5 to e.g. 2.5) or check if your scf cycle had large charge
oszillations (see SELECT error above)

If the SCF cycle stops somewhere (especially in the first few iterations), it is quite possible, that the
source of the error is actually in a previous part of the cycle or even in a previous (e.g. the zeroth)
iteration. Check in the case.scf file previous charges, eigenvalues, . . . whether they are
physically reasonable (see SELECT error above).

12.1 Ghost bands

Approximate linear dependence of the basis set or the linearization of the energy dependence of
the radial wave functions (see section 2.2) can lead to spurious eigenvalues, termed “ghost
bands”.

12.1. GHOST BANDS 191

The first case may occur in a system which has atoms with very different atomic sphere radii.
Suppose you calculate a hydroxide with very short O-H bonds so that you select small RMT radii
for O and H such as e.g. 1.0 and 0.6 a.u., respectively. The cation may be large and thus you could
choose a large RMT of e.g. 2.4 a.u. However, this gives a four time larger effective RKmax for the
cation than for H, (e.g. 16.0 when you select RKmax=4.0 in case.in1). This enormous difference
in the convergence may lead to unphysical eigenvalues. In such cases choose lmax=12 in
case.in1 (in order to get a very good re-expansion of the plane waves) and reduce RMT for the
cation to e.g. 1.8 a.u.

The second case can occur when you don’t use a proper set of local orbitals. In this situation the
energy region of interest (valence bands) falls about midway between two states with different
principle quantum numbers, but with the same l-value (for one atom).

Take for example Ti with its 3p states being occupied as (semi-core) states, while the 4p states
remain mostly unoccupied. In the valence band region neither of those two states (Ti 3p, 4p)
should appear. If one uses 0.2 Ry for the expansion energy E(1) for the p states of Ti, then Ti-p
states do appear as ghost bands. Such a run is shown below for TiO2 (rutile).

The lowest six eigenvalues at GAMMA fall between about -1.30 and -1.28 Ry. They are ghost
bands derived from fictitious Ti-p states. The next four eigenvalues between -0.94 and -0.78 Ry
correspond to states derived from O 2s states, which are ok, since there are four O’s per unit cell,
four states are found.

The occurrence of such unphysical (indeed, unchemical!) ghostbands is the first warning that
something went wrong. A more definite warning comes upon running LAPW2, where the
corresponding charge densities are calculated. If the contribution to the charge density from the
energy derivative of the basis function [the Blm coefficient in equ. 2.4,2.7] is significant (i.e. much
more than 5 per cent) then a warning is issued in LAPW2.

In the present example it reads:

QTL-B VALUE .EQ. 40.35396 !!!!!!

This message is found in both the case.scf file and in case.output2.

When such a message appears, one can also look at the partial charges (QTL), which are printed
under these conditions to OUTPUT2, and always appear in the files case.helpXXX, etc., where
the last digit refers to the atomic index.

In the file below, note the E(1) energy parameter as well as the 6 ghost band energies around -1.29.

--------------- top of file:tio2.scf -----------------------------
ATOMIC SPHERE DEPENDENT PARAMETERS FOR ATOM Titanium
OVERALL ENERGY PARAMETER IS .2000
E(0)= .2000

---> E(1)= .2000
E(2)= .2000 E(BOTTOM)= -.140 E(TOP)= -200.000

ATOMIC SPHERE DEPENDENT PARAMETERS FOR ATOM Oxygen
OVERALL ENERGY PARAMETER IS .2000
E(0)= -.7100 E(BOTTOM)= -2.090 E(TOP)= .670

K= .00000 .00000 .00000 1
:RKM : MATRIX SIZE= 599 RKM= 6.99 WEIGHT= 8.00 PGR:

EIGENVALUES ARE:
-1.2970782 -1.2970782 -1.2948747 -1.2897193 -1.2897193
-1.2882306 -.9389111 -.8484857 -.7880729 -.7880729
-.0484830 -.0162982 .0121181 .0976534 .0976534
.1914068 .1914068 .2341991 .3286919 .3477629
.3477629 .3809219 .5143729 .5356211 .5550735
.5617155 .5617155 .7087550 .7197110 .8736991
.8736991 .9428865 .9533619 1.2224570 1.2224570
1.4285169

**
NUMBER OF K-POINTS: 1

192 CHAPTER 12. TROUBLE SHOOTING

:NOE : NUMBER OF ELECTRONS = 48.000
:FER : F E R M I - ENERGY = .53562

:POS01: AT.NR. -1 POSITION = .00000 .00000 .00000 MULTIPLICITY= 2
LMMAX=10
LM= 0 0 2 0 2 2 4 0 4 2 4 4 6 0 6 2 6 4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

:CHA01: TOTAL CHARGE INSIDE SPHERE 1 = 8.802166
:PCS01: PARTIAL CHARGES SPHERE = 1 S,P,D,F,PX,PY,PZ,D-Z2,D-X2Y2,D-XY,D-XZ,D-YZ
:QTL01: .127 6.080 2.518 .067 2.011 2.047 2.022 1.090 .760 .155 .480 .034

VXX VYY VZZ UP TO R
:VZZ01: -4.96856 8.48379 -3.51524 2.000
:POS02: AT.NR. -2 POSITION = .30500 .30500 .00000 MULTIPLICITY= 4

LMMAX=16
LM= 0 0 1 0 2 0 2 2 3 0 3 2 4 0 4 2 4 4 5 0 5 2 5 4 6 0 6 2 6 4 6 6 0 0

:CHA02: TOTAL CHARGE INSIDE SPHERE 2 = 5.486185
:PCS02: PARTIAL CHARGES SPHERE = 2 S,P,D,F,PX,PY,PZ,D-Z2,D-X2Y2,D-XY,D-XZ,D-YZ
:QTL02: 1.559 3.902 .022 .002 1.296 1.306 1.300 .014 .004 .000 .003 .001

VXX VYY VZZ UP TO R
:VZZ02: .25199 -.55091 .29892 1.600

:CHA : TOTAL CHARGE INSIDE CELL = 48.000000
:SUM : SUM OF EIGENVALUES = -15.810906

QTL-B VALUE .EQ. 40.35396 !!!!!!
NBAND in QTL-file: 24

----------------end of truncated file tio2.scf----------------------

Next we show tio2.output2 for the first of the ghost bands at -1.297 Ry. One sees that it
corresponds mainly to a p-like charge, which originates from the energy derivative part Q(UE) of
the Kohn-Sham orbital. Q(UE) contributes 40.1% compared with 8.5% from the main component
Q(U). Q(UE) greater than Q(U) is a good indication for a ghost band.

----------------part of file tio2.output2 --------------------------
QTL-B VALUE .EQ. 40.35396 !!!!!!

K-POINT: .0000 .0000 .0000 599 36 1
BAND # 1 E= -1.29708 WEIGHT= 2.0000000

L= 0 L= 1 PX: PY: PZ: L= 2 DZ2: DX2Y2: DXY: DXZ: DYZ: L= 3
QINSID: .0000 48.6035 35.0996 13.5039 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0030
Q(U) : .0000 8.4902 6.0125 2.4777 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0026
Q(UE) : .0000 40.1132 29.0871 11.0261 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0005

L= 0 L= 1 PX: PY: PZ: L= 2 DZ2: DX2Y2: DXY: DXZ: DYZ: L= 3
QINSID: .1294 .0707 .0000 .0055 .0653 .0088 .0038 .0049 .0000 .0000 .0000 .0022
Q(U) : .1279 .0627 .0000 .0052 .0575 .0087 .0038 .0049 .0000 .0000 .0000 .0020
Q(UE) : .0016 .0081 .0000 .0003 .0077 .0001 .0000 .0000 .0000 .0000 .0000 .0002
QOUT : 1.9265

----------------------bottom of truncated file ----------------------

Another file in which the same information can be found is tio2.help031, since the ghost band
is caused by a bad choice for the Ti-p energy parameter:

----------------------Top of file tio2.help031 ---------------------
K-POINT: .0000 .0000 .0000 599 36 1
BAND # 1 E= -1.29708 WEIGHT= 2.0000000
L= 0 .00000 .00000 .00000 .00000 .00000 .00000
L= 1 48.60346 8.49022 40.11324 .00000 .00000 .00000

PX: 35.09960 6.01247 29.08712 .00000 .00000 .00000
PY: 13.50386 2.47774 11.02612 .00000 .00000 .00000
PZ: .00000 .00000 .00000 .00000 .00000 .00000

L= 2 .00000 .00000 .00000 .00000 .00000 .00000
DZ2: .00000 .00000 .00000 .00000 .00000 .00000

DX2Y2: .00000 .00000 .00000 .00000 .00000 .00000
DXY: .00000 .00000 .00000 .00000 .00000 .00000
DXZ: .00000 .00000 .00000 .00000 .00000 .00000
DYZ: .00000 .00000 .00000 .00000 .00000 .00000

L= 3 .00304 .00255 .00050 .00000 .00000 .00000
L= 4 .00000 .00000 .00000 .00000 .00000 .00000
L= 5 .00096 .00082 .00014 .00000 .00000 .00000
L= 6 .00000 .00000 .00000 .00000 .00000 .00000

-------------------bottom of truncated file--------------------------

Note again for L=1 the percentage of charge associated with the primary (APW) basis functions ul
(8.5%) versus that coming from the energy derivative component (40.1%).

12.1. GHOST BANDS 193

If a ghost band appears, one should first analyze its origin as indicated above, then use
appropriate local orbitals to improve the calculation and get rid of these unphysical states.

Do not perform calculations with “ghost-bands”, even when the calculation converges.

Good luck !

194 CHAPTER 12. TROUBLE SHOOTING

13 References

Abt R., Ambrosch-Draxl C. and Knoll P. 1994 Physica B 194-196

Abt R. 1997 PhD Theses, Univ.Graz

Andersen O.K. 1973 Solid State Commun. 13, 133

— 1975 Phys. Rev. B 12, 3060

Ambrosch-Draxl C., Blaha P., and Schwarz K. 1991 Phys.Rev. B44, 5141

Ambrosch-Draxl C., Majewski J. A., Vogl P., and Leising G. 1995, PRB 51 9668

Ambrosch-Draxl C. and Sofo J., 2006 Comp. Phys. Comm. 175, 1

V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B
48, 16929 (1993).

V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991)

Bader R. F. W. 2001: http://www.chemistry.mcmaster.ca/faculty/bader/aim/

Blaha P. and Schwarz K. 1983 Int. J. Quantum Chem. XXIII, 1535

Blaha P., Schwarz K., and Herzig P 1985 Phys. Rev. Lett. 54, 1192

Blaha P., Schwarz K., and Dederichs P 1988 Phys. Rev B 38, 9368

Blaha P., Schwarz K., Sorantin P.I. and Trickey S.B. 1990 Comp. Phys. Commun. 59, 399

Blaha P., Sorantin P.I., Schwarz K and Singh D. 1992 Phys. Rev. B 46, 1321

Blaha P., Hofstätter H., Koch R., Laskowski R. and Schwarz K. 2009, J.Comput.Phys. 229,
453.

Blöchl P.E., Jepsen O. and Andersen O.K. 1994, Phys. Rev B 49, 16223

Boettger J.C. and Albers R.C. 1989 Phys. Rev. B 39, 3010

Boettger J.C. and Trickey S.B. 1984 Phys. Rev. B 29, 6425

Brooks M.S.S. 1985 Physica B 130, 6

Charpin, T. 2001. (see $WIENROOT/SRC/elast-UG.ps)

Czyzyk M.T. and G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994).

Desclaux J.P. 1969 Comp. Phys. Commun. 1, 216; note that the actual code we use is an
apparently unpublished relativistic version of the non-relativistic code described in this
paper. Though this code is widely circulated, we have been unable to find a formal reference
for it.

195

196 CHAPTER 13. REFERENCES

— 1975 Comp. Phys. Commun. 9, 31; this paper contains much of the Dirac-Fock treatment
used in Desclaux’s relativistic LSDA code.

O. Eriksson, B. Johansson, and M.S.S. Brooks, J. Phys. C 1, 4005 (1989)

Feldman J.L., Mehl M.J., and Krakauer H. 1987 Phys. Rev. B 35, 6395

Gay David M., ”ALGORITHM 611 – Subroutines for Unconstrained Minimization Using a
Model/Trust-Region Approach”, ACM Trans. Math. Software 9 (1983), pp. 503-524.

Hébert-Souche C., Louf P.-H., Blaha P., M. Nelhiebel, Luitz J., Schattschneider P., Schwarz K.
and Jouffrey B.; The orientation dependent simulation of ELNES, Ultramicroscopy, 83, 9
(2000)

L.L. Hirst, Rev. Mod. Phys. 69, 607 (1997)

Hohenberg P. and Kohn W. 1964 Phys. Rev. 136, B864

“International Tables for X-Ray Crystallography“ 1964 Vol.1; The Kynoch Press,
Birmingham UK

Jansen H.J.F. and Freeman A.J. 1984 Phys. Rev. B 30, 561

— 1986 Phys. Rev. B 33, 8629

Koelling D.D. 1972 J. Phys. Chem. Solids 33, 1335

Koelling D.D. and Arbman G.O. 1975 J.Phys. F: Met. Phys. 5, 2041

Koelling D.D. and Harmon B.N. 1977 J. Phys. C: Sol. St. Phys. 10, 3107

Kohler B., Wilke S., Scheffler M., Kouba R. and Ambrosch-Draxl C. 1996
Comp.Phys.Commun. 94, 31

Kohn W. and Sham L.J. 1965 Phys. Rev. 140, A1133

Kokalj A. 1999 J.Mol.Graphics and Modelling 17, 176

Krimmel H.G., Ehmann J., Elsässer C., Fähnle M. and Soler J.M. 1994, Phys.Rev. B50, 8846

Kuneš J, Novák P., Schmid R., Blaha P. and Schwarz K. 2001, Phys. Rev. B64, 153102

Kara, M. and Kurki-Suonio K. 1981 Acta Cryst A37, 201

Liberman D., Waber J.T., and Cromer D.T. 1965, Phys. Rev. 137A, 27

A.I. Liechtenstein, V. I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

Luitz J., Maier M., Hébert C., Schattschneider P., Blaha P., Schwarz K., Jouffrey B. 2001 Eur.
Phys J. B 21, 363-367

MacDonald A. H., Pickett, W. E. and Koelling, D. D. 1980 J. Phys. C 13, 2675

Madsen G. K. H., Blaha P, Schwarz K, Sjöstedt E and Nordström L 2001, Phys. Rev. B64,
195134

Marks L. D., and Luke R. 2008, Phys. Rev. B 78, 075114

Mattheiss L.F. and Hamann D.R. 1986 Phys. Rev. B 33, 823

Mattsson A., Armiento R., Paier J., Kresse G., Wills J. and Mattsson T 2008 J. Chem. Phys.
128, 084714

197

Meyer-ter-Vehn J. and Zittel W. 1988 Phys. Rev. B37, 8674

Moruzzi V.L., Janak J.F., and Williams A.R. 1978 “Calculated Properties of Metals“
(Pergamon, NY)

Murnaghan F.D., Proc.Natl.Acad.Sci. USA 30, 244 (1944)

Neckel A., Schwarz K., Eibler R. and Rastl P. 1975 Microchim.Acta, Suppl.6, 257

Nelhiebel M., Louf P. H., Schattschneider P., Blaha P., Schwarz K. and Jouffrey B.; Theory of
orientation sensitive near-edge fine structure core-level spectroscopy, Phys.Rev. B59, 12807
(1999)

Novak P. 1997 see $WIENROOT/SRC/novak lecture on spinorbit.ps

Novák P. , Boucher F., Gressier P., Blaha P. and Schwarz K. 2001 Phys. Rev. B 63, 235114

Novák P. 2001 see $WIENROOT/SRC/novak lecture on ldaumatrixelements.ps and
http://www.wien2k.at/reg user/textbooks

Novak P. 2006 see $WIENROOT/SRC/Bhf 3.ps and
http://www.wien2k.at/reg user/textbooks

Pardini L., Bellini V., Manghi F. and Ambrosch-Draxl C. 2011, Comp.Phys.Commun. subm.
(http://arxiv.org/abs/1104.1558)

Perdew J.P, Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R., Singh D.J., and Fiolhais
C. 1992 Phys.Rev.B46, 6671

Perdew J.P. and Wang Y. 1992, Phys.Rev. B45, 13244

Perdew J.P., Burke S. and Ernzerhof M. 1996, Phys.Rev.Let. 77, 3865

Perdew J.P., Kurth S., Zupan J. and Blaha P. 1999, Phys.Rev.Let. 82, 2544

Perdew J.P. et al. 2008, Phys. Rev. Let. 100, 136406

Pratt G.W. 1952 Phys. Rev. 88, 1217

Ray A.K. and Trickey S.B. 1981 Phys. Rev. B24, 1751; erratum 1983, Phys. Rev. B28, 7352

Rondinelli JM, Beng Bin and Marks LD. 2007, Comp. Mater. Sci. 40, 345-353 (also: Los
Alamos archive, physics/0608160 (http://xxx.lanl.gov/abs/physics/0608160)

Schwarz K., Neckel A and Nordgren J, J.Phys.F:Metal Phys. 9, 2509 (1979)

Schwarz K., and Wimmer E, J.Phys.F:Metal Phys. 10, 1001 (1980)

Schwarz K. and Blaha P.: Lecture Notes in Chemistry 67, 139 (1996)

Schwarz K., P.Blaha and Madsen, G. K. H. Comp.Phys.Commun. 147, 71 (2002)

Singh D., Krakauer H., and Wang C.-S. 1986 Phys. Rev. B34, 8391

Singh, D. 1989 Phys. Rev. B40, 5428

Singh D. 1991, Phys.Rev. B43, 6388

Singh D. and Nordström L 2006, Plane waves, pseudopotentials and the LAPW method, 2nd

edition, Springer, New York

Sjöstedt E, Nordström L and Singh D. J. 2000 Solid State Commun. 114, 15

198 CHAPTER 13. REFERENCES

Sofo J and Fuhr J 2001: $WIENROOT/SRC/aim sofo notes.ps

Soler J.M. and Williams A.R. 1989, Phys.Rev. B40, 1560

Sorantin P.I., and Schwarz K.H. 1992, Inorg.Chem. 31, 567

Stahn J, Pietsch U, Blaha P and Schwarz K. 2001, Phys.Rev. B63, 165205

Tao Jianmin, Perdew J.P., Staroverov V. and Scuseria G. 2003, Phys.Rev.Let. 91, 146401

Tran F, Blaha P Schwarz K and Novak P 2006, Phys. Rev. B 74, 155108

Tran F, Laskowski R, Blaha P and Schwarz K. 2007, Phys. Rev. B 75, 115131

Tran F and Blaha P 2009, Phys. Rev. Lett. 102, 226401

von Barth U. and Hedin L. 1972 J. Phys. C.: Sol. St. Phys. 5, 1629

Wei S.H., Krakauer H., and Weinert M. 1985 Phys. Rev. B 32, 7792

Weinert M. 1981 J. Math. Phys. 22, 2433

Weinert M., Wimmer E., and Freeman A.J. 1982 Phys. Rev. B26, 4571

Wimmer E., Krakauer H., Weinert M., and Freeman A.J. 1981 Phys. Rev. B24, 864

Wu Z., Cohen R., 2006 Phys. Rev. B73, 235116

Yanchitsky B. and Timoshevskii T. 2001, Comp.Phys.Commun. 139, 235

Yu R., Singh D. and Krakauer H. 1991, Phys.Rev. B43, 6411

Part IV

Appendix

199

A Local rotation matrices

Local rotation matrices are used to rotate the global coordinate system (given by the definition of
the Bravais matrix) to a local coordinate system for each atomic site. They are used in the program
for two reasons:

I to minimize the number of LM combinations in the lattice harmonics expansion (of potential
and charge density according to equ. 2.10). For example for point group mm2 one needs for
L=1 just LM=1,0 if the coordinate system is chosen such that the z-axis coincides with the
2-fold rotation axis, while in an arbitrary coordinate system the three terms 1,0; 1,1 and -1,1
are needed (and so on for higher L).

I The interpretation e.g. of the partial charges requires a proper orientation of the coordinate
system. In the example given above, the p orbitals split into 2 irreducible representations,
but they can be attributed to pz and px, py only if the z-axis is the 2-fold rotation axis.

It is of course possible to perform calculations without “local rotation matrices“, but in such a case
the LM combinations given in Table 7.42 (and by SYMMETRY) may not be correct. (The LM
values for arbitrary orientations may be obtained from a procedure described in Singh 94.)

Fortunately, the “local rotation matrices“ are usually fairly simple and are now automatically
inserted into your case.struct file. Nevertheless we recommend to check them in order to be
sure.

The most common coordinate transformations are

I interchanging of two axes (e.g. x and z)
I rotation by 45◦ (e.g. in the xy-plane)
I rotation of z into the (111) direction

Inspection of the output of SYMMETRY tells you if the local rotation matrix is the unit matrix or it
gives you a clear indication how to find the proper matrix.

The local rotation matrix R , which transforms the global coordinates r to the rotated ones r′, is
defined by Rr = r′.

There are two simple ways to check the local rotation matrixes together with the selected LM
combinations:

I charge density plots generated with LAPW5 must be continuous across the atomic sphere
boundary (especially valence or difference density plots are very sensitive, see 8.6)

I Perform a run of LAPW1 and LAPW2 using the GAMMA-point only (or a complete star of
another k point). In such a case, “wrong“ LM combinations must vanish. Note that the latter
is true only in this case. For a k mesh in the IBZ “wrong“ LM combinations do not vanish
and thus must be omitted!!

A first example for “local rotation matrices“ is given for the rutile TiO2, which has already been
described as an example in section 10.3. Also two other examples will be given (see below).

201

202 APPENDIX A. LOCAL ROTATION MATRICES

A.1 Rutile (TiO2)

Examine the output from symmetry. It should be obvious that you need local rotation matrices for
both, Ti and O:

....
Titanium operation # 1 1
Titanium operation # 2 -1
Titanium operation # 5 2 || z
Titanium operation # 6 m n z
Titanium operation # 12 m n 110
Titanium operation # 13 m n -110
Titanium operation # 18 2 || 110
Titanium operation # 19 2 || -110

pointgroup is mmm (neg. iatnr!!)
axes should be: m n z, m n y, m n x

This output tells you, that for Ti a mirror plan normal to z is present, but the mirror planes normal
to x and y are missing. Instead, they are normal to the (110) plane and thus you need to rotate x, y
by 45◦ around the z axis. (The required choice of the coordinate system for mmm symmetry is
also given in Table 7.42)

....
Oxygen operation # 1 1
Oxygen operation # 6 m n z
Oxygen operation # 13 m n -110
Oxygen operation # 18 2 || 110

pointgroup is mm2 (neg. iatnr!!)
axes should be: 2 || z, m n y

For O the 2-fold symmetry axes points into the (110) direction instead of z. The appropriate
rotation matrices for Ti and O are: 1√

2
1√
2

0
−1√

2
1√
2

0
0 0 1

 0 −1√
2

1√
2

0 1√
2

1√
2

1 0 0

A.2 Si Γ-phonon

Si possesses a face-centered cubic structure with two equivalent atoms per unit cell, at (±0.125,
±0.125, ±0.125). The site symmetry is -43m. For the Γ-phnon the two atoms are displaced in
opposite direction along the (111) direction and cubic symmetry is lost. The output of
SYMMETRY gives the following information:

Si operation # 1 1
Si operation # 13 m n -110
Si operation # 16 m n -101
Si operation # 17 m n 0-11
Si operation # 24 3 || 111
Si operation # 38 3 || 111

pointgroup is 3m (neg. iatnr!!)
axis should be: 3 || z, m n y

lm: 0 0 1 0 2 0 3 0 3 3 4 0 4 3 5 0 5 3 6 0 6 3 6

A.3. TRIGONAL SELENIUM 203

Therefore the required local rotation matrix should rotate z into the (111) direction and thus the
matrix in the “struct“ file should be:

0.4082483 -.7071068 0.5773503
√

6
6 −

√
2

2

√
3

3

0.4082483 0.7071068 0.5773503
√

6
6

√
2

2

√
3

3

-.8164966 0.0000000 0.5773503 −2
√

6
6

√
2

2

√
3

3

A.3 Trigonal Selenium

Selenium possesses space group P3121 with the following struct file:

H LATTICE,NONEQUIV.ATOMS: 1
MODE OF CALC=RELA POINTGROUP:32
8.2500000 8.2500000 9.369000
ATOM= -1: X= .7746000 Y= .7746000 Z= 0.0000000

MULT= 3 ISPLIT= 8
ATOM= -1: X= .2254000 Y= .0000000 Z= 0.3333333
ATOM= -1: X= .0000000 Y= .2254000 Z= 0.6666667
Se NPT= 381 R0=.000100000 RMT=2.100000000 Z:34.0
LOCAL ROT.MATRIX: 0.0 0.5000000 0.8660254

0.0000000 -.8660254 0.5000000
1.0000000 0.0000000 0.0

6 IORD OF GROUP G0
......

The output of SYMMETRY reads:

Se operation # 1 1
Se operation # 9 2 $|$$|$ 110
pointgroup is 2 (neg. iatnr!!)
axis should be: 2 || z

lm: 0 0 1 0 2 0 2 2 -2 2 3 0 3 2 -3 2 4 0 4 2 -4 2

Point group 2 should have its 2-fold rotation axis along z, so the local rotation matrix can be
constructed in two steps: firstly interchange x and z (that leads to z ‖ (011)) and secondly rotate
from (011) into (001) (see the struct file given above). Since this is a hexagonal lattice, SYMMETRY
uses the hexagonal axes, but the local rotation matrix must be given in cartesian coordinates.

204 APPENDIX A. LOCAL ROTATION MATRICES

B Periodic Table

205

206 APPENDIX B. PERIODIC TABLE

P
er

io
di

c
T

ab
le

 o
f

th
e

E
le

m
en

ts

1 H 1s

2 H
e

1s
2

3 L
i

H
e2

s

4 B
e

H
e2

s2

5 B
H

e2
s2 2p

6 C
H

e2
s2 2p

2

7 N
H

e2
s2 2p

3

8 O
H

e2
s2 2p

4

9 F
H

e2
s2 2p

5

10
N

e
H

e2
s2 2p

6

11
N

a
N

e3
s

12
M

g
N

e3
s2

13
A

l
N

e3
s2 3p

14
Si

N
e3

s2 3p
2

15
P

N
e3

s2 3p
3

16
S

N
e3

s2 3p
4

17
C

l
N

e3
s2 3p

5

18
A

r
N

e3
s2 3p

6

19
K

A
r4

s

20
C

a
A

r4
s2

21
Sc

A
r3

d1 4s
2

22
T

i
A

r3
d2 4s

2

23
V

A
r3

d3 4s
2

24
C

r
A

r3
d5 4s

1

25
M

n
A

r3
d5 4s

2

26
F

e
A

r3
d6 4s

2

27
C

o
A

r3
d7 4s

2

28
N

i
A

r3
d8 4s

2

29
C

u
A

r3
d10

4s
1

30
Z

n
A

r3
d10

4s
2

31
G

a
A

r3
d10

4s
2 4p

32
G

e
A

r3
d10

4s
2 4p

2

33
A

s
A

r3
d10

4s
2 4p

3

34
Se

A
r3

d10
4s

2 4p
4

35
B

r
A

r3
d10

4s
2 4p

5

36
K

r
A

r3
d10

4s
2 4p

6

37
R

b
K

r5
s

38
Sr

K
r5

s2

39
Y

K
r4

d1 5s
2

40
Z

r
K

r4
d2 5s

2

41
N

b
K

r4
d3 5s

2

42
M

o
K

r4
d5 5s

1

43
T

c
K

r4
d5 5s

2

44
R

u
K

r4
d6 5s

2

45
R

h
K

r4
d7 5s

2

46
P

d
K

r4
d8 5s

2

47
A

g
K

r4
d10

5s
1

48
C

d
K

r4
d10

5s
2

49
In

K
r4

d10
5s

2 5p

50
Sn

K
r4

d10
5s

2 5p
2

51
Sb

K
r4

d10
5s

2 5p
3

52
T

e
K

r3
d10

5s
2 5p

4

53
I

K
r4

d10
5s

2 5p
5

54
X

e
K

r4
d10

5s
2 5p

6

55
C

s
X

e6
s

56
B

a
X

e6
s2

57
-7

1

L
a-

L
u

72
H

f
X

e4
f14

5d
2 6s

2

73
T

a
X

e4
f14

5d
3 6s

2

74
W

X
e4

f14
5d

5 6s
1

75
R

e
X

e4
f14

5d
5 6s

2

76
O

s
X

e4
f14

5d
6 6s

2

77
Ir

X
e4

f14
5d

7 6s
2

78
P

t
X

e4
f14

5d
8 6s

2

79
A

u
X

e4
f14

5d
10

6s
1

80
H

g
X

e4
f14

5d
10

6s
2

81
T

l
X

e4
f14

5d
10

6s
2 6p

82
P

b
X

e4
f14

5d
10

6s
2 6p

2

83
B

i
X

e4
f14

5d
10

6s
2 6p

3

84
P

o
X

e4
f14

3d
10

6s
2 6p

4

85
A

t
X

e4
f14

5d
10

6s
2 6p

5

86
R

n
X

e4
f14

5d
10

6s
2 6p

6

87
F

r
R

n7
s

88
R

a
R

n7
s2

89
-1

03

A
c-

L
r

57
L

a
X

e5
d6

s2

58
C

e
X

e4
f2 6s

2

59
P

r
X

e4
f3 6s

2

60
N

d
X

e4
f4 6s

2

61
P

m
X

e4
f5 6s

2

62
Sm

X
e4

f6 6s
2

63
E

u
X

e4
f7 6s

2

64
G

d
X

e4
f7 5d

6s
2

65
T

b
X

e4
f9 6s

2

66
D

y
X

e4
f10

6s
2

67
H

o
X

e4
f11

6s
2

68
E

r
X

e4
f12

6s
2

69
T

m
X

e4
f13

6s
2

70
Y

b
X

e4
f14

6s
2

71
L

u
X

e4
f14

5d
6s

2

89
A

c
R

n6
d7

s2

90
T

h
R

n6
d2 7s

2

91
P

a
R

n5
f2 6d

1 7s
2

92
U

R
n5

f3 6d
1 7s

2

93
N

p
R

n5
f4 6d

1 7s
2

94
P

u
R

n5
f6 7s

2

95
A

m
R

n5
f7 7s

2

96
C

m
R

n5
f7 6d

7s
2

97
B

k
R

n5
f9 7s

2

98
C

f
R

n5
f10

7s
2

99
E

s
R

n5
f11

7s
2

10
0 F

m
R

n5
f12

7s
2

10
1 M

d
R

n5
f13

7s
2

10
2 N

o
R

n5
f14

7s
2

10
3 L

r
R

n5
f14

6d
7s

2

WIEN2k
ISBN 3-9501031-1-2

