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ENTROPICALLY STABILIZED QUASICRYSTALS

Mike Widom
Department of Physics
Pittsburgh, PA 15213

ABSTRACT

Microscopic models of quasicrystals suggest that
equilibrium quasicrystal phases are likely to be charac-
terized by a large entropy associated with low energy
phason excitations. This entropy can stabilize the
quasicrystal phase against competing crystal phases at
moderate temperatures. Phason elastic constants which
increase with temperature provide a clear signature of
entropic stabiization, as does instability of the quasi-
crystal phase at low temperatures. Recent experiments
on the icosahedral phase of AlggCuggFeqp dramatically
support this theory.

1. INTRODUCTION

Theory and experiment appear to be converging towards an under—
standing of the nature and mechanism of ordering in thermodynamically
stable quasicrystalline alloys. It is evident that energetic consider-—
ations in certain materials encourage the formation of structures
with short range icosahedral order.l The puzzle has been to explain
the propagation of this order over macroscopic distances when crystal
phases are available with similar local order.2 The answer appears
to lie in a near degeneracy of the crystalline and quasicrystalline
phases.

In the absence of strong energetic preference for a crystalline
structure, the difference in entropy between phases may become
important in selecting the equilibrium phase. It turns out that
entropy favors quasicrystalline order.3™® The idea is that the same
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local structures which repeat periodically to form a crystal structure
may be combined in many other ways with similar binding energy. The
system naturally seeks to maximize entropy by forming a structure with
the highest symmetry allowed by the local ordering. In alloys with a
preference for local icosahedral symmetry, this means global icosahe-
dral symmetry. Quasiperiodic translational order may also be induced
by entropy because the entropy density is maximized by structures with
zero phason strain.

Theoretical predictions of this model of entropic stabilization
include two effects which are observed experimentally. At low
temperatures when energy can dominate the free energy there may be a
phase transition, most likely to a nearby crystal phase. At higher
temperatures, within the icosahedral phase, the phason elastic
constants should increase with temperature.

This paper begins with a description of a theoretical model of
quasicrystalline order in two dimensions. The model is a binary alloy
of Lennard-Jones atoms which has been shown, through computer simula-
tion,4:7:8 to possess a quasicrystal phase in thermodynamic equili-
brium. We illustrate the near degeneracy of this model and two
others, and suggest that near degeneracy may be quite widespread in
quasicrystalline materials.

Next we describe the mechanism by which entropy favors quasicrys-
talline order. Numerical studies by transfer matrix methods3:6 on a
random tiling model indicate that entropy is an analytic function of
phason strain (roughly speaking, "phason strain" means deviation from
quasiperiodicity) with a maximum at zero. The curvature of entropy
density as a function of phason strain determines the phason elastic
constant. Monte Carlo simulations® demonstrate the applicability of
the random tiling model to the original atomic system, and show that
the phason elastic constant is proportional to temperature as is
expected from its entropic origin.

We then turn to general considerations of elasticity to compute
Debye-Waller factors and scattering intensity. Assuming elastic
constants for phonons to be independent of temeprature, but elastic
constants for phasons to be proportional to temperature, we find a low

temperature elastic instability caused by coupling of phonons and
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phasons. As a result, the low temperature phase is not quasicrystal-
line,8 and in the quasicrystal phase intensities of certain diffraction
peaks actually increase with temperature - remarkable facts which have

been observed experimentally.9

2. COMPUTER SIMULATION

Because of the difficulties of determining structure from
diffraction experiments, and the complexity of interactions between
metal atoms in three dimensional space, it may be useful to construct
artificial models which capture the essence of quasicrystal structure
while dispensing with unnecessary complications. Given such a model
one may try to extract general properties of the quasicrystal state
which are model independent. Since the ultimate goal is to learn
about real materials, care must be taken in distinguishing between
universal properties and peculiarities of the model. The ultimate
test of the theory, of course, comes in comparing predictions with
experiment.

It seems reasonable that the existence of icosahedral long range
order in metals should be related to the tendency of many metals
towards short range icosahedral order. Many amorphous and crystalline
alloys are known to possess icosahedral clusters.1,10  In fact
icosahedral order would be favored over FCC or HCP order for atoms
interacting through central forces, except for the 1mposslb111ty1 of
packing icosahedra in R3. With these observations in mind Widom,
Strandburg and Swendsen? constructed a model binary alloy (also
developed independently by Lancon, Billard and Chaudharill) in two
dimensions which would incorporate a preference for five-fold or ten-
fold order. The fundamental property of the model is that atoms like
to bond with the opposite species, and optimal bond lengths are set to
allow packing of 5 large around a small or 10 small around a large.

It turns out that several other structures (figure 1) can form also
gsatisfying the optimal nearest neighbor bond lengths. The Lennard-
Jones potential was chosen for the interactions.

Monte Carlo simulation reveals that quasicrystalline solid struc-—

tures (see figure 2a) occur in equilibrium over a range of temperatures.

At high temperatures the quasicrystal melts into a liquid. The very low
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Figure 3. Fat (72°) and thin (36°) rhombi decorated with large and

small atoms.

relatively ordered structures may be produced.T It appears that rota-
tion of one large and two small atoms play a significant role in
achieving order. This is precisely a continuous realization of the
“£11p"

The atomic rearrangements resulting from flips are short wave-
length phasons. Simulations of this model thus suggest that allowing
phasons to fluctuate is important in reaching equilibrium, and that
the most perfect quasicrystalline order will occur in materials in
which such rearrangements take place on short or moderate time scales.
The time scale presumably varies dramatically with temperature (say,
where A is an activation energy for rotation or vacancy
formation) leading to the likelihood that quasicrystal forming
materials fall out of equilibrium before reaching their low tempera-
ture ground states.

Because the energy change of the flips is so small, atomic
rearrangements may provide a significant source of entropy. In fact

the entropy per atoms, S, in a related, random tiling model is about

ﬁ.q

!
g
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0.2 kg, dominating any energetic contribution to the free energy down
to temperatures about AE/S # 0.05 or 1/4 of the melting temperature.
Above this temperature, but below melting, the equilibrium phase will
be determined by the maximization of entropy within the confines of
tiling structures. It will be shown in the next section that this
entropy favors quasicrystallinity, thereby explaining the occurrence
of an equilibrium quasicrystal phase in this model.

But first we must address the question raised at the beginning of
this section. What lessons can we take from this simple model and
apply to real materials? The importance of relaxing phason strain to
reach equilibrium is surely quite general, but is a fairly trivial
observation. Perhaps more significant is the observation that phason
strain can be relaxed, in contrast to earlier speculations.12 There
is no sign of phason pinning13 in this model over a wide temperature
range.

The most significant finding is probably the importance of entropy
in stabilizing the quasicrystal phase.? Initial theoretical models
of quasicrystals14 involved special "matching rules" which force a
particular nonperiodic structure, and charge energy for any local
violation of these rules such as a phason excitation. The perfect
quasicrystal is the ground state of such a system. Although there is
little doubt (but a finite amount, see Andersonl®) that atomic
systems which force such rules can exist in principal, no specific
atomic system has ever been shown to obey such rules. The entropic
mechanism for quasicrystal stabilization is thus a more natural
explanation than invoking quasiperiodic ground states.

Intellectual satisfaction is insufficient grounds for accepting
the model. We must show that other models share a near degeneracy
assoclated with phason excitations, and that the model makes predic-—
tions which are uniquely in agreement with experiment. Comparison
with experiment is discussed in the final section of this paper.

Now we briefly discuss other models.

Another 2-D binary alloy, similar in spirit to that shown in
figure 1 is the 12-fold quasicrystal system of Leung, Henley and
Chester.1® This system achieves 12-fold symmetry by combining the
3-fold symmetry of equilateral triangles with the 4-fold symmetry of
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squares (figure 4). The locally preferred structures (squares and

equilateral triangles) can tile the plane to infinity. Again, there

Figure 4. Large and small atoms form squares and equilateral

triangles.

is a finite entrop}r17 associated with the tiling and the entropy is
thought to be responsible for stability of the quasicrystal phase.16

Unfortunately there is no 3-D atomic model which has been shown to
have a quasicrystal phase. There are many proposals for decorating
rhombahedral® and other shapes19 with atoms in manners that can then
be used to tile space with quasicrystalline order. What is lacking is
a prescription for the atomic interactions which lead to stable quasi-
crystalline structures. None of the models of which this author is
aware impose Penrose-like matching rules. Figure S shows a typical
model. Clearly the tiles can be put together in many ways at essen-
tially identical energy providing the dominant interactions are with
nearest neighbors and angle independent.

In summary, modeling quasicrystals on a microscopic level with
plausible atomic interactions suggests that quasicrystals can occur as

stable phases over a finite temperature range. The stability appears
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to be related to a near degeneracy associated with phason fluctuations
which create an entropy not present in competing crystal phases.

ALUMINUM
OR ZINC
a

Figure 5. Decoration of prolate (a) and oblate (b) rhombahedra with
three types of atoms (vertex, edge and diagonal).

3. ENTROPICALLY INDUCED ORDER

It seems paradoxical at first that entropy, a measure of a systems
randomness, could be responsible for creating long range order. There
is precedent: many antiferromagnetic spin systems select their ground
state on the basis of entropy. Crystallization in hard disk or hard
sphere systems at high pressure is another, especially appropriate
example. Entropy in hard sphere systems is maximized when each atom
has the maximum amount of room to vibrate. The atomic volumes are
largest, in an average sense, when the atoms take on a crystalline
structure. Much the same effect occurs in quasicrystals. Phason
fluctuations provide a source of entropy.q Yet the entropy available
is largest when the average phason strain vanishes over large
distances.3,6

Elser and Henley first proposed entropy as a mechanism for

achieving quasicrystalline order. They began with the assumption that



346

entropy is an annalytic function of phason strain (not a trivial
assumption - in matching rule systems energy is nonanalytic in phason
strain). Then by noting that quasicrystals possess great symmetry
they proposed that the first nonconstant in the taylor expansion of
entropy density as a function of phason strain should be quadratic,

with negative curvature.
o(E) = gy - %KIWIZ F wnen (10

where 3 is the phason variable and 33 is the phason strain.

This formula 1s similar to the dependence of energy on phonon
strain (33). On the basis of (1) one concludesd there will be
fluctuations in the phason variable 3 analogous to vibrations in the
phason variable 3. Two=-point 3 correlation functions will be bounded
in three dimensions, but grow logarithmically in two dimensions. That
is, true long range order will be present in three dimensions, but
only quasi-long range order in two dimensions. The diffraction
pattern will have Bragg (delta function) peaks in three dimensions but
only power law peaks in two dimensions.

Equation (1) must be verified in order to demonstrate the ability
of entropy to favor quasicrystalline order. For atomic systems in the
continuum with long range interactions, the only way to understand the
precise behavior of the system is through computer simulation. Unfor-
tunately, entropy is extremely difficult to obtain through computer
simulation. Computer simulation can obtain K if equation (1) is
assumed valid by measuring 3 fluctuations.S

Widom, Deng and Henley5 made simple approximations to the model
then evaluated the entropy through a transfer matrix calculation. The
first step in the approximation is to truncate the potential at
nearest neighbors. This allows the interactions to be restricted to
atomic layers. Then each bond is set to its optimal length. This has
the effect of discretizing the set of atomic configurations. Within
the approximations one finds the system has an exact degeneracy within
the set of allowed configurations. Each allowed configuratien is
precisely a tiling of the plane by 36° and 72' rhombi. Thus we call

the approximation a "random tiling approximation". The binary alloy
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allows not the most general set of tilings, but rather a subset
capable of being decorated with Z species of atoms. Hence our model
is a binary random tlling.T

For details of the calculation the reader is referred to reference
6. Here we just note that equation (1) is confirmed for the binary
random tiling model and values obtained for o, and K. Agreement of
the value of K with that obtained by computer simulation® lends
credence to the approximation. Of course, at low temperatures the
approximation of truncating the interactions becomes quite bad. We
expect a phase transition out of the quasicrystal phase into low
temperature coexisting crystal phases, behavior which cannot be found
in a pure random tiling model.

This expectation is based on the prejudice15 that ground states of
simple atomic systems in the continuum are spatially periodic. Of
courge, there is no proof of this assertion, and quasicrystals provide
an opportunity to reexamine the problem. However I now show that
entropically stabilized quasicrystals have a low temperature elastic
instability, caused by coupling of phonons and phasons, thus the
ground state is surely not a quasicrystal. Furthermore, I suggest
that this instability actually occurs in real, stable, quasicrystal-

line materials.

4. ELASTICITY AND DEBYE-WALLER FACTORS

One may write down the general form of elastic free energy without
reference to particular models. The idea is to assume the free energy
is analytic in both phonon and phason strain, then write down the most
general formula consistent with the symmetry of the quasicrystal. In
the harmonic approximation, one keeps only terms of second order in
strain. Such expansions can be found in the literaturel3,20,21 g5p4

take the general form

Felastic = Fphonon * Fphason * Feoupling - (2)

The precise forms of the terms in equation 2 depend on symmetry
and spatial dimensionality. First consider Cg, symmetry in two
dimensions. The free energy density 1513




fe1 = % MV-W2 + Mgy, + % C1VivyVivy
Vv Vyvy = VyevyVyvyey 3)
FCgl U Uy (Vv # Vv )+ 2Uyy (Vv =Vyvy ) ]
Thermodynamic stability requires fg; be positive definite. To

determine the conditions for stability we write equation (3) in

matrix form

£ = % TEY, (4)
where
Uxx
Yyy
Uxy
3
W= Vyvy (5)
Vi Vy
Vyvy
Vyvy
L =
and _ -
A2y b 0 Cgy 0 0 C3
A A+2p 0 =C3 0 0 -C3
0 0 4y 0 203 -2€3 0
- C3 —C3 0 C 0 0 Cy (6)
1] 0 2C3 0 Cq -Cz 0
0 0 -203 0 —Cy g o
L C3 -Cg 0 Cp 0 0 Cq
ﬁ? is positive definite provided
AMp > 0, Cq > Cg, p(Cq#Cy) > 2052 . N

Now consider the temperature dependencies of the elastic
constants. The Lamé constants X\ and p are, of course, temperature
independent. Assuming the quasiperiodic order is stabilized by
entropy suggests K4 = Cy + Cg should be proportional to temperature,

Ky = KT , (8

since entropy enters free energy multiplied by temperature, F =

E - TS. Little is known about the behavior of C3. Let us assume it
is nonzero at all temperatures. The third inequality in (7) reveals
the quasicrystal is unstable to a simultaneous phonon and phason
strain at a temperature

Ty = 2C32/pK . 9

The quasicrystal phase is the high temperature phase.

It is also of interest to consider the intensities of diffraction
peaks as functions of temperature. 1In two dimensions the peaks are
power—law peaks rather than delta functions. That is, the intensities
for a peak with wave vector G grow with size R as

4-n
-r G (10)

1
é
The coefficient na is defined by

2z
Gy

2

(2]
N

2 4

na 1og R = @ Bp-@,vmdh =L adih e 2 adh . an

3]

Thus n measures the phonon and phason fluctuations. To calculate the

fluctuations we rewrite (3) in matrix notation and Fourier transform

2
F=1[993T3 b 2

=2z ¥ 4 (12)

where

=4
i

Uy
- :Z (13)
Vy

and
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note the inequality T4 < Ty where T is the temperature of the first
order phase transition out of the quasicrystal phase.

In summary, the dependence of phason elastic constant on
temperature predicted by the mechanism of entropic stabilization
leads to a temperature T, below which peak intensities vanish. For
T > T, peaks with large G, should increase monotonically in intensity
from zero as long as the harmonic approximation remains valid. Peaks
with large G; should first increase, then decrease as ordinary phonon
Debye-Waller behavior is regained. The behavior for T, < T < T4
cannot be observed in equilibrium because of an elastic instability
at Ty  The elastic instability itself should be preempted by a first
order phase transition at Ty > Ty.

Key predictions of this theory appear to be observed experimen-—
tally9 in studies of the Debye-Waller factor of the icosahedral phase
in AlgsCupgFeq2. In particular, peaks with large G; show a rapid
increase in intensity with temperature followed by a levelling off at

high temperatures. There is no obvious anomaly in peaks with large Gj.

I conjecture that this behavior is due to the effects of diverging

fluctuations at T,.

S. Conclusion

This paper reviews key ideas of the theory of entropically
stabilized quasicrystals. Several points have been made: (1)
realistic microscopic models of quasicrystalline order achieve
thermodynamic stability as a result of entropy associated with phason
excitations; (2) The ground state of such a system will most likely
consist of crystalline structures; (3) The phason elastic constant
should depend roughly linearly on temperature; (4) The temperature
dependence of phason elastic constants leads to a low temperature
elastic instability driven by phonon-phason coupling; (S) Several
experiments on AlCuFe alloys support key elements of this theory.

Let us turn now to summarize the results of experiments. What is
most clearly shown by experiment is that the quasicrystal phase is a
high temperature phase. There is some indication that the dominant
low temperature phase is a complex Rhombahedral crystal structure,

most likely an approximant to the quaslcrystal.a It will be of great
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interest to study disorder within the crystal structure. For
sufficiently close approximants to the quasicrystal phase there should
be vestiges of phason excitations corresponding to disorder within the
unit cells.

The dramatic dependence of scattering peak intensity on
temperature9 offers a challenge for theorists to explain. This paper
presents one possible explanation based on an elastic instability.
Experimental tests of this proposal should be possible by searching
for soft modes. Traditional elasticity measurements may suffice, but
it must be remembered that it is the phason modes which most
dramatically display the instability. Inspecting the formulae for
diffuse scattering derived by Jaric and Nelson,20 it seems that study
of diffuse scattering lineshapes offers a means of rather directly
measuring eigenvalues of the hydrodynamic matrix ??(a). Given the
eigenvalues one can determine whether the peak intensity variations
result from the elastic instability described here. Prior knowledge
of X and p from, say, sound speed experiments would help in extracting
phason elastic constants and coupling from the eigenvalues. Given
values of the elastic constants one can check for linear behavior of
phason elastic constants within the icosahedral phase.

In conclusion, the mechanism for stability of the quasicrystal
phase appears to be primarily entropic. Evidence for this comes both
from theoretical models and experiment. The entropic stabilization
theory makes both quantitative and qualitative predictions some of
which have been experimentally confirmed and others which can be
tested.
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