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1. INTRODUCTION 
Quasicrystals possess long-range positional order, but noncrystallographic 
orientational order. Since 1 984, when Shechtman and coworkers ( 1 ,  2) 
discovered icosahedral order in rapidly quenched AI6Mn, the field has 
blossomed into an active subject of research in metallurgy, crystallography, 
and condensed matter physics. Much of the work done to date, and the 
main focus of this review concerns the problem of quasicrystal structure. 
Although important open questions in this area remain, we now under
stand many fundamental structural principles. For example, it is now well 
established that equilibrium quasicrystal phases exist, and that they possess 
long-range quasiperiodic translational order. 

One cannot yet specify the location of each atom; however, much is 
known about the description of the structures. First, the recognition that 
related crystalline compounds consist of interpenetrating atomic clusters 

I The US Government has the right to retain a nonexclusive, royalty-free license in and to 
any copyright covering this paper. 
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686 GOLDMAN & WIDOM 

with icosahedral symmetry packed into a crystal lattice motivates cluster
based quasicrystal models, which describe local order over distances of tens 
of angstroms. Experiments utilizing both electron and tunneling (STM) 
microscopy verify the presence of such clusters in quasicrystals, as well. 
In this review, we show both experimental electron microscopy and STM 
data and some of the theoretically proposed clusters. To describe the long
range structure, we must deal with l;he quasiperiodic nature of the ordering. 
We accomplish this through analysis of related, periodic structures in a six
dimensional space. The higher dimensional description of quasicrystalline 
structures follows directly from the more familiar treatment of simple 
incommensurate structures. The three-dimensional icosahedral quasi
crystal may be derived from a six .. dimensional hypercubic lattice with its 
associated atomic basis. Elegant analysis of scattering data reveals the 
six-dimensional "atomic" basis directly. The true three-dimensional 
quasicrystal structure is simply a cut through this six-dimensional 
crystal. 

Explaining why a given material forms a quasicrystal, instead of a more 
conventional crystal structure, proves more difficult. A phenomenological 
approach, based on quantum structural diagrams, successfully predicted 
new quasicrystal-forming compounds. But, predictions from first prin
ciples remain elusive. There is evidence that energetic effects, such as 
atomic sizes and chemical bonding, and entropic effects, which arise from 
structural rearrangements, all play essential roles. 

Many other review articles about quasicrystals exist. Foremost is a series 
of books called Aperiodicity and Order (3-5); each volume contains several 
review articles about quasicrystals" incommensurate structures, and related 
topics. "Bond Orientational Order in Condensed Matter Systems" (6) 
contains relevant sections, as welL See also Quasicrystals: The State of the 
Art (7) for a collection of recent reviews. Henley's 1 987 review article (8) 
includes an excellent bibliography. Many early papers in the field are 
collected in a single book (9). Invited papers in conference proceedings 
( 10-1 4) serve well as reviews of specific topics. 

This paper begins by discussing diffraction patterns with icosahedral 
symmetry. We distinguish betwel�n "simple icosahedral" and other ico
sahedral space groups, and then describe some quasicrystals with deca
gonal and other orientational symmetries. Next, quasicrystal structure in 
real space is  examined through both experimental techniques of 
microscopy and through a theoretical description in six-dimensional space. 
After describing important clas�:es of structural models, we include a 
section on theoretical and experimental studies of the electronic, magnetic, 
and vibrational properties of quasicrystals. 
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QUASICRYSTAL STRUCTURE 687 

2. DIFFRACTION PATTERNS OF 
QUASICRYSTALLINE ALLOYS 
2.1  Icosahedral Symmetry 
Icosahedral phases arise in many pseudo binary and ternary metallic alloys 
by rapid quenching from the melt ( 1 ,  1 5), low temperature heat treatment 
of glassy ribbons ( 1 6) and thin films ( 1 7), and ion beam alloying techniques 
( 18). The first icosahedral phase alloy was observed in transmission elec
tron microscope studies of rapidly quenched alloys of Al6Mn ( 1 ,  2). The 
composition of the icosahedral phasc actually is eloser to Al4Mn ( 1 9) ,  and 
the addition of a few atomic % Si stabilizes the icosahedral phase, thus 
leading to larger grain size and sharpened diffraction peaks (20, 21) .  The 
list of systems that form icosahedral phases at some composition now 
includes many other AI-M and AI-M-Si alloys (15), AI-Mg-Zn (22, 23), 
AI-Li-Cu (24, 25), AI-Cu-M (M = Mn, Fe, Ru, Cr, Os, V) (26), TirM and 
Ti-M-Si alloys (M = Mn, Co, Cr, Ni and Fe) (27-31), Ga-Mg-Zn (32), 
and U-Pd-Si (16). 

Experiments on the nucleation, growth, and recrystallization of quasi
crystals have been reviewed by Kelton (33) and Schaefer & Bendersky 
(34). In the AI-Mn system, the glassy phase appears as micro quasi
crystalline, with grain sizes on the order of 25 A (35). The glassy-to
icosahedra1 transformation proceeds by grain coarsening, rather than by 
nucleation and growth (36, 37). In contrast, similar studies of the "requasi
crystallization" of U-Pd-Si ( 16, 38) and AI-Cu-V (39, 40) report that the 
transformation proceeds via nucleation and growth. Both the formation 
of the icosahedral phase and the details of quasicrystalline-to-crystalline 
transformations remain poorly understood. 

With only a few notable and important exceptions, the icosahedral 
phases transform to ordinary crystalline phases upon heat treatment, thus 
showing that they are metastable. The discovery (24-26, 32) of stable 
icosahedral! phases in AI-Li-Cu, Ga-Mg-Zn, and AI-Cu-M (M = Fe, Ru) 
allows the use of conventional equilibrium growth techniques to produce 
relatively large (0. 1-5 mm) single grains of the icosahedral phase in these 
systems. Proper growth conditions (41--44) produce submillimeter-faceted 
single grains (Figure 1) .  Positional correlation lengths revealed by x-ray 
diffraction reach the scale of microns (45). 

Figure 2 displays electron diffraction patterns perpendicular to the high 
symmetry twofold, threefold, and fivefold directions in icosahedral AI-Mn, 
thus illustrating several key features characteristic of all quasicrystalline 
diffraction patterns. First, the point group of quasicrystalline structures 
contains noncrystallographic rotational symmetries. Selected area diffrac-
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688 GOLDMAN & WIDOM 

(a) 

(b) 

Figure 1 (a) Single grains of icosahedral Al-Li-Cu displaying facets in the shape of rhombic 
triacontahedra. (b) Pentagonal dodecahedra of Al-Cu-Fc. (Courtcsy of F. W. Gayle.) 
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Fzqure 2 Electron diffraction patterns of icosahedral AI-Mn taken along the (a) fivefold, 
(b) twofold, and (e) threefold axes. (Courtesy of K. Kelton.) The angular relationship 

between these high symmetry directions is evident in the stereographic projection in (d). 

tion patterns pass through a sequence of twofold, threefold, and fivefold 
axes characteristic of icosahedral symmetry, as grains are rotated through 
the angles of the icosahedral point group (Figure 2d). The fivefold zone 
axis (Figure 2a) for the icosahedral group m35 is inconsistent with long
range periodic translational order (46). The presence of well-defined 
diffraction spots in these patterns, however, points to the presence of 
some form ofl ong-range positional order. Indeed, in several instances the 
diffraction peaks from quasicrystals are as sharp as those found in the 
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690 GOLDMAN & WIDOM 

diffraction patterns from high-quality periodic crystals of metallic alloys 
(45, 47), with peak widths limited by experimental resolution. 

For a periodic crystal, the position of any diffraction peak in the recipro
cal lattice obeys 

G = ha+kb+lc, 1. 

where the integers (h, k, /) are the Miller indices of the diffraction peak. 
The size and symmetry of the unit cell determine the reciprocal lattice basis 
vectors (a, b, c). The ratio of the lengths of reciprocal lattice vectors, G I 
and G2, for any two collinear diffraction peaks from a periodic crystal 
must be a ratio of integers (a rational number). 

Careful inspection of the twofold, threefold, and fivefold electron 
diffraction patterns in Figure 2, however, reveals irrational ratios among 
collinear spots. For instance, the fivefold plane of Figure 2a contains five 
sets of twofold axes 72° apart. Along these twofold axes, the sequence of 
bright diffraction spots follows 1:he integer powers of the golden mean 
[r = (fi + 1)/2], an irrational number that arises in the geometry of ico
sahedra and pentagons. Similarly, sequences of bright spots along the 
fivefold and threefold axes (seen in the twofold plane of Figure 2b) remain 
invariant under multiplication or division by ,3. The entire diffraction 
pattern, therefore, appears the same under ,3 self-similarity transfor
mations (48). 

We must choose a suitable set of basis vectors and a fundamental 
length scale to index the diffraction pattern from icosahedral alloys. For 
icosahedral structures, it seems most appropriate to choose a set of basis 
vectors that emphasize the underlying icosahedral symmetry of the struc
ture, as shown in Figure 3. Unit vectors point along six independent vertex 
directions of the icosahedron in the "umbrella convention" described by 
Elser (49). All diffraction spots in Figure 2 can then be indexed by sets of 
six Miller indices, (n!> n2, n3, n4, lis, nG), such that 

where 

til = }'(1,t,O), 

tl3 = },(" 0, - I), 

'Is = }'(-I",O), 

tl2 = }'(t, 0, I) 

tl4 = }'(O, 1, -r) 
'16 = }'(O, 1, c), 

2. 

3. 

and}' = (,2+ 1)-1/2. This particular choice of six vertex vectors differs 
from, but is completely equivalent to, the original indexing scheme used 
by Bancel et al (50). 
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QUASICRYSTAL STRUCTURE 691 

Figure 3 Reciprocallattice basis vectors lIsed for indexing the icosahedral phase diffraction 

peaks. 

A second complementary set of reciprocal lattice vectors arises as a 
consequence of the incommensurability of the structure (48, 51-57). Each 
diffraction peak is associated with both a physical momentum coordinate 
G, and its dual, or "phason" momentum coordinate, 

4. 

The basis ve,;;tors used for constructing G1. derive from permutations of 
the q-vectors in Figure 3: 

-.1 q\ = -'1\, 
- .1 -q3 = q4, 
- .1 -qs = q}, 

- 1. ' q2 = q2 
- .1 -q4 = q6 
-.1 -q6 = qs· 5. 

Phason momentum plays an important role in the determination of 
diffraction po:ak intensities and the description of disorder in these 
materials (17, 51, 58-60). We discuss phason disorder in detail in Section 
3.3 .  

Other indexing schemes for the icosahedral phase are possible. For 
instance, choose a set of three orthogonal basis vectors (Clx, cJY' cJz) parallel 
to three twofold axes of the icosahedron in Figure 3. The incom
mensurability of the structure requires that each reciprocal lattice point 
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692 GOLDMAN & WIDOM 

be labeled by a set of Miller indices (h, k, I), which are irrational numbers. 
A second indexing scheme, introduced by Cahn et al (61 ), employs three 
pairs of integer indices to label diffraction peaks by using the (q" qy, qz) 
basis vectors. We can, denote diffraction peaks by (h/h', k/k', I/!'), where 
hlh' == h+h'7:, klk' == k+k'7:, fll' == 1+1'T. A simple formula 

h=nt-ns 

k=n4+n6 

1= n2-n3 

h' = n2+n3 

k' = nt+ns 

6. 

relates the two indexing systems. Although both indexing systems offer 
certain advantages for the description of diffraction patterns from the 
icosahedral alloys, we employ the former in the remainder of this article, 
because it emphasizes the underlying icosahedral symmetry of the struc
ture. 

The intrinsic incommensurability of the structure complicates the choice 
of a fundamental length scale with which to set Go for quasicrystals. Bragg 
peaks densely fill reciprocal space, so there is no minimum separation 
between diffraction peaks, which may be used to set reciprocal space length 
scales. However, as seen in Figure 2, the vast majority of these diffraction 

peaks are of such low intensity that they are indistinguishable from the 
background. Our choice of basis vectors qj limits plausible candidates for 
Go to diffraction peaks along the vertex, or fivefold, directions. However, 
an interesting implication of the r3 invariance of the diffraction patterns 
shown in Figure 2 is that the fundamental length scale, or "quasilattice 
constant," of the structure can only be determined from diffraction 
measurement to within a factor of 7:3• One choice of a fundamental recipro
cal lattice vector yields a length scale on the order of interatomic distances, 
whereas other choices come closer to distances between clusters of atoms. 
In the case of the AI-Mn-Si icosahedral alloy, Bancel et al (50) assigned 
the fundamental (100000) reciprocal lattice vector to the bright spot along 
the fivefold axis at Q = 2.894 A-I. With this choice, all peaks in the powder 
diffraction pattern indexed with the smallest number of nonzero integer 
indices. Another choice for the fundamental reciprocal lattice vector in AI
Mn-Si is the relatively weak peak along the fivefold axis at Q = 0.68 A - I. 
This value differs from the previous value by a factor of 7:- 3. Many 
researchers favor this choice, because i t  represents a length scale in  real 
space, which is close to the rhombohedral edge lengths in tiling models for 
the icosahedral phase (48, 61, (2) and the closely related cubic a-AI-Mn
Si phase (63, 64). 

Let's make some general observations about indexing of icosahedral 
quasicrystals. The set of icosahedral basis vectors {4J is incommensurate 
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QUASJCRYSTAL STRUCTURE 693 

because no single basis vector can be represented as a linear combination 
with integer coefficients of the remaining five. Therefore, we need more 
integer MiIller indices than we have spatial dimensions. Just as the set of 
all Bragg peaks labeled by three integer Miller indices forms a crystal 
lattice in three-dimensional reciprocal space, so the set of all Bragg peaks 
labeled by six integers (n" n2, n3, n4, ns, n6) is geometrically equivalent to 
lattice in six-dimensional reciprocal space. The reciprocal lattice defined 
by taking all combinations of three integers is simple cubic. Accordingly, 
the reciprocal lattice defined by taking all combinations of six integers is 
"simple hypercubic." Icosahedral quasicrystals, whose reciprocal lattices 
are simple hypercubic, are called "simple icosahedral."  

Three different "quasi-Bravais" lattices contain icosahedral point group 
symmetry-"face centered icosahedral" (FCI) and "body centered ico
sahedral" (BCI)-in addition to the simple icosahedral (SJ) structure, 
whose diffraction pattern (reciprocal lattice) we described above (65). The 
differences between the three icosahedral quasi-Bravais lattices appear 
most clearly in reciprocal space. The reciprocal lattice of a simple ico
sahedral quasicrystal, the set of all combinations of six Miller indices, is 
equivalent to a simple hypercubic lattice in six dimensions. Now consider, 
instead of all combinations of Miller indices, only those obtained by adding 
basis vectors qi in pairs. The resulting lattice in reciprocal space contains 
only points for which L ni is even. By analogy with three dimensions, we 
call this a face-centered hypercubic reciprocal lattice. Icosahedral quasi
crystals with such a reciprocal lattice are, therefore, body-centered ico
sahedral. If we instead consider the reciprocal space lattice of diffraction 
peaks labeled by Miller indices, which are either all even or all odd, we 
obtain by analogy a body-centered hypercuhic reciprocal lattice cor
responding in real space to a face-centered icosahedral quasicrystal. 

The classification of noncrystallographic space groups (65-67) is physi
cally illuminating, as well as mathematically elegant. One finds that the 
thrce quasi-Bravais lattices described above are the only ones possible with 
icosahedral symmetry. Other noncrystallographic space groups exist in 
three dimensions with axial symmetries. These have noncrystallographic 
symmetry (such as eightfold, tenfold, or twelvefold rotations) around a 
single axis, but the reciprocal lattice is periodic along this axis (note that 
the structure Jltself need not be periodic). There are even structures whose 
reciprocal lattices reveal priodicity in two-dimensions and quasiperiodicity 
along the remaining one. 

Although BCI alloys have never been observed, the AI-Cu-M alloys 
discovered by Tsai et al (26) yield diffraction patterns (Figure 4) that 
classify them as FeI alloys. In particular, the sequence of bright diffraction 
spots along the threefold and fivefold axes in the twofold plane (Figure 

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
1.

42
:6

85
-7

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

 o
n 

06
/0

7/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



(a) 

694 GOLDMAN & WIDOM 

(e) 

Figure 4 Electron diffraction patterns of FCI AI-Cu-Fe taken along the (a) fivefold, 

(b) twofold, (c) threefold axes. (Courtesy ofS. Ebalard and F. Spaepen.) 

4b) are related by factors of" rather than ,3. The entire diffraction pattern 
is invariant under multiplication or division by T; therefore, Go is only 
determined to within a factor of r. The Fcr structure apparently results 
from chemical ordering of the atoms on an sr quasilattice, analogous to 
superlattice ordering in crystalline alloys, such as f3-brass. For example, 
electron microscopy studies establish the presence of antiphase domains 
characteristic of chemical ordering in FCI A I-Cu-Fe (68,69). The antiphase 
domains disappear upon heat treatment, which evidently increases the 
range of chemical order. Interestingly, it seems that very short range 
FCI chemical order exists in S1 alloys because diffuse scattering at FCI 
superlattice positions appears in the SI alloys AI-Mn-Si (70, 7 1 )  and AI
Li-Cu (72). Changing the Al/Pd composition in AI-Pd-M n  icosahedral 
alloys (73) drives a transformation between the SI and FCI structures. 
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QUASICRYSTAL STRUCTURE 695 

One of the most fascinating differences between the SI and FeI alloys 
is the ubiquitous disorder revealed in the x-ray diffraction patterns of the 
former, and its absence in the latter. The particular type of disorder, termed 
"phason strain" (see Section 3 .3) found in the SI alloys is peculiar to 
quasicrystals and other incommensurate structures. Broadening of 
diffraction peaks in powder patterns, or peak shifts and distortions in 
single grain diffraction studies ( 15, 1 7, 58-60), whose magnitude depends 
on G 1., signal the presence of phason strain. Explaining the absence of 
such strains in FeI alloys remains an important open problem. 

The presence of significant diffuse scattering for many SI systems (28, 
70, 72,74-76) deserves special mention. These patterns (Figure 5) are most 
clearly seen, and have been studied extensively in Ti-Mn (77, 78). The 
origin of this diffuse scattering is still a matter of some controversy. In 
certain cases, the appearance of diffuse scattering at the sr forbidden, but 
FeI allowed, Bragg points has been interpreted in terms of short-range 
chemical order characteristic of the Fer structure (70, 7 1 ) .  Similar patterns 
of diffuse scattering arise naturally from structural models for the ico
sahedral phase that contain significant disorder (72, 79-8 1) .  On the other 

Figure 5 Diffuse scattering pattern of icosahedral Ti-Mn (courtesy ofK. F. Kelton). 
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696 GOLDMAN & WIDOM 

hand, similar patterns of diffuse scattering occur in crystalline alloys, which 
share structural building blocks (icosahedral atomic clusters) with the 
icosahedral phase, thus suggesting that the diffuse scattering arises from 
positional or chemical ordering in these structural units themselves (82). 

2.2 Decagonal and Other Symmetries 

Examples of many of the other noncrystallographic space groups (65, 66) 
have also been reported. The decagonal phase (or T-phase) was first 
observed, but not identified as such, in rapidly quenched alloys of AI-Mn 
and AI-Pd (83, 84). Bendersky (85) and Chattopadhyay et al (86) later 
identified the AI-Mn alloy as a qmsicrystal and noted its close relationship 
to the icosahedral phase in this system. The decagonal phase is intermediate 
between the crystalline and icosahedral phases. In AI-Mn, the decagonal 
phase forms along with the icosahedral phase when Mn concentrations 
exceed 1 6  atomic %. At higher Mn concentrations and/or slower quench 
rates, the decagonal phase forms instead of the icosahedral phase (87, 88), 
while the nucleation of the decagonal phase in AI-Mn decreases with the 
addition of a few % Si (21 ) .  

Many other binary AI-M alloy;, (M = Fe, Co, Ni ,  Ru, Rh, Pd, Os, Ir, 
and Pt), as well as ternary alloys with and without Al (89, 90), display 
decagonal phases. With a few notable exceptions, the decagonal alloys are 
metastable, although the recrystallization temperatures exceed those for 
the icosahedral phase. Recently, stable decagonal phases were discovered 
in AI-Cu-Co and AI-Cu-Co-Si alloys (9 1 ,  92). Millimeter-sized grains with 
a decaprismatic morphology grow by slowly cooling ingots from the melt 
(Figure 6). 

Quasiperiodic diffraction patterns with tenfold symmetry in a plane and 
translational periodicity along the axis perpendicular to that plane (Figure 
7) characterize the decagonal alloys. Ten equivalent twofold directions 
(labeled D), appear 90° from the tenfold axis and 36° from each other. 
Another set of twofold directions (labeled P) lie in the plane 18° away 
from the D axes. The point symmetry of the decagonal phase is 1 0/mmm, 
and the absence of odd-order spots along the P direction are the extinctions 
expected for the space group P I  0 s/mmc (65, 93). 

Diffraction patterns from the decagonal phase index to a set of pen
tagonal bipyramid basis vectors related to the icosahedral basis vectors 
described above (94, 95). If we distort the five vertex vectors ti2 through 
ti6, so that their projection along III becomes a rational fraction of q 1, this 
"squashed icosahedron" emphasizes the relationship between the ico
sahedral and decagonal diffraction patterns. While a simple distortion 
relates the reciprocal space basis vectors, such a simple relation need not 
hold in real space. Decagonal symmetry, with its tenfold axis, is not a 
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QUASICRYSTAL STRUCTURE 697 

Figure 6 Decaprismatic single grains of AI-Cu-Co-Si. (Courtesy of L.  X .  He.) 

subgroup of icosahedral symmetry. To transform icosahedral structures 
into decagonal structures one must break the icosahedral symmetry (as 
described above) and also introduce a mirror plane perpendicular to the 
fivefold axis (96). 

An alternative, and more frequently used, indexing scheme for the 
decagonal phase employs five coplanar basis vectors, 72° apart, along with 
a sixth vector perpendicular to the plane (90, 97, 98). The physical and 
phason components of the reciprocal lattice vectors are then 

5 5 
G = L nj'qj, Gl. = L njqt, 

j� 0 i=O 

where 

[ (2ni),. (2ni)] 
qj = qp * xcos 5 +YSlll 5 ' 

and 

7. 

(i = 0 � 4) 

8. 

9 .  

Here, qp and qz denote the fundamental reciprocal lattice vectors in  the 
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(a) 

(b) 
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� 

. . ', ,'.. .. '. . . 

Figure 7 (a) The tenfold diffraction plane of decagonal AI-Cu-Co-Si. Peak F is at r times 
peak D. (b) The orientational relation between the tenfold axis and twofold P and D axes 
in decagonal phase alloys. (Courtesy of L. X. He.) 

quasiperiodic plane and along the periodic direction, respectively
. 

The 
tenfold diffraction pattern in Figure 6 remains invariant under multi
plication or division by r. Therefore, the choice of qp is ambiguous within 
factors of T. We can actually label each diffraction peak with five, rather 
than six, indices (four in-plane, one out-of-plane), because the five vectors 
that point to the vertices of a pentagon are not linearly independent. This 
causes some confusion, as any reciprocal lattice point may be labeled by 
six different, but equivalent, sets of indices. Mukhopadhyay et al (99) 
suggest a least path criterion, by which one selects the set of indices that 
yields the minimum sum. 
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QUASICRYSTAL STRUCTURE 699 

Icosahedral and decagonal phase diffraction patterns share a close 
relationship (85, 1 00). One of the six fivefold axcs of the icosahedral phase 
becomes the tenfold axis of the decagonal phase, while the other fivefold 
and threefold axes disappear. We see pseudo two-, three-, and fivefold 
patterns if we tilt grains of decagonal phase by appropriate angles (3 1 .72°, 
37.37°, and 63.43°, respectively) away from the tenfold axis along the P 
directions. 

Several periodicities, all related to a basic repeat distance (10 1 )  of 
about 4 A occur along the tenfold axis for all systems studied to date. 
For instance, in AI-Mn, the periodicity along the tenfold axis is 1 2.4 A, 
whereas it is 16 .5  A in AI-Fe and AI-Pd, and it is close to 4 A in AI-Ni. In 
the AI-Cu-Co decagonal phase, repeat distances of about 4, 8, 1 2, and 
1 6  A along the periodic direction appear under different conditions in the 
same alloy (91). Indeed, streaking and diffuse scattering characterize 
the diffraction patterns of all decagonal phase alloys, which suggests the 
presence of stacking faults and polytypism. 

Other, noncrystallographic axial quasicrystals, with eightfold and 
twelvefold rotational symmetry, have been reported. Wang et al (102) first 
reported octagonal quasicrystals in Cr-Ni-Si, V-Ni-Si, Mn-Si, Mo-Ni-Si, 
Mn-Fe-Si, and Mn-Al-Si. In all of these systems, the octagonal phase 
coexists with microtwins of the cubic fJ-Mn structures ( 1 03). Convergent 
beam electron diffraction (CBED) patterns and high-resolution lattice 
images differentiate between these micro twins and the true octagonal 
phase. Quasicrystals with dodecagonal symmetry are reported in V-Ni 
and V-Ni-Si alloys ( 1 04), as well as laser-vaporized and later condensed 
particles ofCr-Ni ( 105). For brief reviews of the experimental progress on 
these quasi(:rystals, see the articles by Kuo (106, 107). In these reports, 
however, these quasicrystals occur only in the presence of twinned crystal 
phases, which raises doubts whether they are true bulk phases. In addition, 
twinned conventional crystals may easily mimic eight- and twelvefold 
diffraction patterns to high accuracy ( l08, 1 09). 

He et al (1 1 0) report the existence of a one-dimensional incommensurate 
structure in rapidly quenched alloys of AI-Ni-Si, AI-Cu-Mn, and AI-Cu
Co that may be structurally related to quasicrystals. These alloys exhibit 
periodic difI'raction patterns along two directions (the tenfold and P axes 
of the decagonal phase), but quasiperiodic patterns along the third direc
tion (one of the decagonal D axes). This phase may be related to the 
crystalline To-phases observed in AI-Ni-Cu (1 1 1 , 1 1 2) alloys. The !-phases 
are a series of vacancy-ordered distorted CsCI structures with repeat units 
along the [I ll] directions that approximate a Fibonacci sequence. So far 
!b !3, !5, !8, and !'3 variants (where the subscript denotes the number 
of layers in the repeat unit) have been identified. The one-dimensional 
Fibonacci quasicrystal is !n in the limit n -+ 00. 
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700 GOLDMAN & WIDOM 

3. REAL SPACE STRUCTURE 
3. 1 Microscopy 

Fourier inversion of the electron diffraction patterns to obtain images of 
the real space density is an important technique for the study of quasi
crystals. Electron microscopy recombines a subset of the diffraction spots 
from some area of the sample at the image plane, thus producing an image 
with atomic scale ( � 2  A) lateral resolution. The optical system of the 
microscope performs the transform, thereby preserving both intensity and 
phase information. On the other hand, one must not interpret the light 
and dark regions of the images in terms of positions of individual atoms. 
The image itself results from multiple scattering of electrons through the 
entire thickness (typically on the order of 1 00 ft.) of the sample. Further
more, subtle changes in the imaging process (e.g. defocusing) can produce 
global shifts in the contrast of the images. No single high-resolution lattice 
image tells the entire story, and it is dangerous to support or denounce 
any particular structural model for quasicrystals solely upon these images 
(113, 114). 

Even with the above-stated disclaimers, lattice imaging proves very 
useful for investigations of structure, defects, and strain in crystalline 
materials. Many groups now also apply this technique to quasicrystalline 
alloys ( l 1 5- 1 1 8). Figure 8 compares high-resolution lattice images taken 
(a) along the fivefold axis of icosahedral AI-Mn ( 1 19), and (b) the tenfold 
axis of decagonal AI-Cu-Co-Si (1.. X. He, private communication), with a 
simulated image (c) of the same plane produced by the density wave 
expansion 

5 
per) = L cos (Gj • r). 10 .  

; =  I 

Gj are equally spaced around a circle (separated by 72°). Although the 
simulation includes Gj of only a single magnitude, real lattice images 
typically make use of several Fourier components (rings of diffraction 
spots) out to some cutoff Gmax limited by aberrations. Simulated lattice 
images, therefore, contain less detail than real ones. Nevertheless, both 
the experimental and simulated images share common features, such 
as local regions of tenfold symmetry. A clever experiment, in which 
five crossed laser beams were shone through a colloidal suspension 
of polystyrene spheres, created an artificial quasicrystal ( 1 20) based on 
Equation 10 .  

View Figure 8c at grazing incidence to see rows of contrast aperiodically 
spaced in a Fibonacci sequence along the five twofold directions. Closer 
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QUASICRYSTAL STRUCTURE 701 

inspection of the lattice image Figure 8a reveals that the rows of contrast 
often shift discontinuously at points and then continue uninterrupted. Such 
jogs arise from the same long wavelength phason strain in quasicrystals (17, 
58-60) that create broadening and shifting of diffraction peaks. In the 
equivalent fivefold plane lattice images of FCI A I-Cu-Fe (Figure 8d) these 
discontinuous shifts are all but absent (12 1) .  This is consistent with the 
absence of diffraction peak broadening in the x-ray patterns of the FC! 
alloys. 

As mentioned above, light and dark spots in these lattice images repre
sent an average of the electron density projected parallel to the incident 
bcam direction through the sample. More recently, STM studies of the 
decagonal phase of AI-Cu-Co provided the first glimpse of true atomic 
scale structure within a single surface plane (1 22). Figure 9 reproduces the 
STM image of the quasiperiodic plane (perpendicular to the tenfold axis). 
Steps in the surface appear as jagged vertical lines running across the 
image. This figure clearly shows the preservation of relative orientation 
of the atomic structure from layer to layer. The image bears a striking 
resemblance to pentagonal quasilattices constructed by tiling models or 
density wave expansions, as well as the high resolution electron microscopy 
(HREM) lattice images of the tenfold plane of the decagonal phase (see 
Figure 8b). 

Examination of Figures 8 and 9, as well as consideration of the known 
structures of presumably related crystal phases, suggests models for the 
local atomic structure of quasicrystal-forming compounds. Many crystal 
structures may be described in terms of icosahedrally symmetric clusters 
of atoms ( 1 23-133). For example, Figure l Oa shows a cluster taken from 
the Bergman phase (123) of Mg32(Al, Zn)49' By joining or overlapping 
these clusters, one can fill space in many ways, both periodically (as in 
the Bergman phase) and aperiodically (63, 64). Alternatively, one may 
decompose the clusters into "tiles," such as those illustrated in Figure l Ob-d. 
Again, these tiles may be arranged in many ways to fill space. 

3.2 Hyperspace 

We now ask theoretically how best to describe a structure that, due to its 
quasiperiodicity, never repeats itself. Our discussion of indexing quasi
crystalline diffraction patterns emphasized the requirement for six Miller 
indices when the diffraction pattern has icosahedral symmetry. As an 
automatic by-product of this requirement, description of atomic structures 
of icosahedral materials is most conveniently conducted in six-dimensional 
space. Equation 2 gives the position of each peak in the diffraction pattern. 
Assuming that the Bragg peaks contain all the structural information (i.e. 
ignoring any diffuse scattering), we write the electron density 
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Figure 8 High-solution lattice images taken along (a) the fivefold axis of AI-Mn-Si and (0) the tenfold aKis of AI-Cu-Co-Si. White lines outline 
frequently occurring motifs. (c) A simulated density image as described in the text. (d) high-resolution lattice image taken along the fivefold axis 
of AI-eu-Fe. (Figures a and d are courtesy of K. Hiraga, b is courtesy of L. X. He.) 
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704 GOLDMAN & WTDOM 

Figure 9 STM image of the surface perpendicular to the tenfold axis of decagonal AI-Cu
Co. (Courtesy of A. R. Kortan.) 

1 1 . 

where the coefficient A{n;} represents the amplitude and cP{n;} represents the 
phase of the peak with Miller indices {n;}. Figure 8e illustrates such a 
function for the simple case in which all phases vanish and A{n;J = 0, except 
for {nil e[l, 0, 0, 0, 0, 0]. 

Clearly, per) is a periodic function of each combination eli· r. In fact, we 
can express per) in terms of a periodic function of six variables 

P6(8" 82, 8), 84, 85, 86) == I, A{,,;} cos {I, (ni8i + cPn)}. In;} i 
12. 
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(a) 

(e) 

QUASICRYSTAL STRUCTURE 705 

(d) 

Figure 10 (a) Cluster of 73 AI and Zn atoms (white) and 64 Mg atoms (black) from 
Mg,,(AI, Zn)49 (d) Decoration of tiles [oblate (b) and prolate (e) rhombohedra and a 
rhombic dodecahedron] with white and black atoms. 

Now, a function of six variables may always be represented as a function 
in a six-dimensional space, in which each variable corresponds to one of 
the six orthogonal coordinates of the space. Then, we obtain the electron 
density expressed in Equation 11 

1 3 .  

But, this i s  just a cross section of  the function P 6(r) on  a three-dimensional 
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706 GOLDMAN & WIDOM 

hyperplane in six-dimensional space. That is, we evaluate P6(8b 82, 83, 84, 
f) 5, (6) only at points of the form {eli' r}. 

Figure 1 1  a illustrates the connection between an atomic structure in real, 
physical space and a fictitious structure in hypcrspace. For the purpose of 
illustration, we show atoms placed in a quasiperiodic one-dimensional 
sequence. The atomic positions are the intersections of the physical one
dimensional space labeled E with "atomic surfaces," which appear as line 
segments, placed in a two-dimensional square lattice with axes 81 and 82, 
Atomic surfaces need not simply be line segments. They may bend in 
hyperspace and even join with surfaces in other unit cells. There is no 
restriction on the number of atomic surfaces in a unit cell. Altering the 
atomic surfaces alters the placement of atoms in physical space. The line 

(b) 

Figu;e 11 (a) Line segments represent atomic surfaces placed at sites of a two-dimensional 
square lattice. Intersections of atomic surfaces with one-dimensional physical space E place 
atoms in a Fibonacci sequence. (b) Four'ier transform of Fibonacci sequence obtained from 
placing Fourier transform of atomic surfaces at sites of two-dimensional reciprocal lattice 
(after Ref. 67). 
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QUASICRYSTAL STRUCTURE 707 

segments shown in Figure Iia yield the Fibonacci sequence along the 
physical space line E. 

One of the greatest advantages of representing physical structures in 
hyperspace is the insight gained (48, 51-57) into the dependence of diffrac
tion peak intensities and widths on G and G.L. To Fourier transform a 
quasiperiodic structure, first Fourier transform the atomic surfaces in the 
direction G.L, then place copies of this Fourier transform at the sites of the 
reciprocal lattice in hyperspace, as shown in Figure lib (52). The Fourier 
transform in physical reciprocal space G consists of a delta function at 
every intersection of physical reciprocal space with the hyperspace diffrac
tion pattern. The amplitude of the delta function in the physical reciprocal 
space equals the amplitude of the hyperspace diffraction pattern at the 
point of intersection. Clearly, this amplitude depends on G.L and falls off 
for large values of G.L' Because of the irrational slope of physical space 
within hyperspace, the diffraction peaks fill reciprocal space densely, but 
most of the peaks are quite weak because they have large amplitudes of G.L' 

A hypercubic crystal of atomic surfaces in six-dimensional space repre
sents the microscopic, atomic structure of a quasiperiodic, icosahedrally sym
metric mat,�rial. Direct determination of the six-dimensional electron density 
of AI-Li-Cu exploits this observation (93, 134-136). Figure 12 shows the 
resulting Patterson functions in three hyperplanes. Inspecting Figure 11, 
one notices that the representation of atoms within the two-dimensional 
hyperspace is a set of line segments instead of points. The intersections of 
the one-dimensional physical space with the atomic surface is a set of points 
representing atomic positions. By analogy, in six dimensions the atomic 
surfaces must be represented by a set of three-dimensional volumes. 

The central, pie shaped, region in Figure 12 represents a twofold sym
metric plane in physical space. Contours indicate variation of electron 
density with position. The other two regions represent hyperspace planes, 
each one spanned by one hyperspace fivefold axis and one real space axis 
of (top region) fivefold symmetry or (bottom region) twofold symmetry_ 
Basically, the electron density is high at the vertices of a hypercubic 
lattice and at the midpoints of edges. Presumably, these surfaces represent 
aluminum and copper. Body center surfaces may be occupied by lithium, 
which has low electron density (136) and, therefore, cannot be clearly 
resolved by x-ray scattering. The chemical structure of the atomic surfaces 
is not yet known precisely. Another remaining question is whether the 
atomic surfaces are faceted, smooth, or discontinuous. This issue is impor
tant because, as observed above, the shape of the atomic surface affects 
the placement of atoms in physical space. Achieving reasonable density 
and interatomic distances is a delicate matter. Furthermore, the topology 
of the atomic surfaces affects the dynamics of quasicrystals (137). 
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Figure 12 Patterson function in six dimensions obtained from x-ray data on AI-Li-Cu. 
Three views are shown, including a twofold symmetric plane in physical space and two planes 

that include the hyperspace fivefold axis and either a fivefold or twofold physical space axis. 
(Courtesy of M. V. Jaric.) 

If the crystallographic analysis described above were performed with 
absolute precision, and there were no diffuse scattering present (which is 
not included in the analysis just described), then knowledge of atomic 
surfaces in six-dimensional space would completely determine the place
ment of each atom in real space. Unfortunately, one finds experimentally 
that the atomic surface occupation probabilities fall off smoothly, probably 
because of the neglect of infinitely many very weak peaks ( 138). It is 
then ambiguous whether there are fractional occupation probabilities and 
whether there is additional unresolved structure. In fact, the six-dimen
sional analysis suggests that the local structure in real space can be 
described by decorating rigid tiles with atoms or filling space with over
lapping clusters, such as those illustrated in Figure lOa. The similarity to 
the simplest decorations of rhombohedral tiles is quite striking. 
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QUASICRYSTAL STRUCTURE 709 

3 . 3  Phason Disorder and Approximants 

So far, our six-dimensional space picture of the quasicrystal structure 
represents only a perfectly ordered quasiperiodic idealization. Elementary 
excitations, such as phonons, must enter at finite temperatures. Phonon 
modes represent displacements of atoms in the physical space; hence, they 
may be described as compressions and shears of the six-dimensional lattice 
parallel to the three physical dimensions. That leaves open the meaning of 
distortions in the perpendicular space. Inspection of Figure l la suggests 
the following result. Displacements in the perpendicular space (dashed line) 
lead to the emergence of new intersections of atomic surfaces with physical 
space, and the loss of others nearby. Such disappearance, and nearby 
reappearance, of atoms leads to a localized structural rearrangement of 
the quasicrystaL These new excitations belong to a family of perpendicular 
space deformations. They generalize our concept of elementary excitations 
to include a family of discrete atomic jumps. In accordance with the 
terminology from ordinary incommensurate structures (139), these modes 
are termed "phasons" (51 ) .  

Localized phason fluctuations randomize the structure without altering 
the long-range order or lowering the rotational symmetry, just as thermal 
phonons kave intact ordinary crystalline order. But, long wavelength 
phason strain, created by a uniform shear of the six-dimensional structure, 
has a signiflcant impact. Such strains reduce the rotational symmetry from 
icosahedral to cubic, rhombohedral, or lower. Carefully chosen shears lead 
to commensurate slopes between physical space and the hyperspace crystal, 
thus creating spatially periodic, crystalline ( 107, 140) structures. We call 
such structures "approximants," because they exist in infinite families with 
ever smaller phason strain and converge towards the uniform strain free 
quasicrystal structure. Random inhomogeneous phason strain within a 
quasi crystalline structure ( 17, 58-60) broadens the peaks to a degree 
roughly linear in G 1.' In contrast, uniform phason strain shifts peaks in a 
single crystal diffraction pattern, but broadens or splits peaks in a powder 
pattern. 

Mechanisms, such as finite grain size broadening and strain broadening, 
affect diffraction patterns of ordinary crystals ( 14 1 )  in distinct ways. By 
denoting the average grain size by L, we obtain the half-widths of peaks 
in the diffraction pattern LlQ = J(n(L) 2 + (LlQres) 2, where LlQres is the 
instrumental resolution. The broadening is independent of the wavevector 
of the diffraction peak, although peaks of different symmetries can broaden 
to different degrees by this mechanism because of anisotropic grain shapes. 
In contrast, inhomogeneous strains in a crystal broaden by an amount LlQ 
which is proportional to G. 

The diffraction peak broadening observed for simple icosahedral alloys 
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7 1 0  GOLDMAN & WIDOM 

follows neither trend. Instead, �Q increases almost linearly with G.l ( 1 7) 

(see Figure 1 3a). This implies the dominant strain mechanism in SI alloys 
originates in the phason-like, rather than phonon-like, degrees of freedom. 
Furthermore, this "phason-strain" mechanism appears universal among 
SI alloys because slowly cooled stable alloys of Al-Li-Cu (142) share the 
same systematics, and nearly the same magnitude, of broadening with 
rapidly quenched metastable alloys AI-Mn ( 1 7). Interestingly none of the 
FCI alloy diffraction peaks broaden with these systematics. Figure 1 3b 
shows that in the FCI Al-Cu-Ru alloy, the peak widths increase linearly 
with Gil' rather than G.l (47). Therefore, normal lattice strain dominates 
phason strain as a mode of disorder. High-resolution single grain diffrac
tion measurements of AI-Cu-Fe find no line broadening above instru
mental resolution, thus corresponding to positional coherence lengths in 
excess of 8000 A (45). 

Discriminating between the diffraction patterns from true quasicrystals 
and large unit cell periodic approximants can be quite difficult. As the size 
of the unit cell increases (and/or the symmetry of the unit cell decreases) 
the density of Bragg points in reciprocal space also increases. The internal 
arrangement of atoms within each unit cell largely determines the inten
sities of diffraction peaks, so selected area electron diffraction patterns 
from large unit cell approximant phases are barely distinguishable from 
their quasicrystalline cousins. Even CBED patterns may fai l  to distinguish 
between quasi crystalline and large unit cell approximant structures 
because, as pointed out by Levine et al ( 143), Kikuchi bands in CBED 
patterns reflect the symmetry of the dominant scattering cluster of atoms 
in the phase. For small unit cells, the dominant clusters are the unit cells 
themselves. For large unit cell approximants, the icosahedrally symmetric 
atomic basis within the unit cells dominates the scattering. 

Quite often, one or several approximant phases coexist with the quasi
crystalline structure in the same alloy, generally with a coherent orien
tational relationship between adjacent grains of the icosahedral and crys
talline phases ( 1 44, 1 45). Some of the axial approximant phases have 
already been mentioned in Section 2.2. Particularly striking examples of 
approximants to icosahedral structures ( 1 29, 1 30) appear in the Ga-Mg
Zn system. Figure 14 shows the dectron diffraction patterns taken along 
the " pseudo" fivefold axes of three of the six known approximant phases, 
along with the fivefold axis of the true icosahedral phase. Although the 
diffraction patterns from these approximant phases are distinguishable 
from that of the icosahedral phase, the pattern of the most intense spots 
clearly indicate the internal icosahedral symmetry of the atomic basis in 
the crystalline unit cells. 

In some cases the selected area diffraction pattcrns of crystalline approxi
mants are very difficult to distinguish from those of an icosahedral alloy 
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7 1 2  GOLDMAN & WIDOM 

Figure 14 Fivefold and pseudo fivefold d.iffraction patterns of the icosahedral phase and 
three approximants in the Ga-Mg-Zn system: (a) t/l ideal icosahedral, (b) 3/2-2/1 -2/ 1 type 
side centered orthorhombic phase [ 1 10] zone axis, (c) 2/ 1 cubic phase; [058] zone axis, 

(d) 2/ 1 rhombohedral phase; [001 ]  zone axis. The marker corresponds to 1 A - I . (Courtesy 

of F. Spaepen.) 

with significant anisotropic linear phason strain because, to first order, 
both yield subtle peak shifts or anisotropy in the diffraction pattern. High
resolution single grain x-ray diffraction measurements distinguish the 
approximant phase from true icosahedral phase by characteristic splitting 
or asymmetric broadening of diffraction peaks (P. W. Stephens, P. A .  
Bancel, private communication) . I n  powder diffraction measurements, 
however, the directional averaging all but obscures distinct peak splitting. 
Because the diffraction peaks from the approximant phase are closely 
spaced, powder measurements show only an apparent broadening of the 
diffraction peak lineshapes, which scales with G L ( 146). 
4. STRUCTURAL PARADIGMS 
We now distinguish between several paradigms of quasicrystal structure. 
Some models explicitly describe nonequilibrium, disordered structures. 
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QUASICRYSTAL STRUCTURE 7 1 3  

These models come under the general heading of " icosahedral glass," and, 
so far, appear most relevant to SI quasicrystals. Other models describe 
thermodynamically stable phases with perfect, long-range quasiperiodic 
positional order. These include Penrose tiling models and their general
izations and random tiling models. Before examining novel quasicrystal 
structures, one must first address whether quasicrystals are ordinary crys
talline materials that generate a false appearance of icosahedral symmetry 
of twinning. 

4. 1 Twinning 

Multiple twinning during metallic crystal growth is well known and com
monly observed. Pseudoicosahedral or pseudodecagonal symmetries in 
multiply twinned structures arise when the relative orientations of twin 
variants obey icosahedral or decagonal point group symmetries. In their 
analysis of the electron diffraction patterns of rapidly quenched AI-Mn, 
Field & Fraser ( 1 47) concluded that the diffraction patterns likely arose 
from micro twinning among 20 twin variants of a distorted diamond cubic 
lattice. A similar mechanism explains the formation of icosahedral clusters 
of gold from the vapor. Other micro twinning models ( 148), based on 
rhombohedral distortions of small FCC crystals ( 149, 1 50), have been 
proposed to describe the structure of the icosahedral phase. Although 
these models reproduce many features found in the diffraction patterns of 
AI-Mn, significant multiple scattering contributions prove necessary to 
reproduce the diffraction patterns in detail. 

The twinning hypotheses can be tested in several ways ( 1 5 1 ) .  Selected 
area diffraction utilizes a large beam aperture ( � l ,urn) and, therefore, 
cannot clearly distinguish between true icosahedral symmetry and a set of 
small icosahedrally twinned periodic crystals. On the other hand, CBED 
focuses the electron beam down to sizes on the order of 20-100 A, thus 
revealing the symmetry of the Kikuchi bands and higher order Laue zones 
(HOLZ) in the diffraction pattern. For reasonably small unit cells (on the 
order of what one typically finds for metals), the symmetry of the unit cell 
should be evident in both the Kikuchi bands and the HOLZ lines. Dark 
field imaging, in which one selects a subset of diffraction peaks to produce 
an image of the sample, determines which portions of a particular grain 
contribute to the intensity of selected diffraction spots. Indeed, this tech
nique revealed the occurrence of fivefold twins of the orthorhombic AI6Mn 
crystalline phase and distinguished them from the dark field images pro
duced by the icosahedral phase of AI-Mn (D. Shechtman, unpublished 
data). Finall'y, H REM images produced by "retransforming" the electron 
diffraction pattern may be examined for evidence of these microtwins. All 
of these tests, applied to electron diffraction patterns from icosahedral 
alloys, provide little support for the small unit celI microtwinning models. 
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7 1 4  GOLDMAN & WlDOM 

X-ray diffraction experiments rigorously test the validity of those twin
ning models that require multiple scattering for agreement with experi
mental diffraction patterns. Multiple scattering affects x-ray diffraction 
much less severely than electron diffraction, because electrons interact 
more weakly with photons than with other electrons. Observation of 
higher-order diffraction peaks in high-resolution x-ray powder measure
ments on the AI-Mn icosahedral alloy (50) excludes any twinning model 
that requires strong multiple scattering to explain the diffraction pattern. 
Furthermore, single grain x-ray precession photographs that use mono
chromatic radiation yield diffracti on patterns in substantial agreement 
with the corresponding electron dilfraction patterns ( 1 52). 

The various moderate-size unit cell cubic crystal/twinning models, pro
posed by Pauling ( 1 53), may also be tested by precise x-ray measurements 
of diffraction peak positions. Because the ratio of the d-spacing of any two 
collinear diffraction peaks from a periodic crystal must he the ratio of two 
integers, careful measurements of diffraction peak positions set limits on 
the minimum size of the cubic unit: cell required to produce that sequence 
of diffraction peaks. For the AI-Mn alloy, the two lowest angle diffraction 
spots observed along a twofold direction correspond to d-spacings of 
8.85 ± O.07 A and 5 .42 ± O.03 A, respectively. The simplest rational 
approximation to the ratio 1 .63 ± O.02 of these d-spacings, within experi
mental error, is 1 3/8 = 1 .625. Therefore, the minimum size cubic cell is on 
the order of 8 x 8.85 A � 70 A. The 26.7 A and 23.4 A cubic unit cells 
proposed by Pauling for this structure cannot produce collinear spots with 
the observed spacings, even assuming mUltiple twinning ( 1 54) . The FCI 
icosahedral alloy AI-Cu-Fe constrains the minimum unit cell size even 
more strongly, as diffraction peak broadening, the main contribution to 
uncertainty in the determination of diffraction peak positions, is all but 
absent here. Bancel's (45) single grain x-ray diffraction data requires a unit 
cell size greater than 1 85 A ( 1 55) in any cubic twinning crystal twinning 
model, thus ruling out Pauling'S ( 1 56) proposed 52 A unit cell structure. 
Furthermore, all of the cubic twinning models require significant multiple 
scattering to obtain the complete set of the diffraction spots observed in 
both the electron and x-ray diffraction. 

Despite the inadequacy of these particular twinning models in explaining 
diffraction data of the icosahedral phase, there is a sense in which the 
models are on the right track. Namely, even well-ordered, equilibrium FeI 
(45) and decagonal (151) quasicrystals apparently crystallize as tem
perature drops (however, it is not yet certain whether this transition occurs 
in all equilibrium quasicrystal-forming compounds). But at these low 
temperatures, growth of the bulk crystal is kinetically limited. As a result, 
the structure consists of myriad microscopic crystallites, each only a few 
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QUASICRYSTAL STRUCTURE 7 1 5  

unit cells i n  size, which are oriented so that overall icosahedra.! symmetry 
is preserved ( 1 26). The x-ray powder diffraction pattern of this state differs 
from the diffraction pattern of the quasi crystal phase only by a slight 
broadening of peaks, which scales with G -L ( 1 58), although H REM reveals 
its true twinned microcrystalline state. 

4.2 Icosahedral Glass 

The leading model of nonequilibrium quasicrystals is known as the ico
sahedral glass model ( 1 ,  1 59). In this model (Figure 1 5a), atomic clusters, 
such as those illustrated in Figure l Oa, join in a manner that preserves 

L 7  

Figure 15 (a) Glassy aggregate of pentagons. (b) Penrose rhombia illustrating matching rules. 
(c) Penrose tiling by rhombi with matching rules. (d) Random tiling without matching rules. 
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7 1 6  GOLDMAN & WIDOM 

icosahedral orientation, but need not preserve long-range positional order. 
In fact, rapid growth of such structures creates "tears" -surfaces within 
the glass along which positional order breaks down. Slower growth ( 1 60, 
16 1 )  avoids tears, but incorporates uniform phason strains in regions of the 
sample related to the direction of growth. In terms of the six-dimensional 
description of quasicrystalline structures, the icosahedral glass cor
responds to a cut through a hyperspace crystal with abrupt, random shears 
along the perpendicular space direction. These shears introduce tears in 
the real space structure, along which chemical bonds are broken. The 
disorder broadens diffraction peaks by an amount dependent on G 1- '  

Let h 1- measure the perpendicular space displacement of the hyperspace 
crystal. The diffraction peak widths depend on how h1- varies with position 
in the sample. For example, if h1- = 0, the real space structure is an ideal 
quasicrystal with delta function Bragg peaks. On the other hand, if h1-
executes a random walk, then < lh1- 1 2) � I r l ,  and the diffraction peak widths 
grow like Gl. If, instead, < l h1- 1 2) increases as I r 1 2, the diffraction peak 
widths grow only as I G 1- 1 .  Early simulations of aggregation attach ico
sahedra at their faces in a manner that preserves bond orientational order 
and forbids overlap of neighboring icosahedra. Such algorithms produced 
many tears and caused h1- to execute a random walk. Peak widths in these 
simulations grow as Gl or faster ( 1 62). Experimentally, it seems that SI 
alloy peak widths grow only linearly with G.l.' 

Robertson & Moss ( 1 63) modified the rules for growing the icosahedral 
glass in a manner that increases the density, decreases the number of 
tears, and produces diffraction peak widths linear in G.l.' Furthermore, the 
magnitUde of the diffraction peak widths obtained from their simulations 
are in closer agreement with those found for the SI alloys. There are two 
key ingredients of their algorithm: 

1 .  Restrict local attachments to include only those that produce second 
neighbor cluster configurations found in cubic a-AI-Mn-Si alloy or in 
a perfect quasicrystalline packing (three-dimensional Penrose tiling) of 
clusters. This constraint discriminates against local configurations that 
produce large voids in the network. 

2. Grow the structure in concentric shells of a small thickness (roughly 
0.2 cluster diameters) and require that each shell be fi lled before starting 
the next shell. 

Elser and coworkers ( 1 60, 1 6 1) developed a dynamic growth algorithm 
for the icosahedral phase based upon formation and aggregation of ico
sahedral clusters at the solid-liquid interface. In addition to the essential 
constraints regarding bond-orientational order and overlap of the "static" 
algorithms described above, clusters may adjust their positions at the 
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QUASICRYSTAL STRUCTURE 7 1 7  

growth interface t o  maximize the connectivity and density of the structure. 
This step reduces the density of tears, or gaps, in the icosahedral glass 
network, which results in diffraction peak widths that scale like G.L in 
agreement with experiments. 

4.3 Equilibrium Models 

Well-ordered quasicrystal models stand in contrast to twinning and ico
sahedral glass models, because they describe structures with infinite posi
tional correlation lengths in thermodynamic equilibrium. Two principal 
models of this class, one based on Penrose tilings, the other on random 
tilings, resemble one another superficially, but differ in their explanation 
of the origin of quasiperiodicity. Both models fill space with rigid tiles. 
Figure 1 5c illustrates the Penrose tiling by filling the plane with 36° 
and 72° rhombi. Penrose tilings obey "matching rules," which guarantee 
quasiperiodicity. The matching rules require matching up the arrows 
sh own in Fi gure I 5h on every common edge of rhombi in a tiling. Except 
for shifts of origin, the resulting structure is unique. 

Steinhardt and coworkers ( 164, 165) proposed Penrose tilings and their 
generalizations as models for quasicrystalline materials. These models 
enjoy great success because of their qualitative agreement with diffraction 
patterns of real quasicrystalline materials. Penrose tilings possess many 
remarkable geometrical properties related to their quasiperiodicity ( 1 66, 
1 67). For instance, a particular subdivision of the tiles, known as a "defla
tion," creates a new identical tiling with edge lengths scaled down by a 
factor of !. This is related to the ambiguity in the scaling of diffraction 
patterns by r or '[3. 

Certain difficulties remain in this class of models, however. Most 
notably, these concern the reliance on matching rules to force quasiperiodic 
order, and whether structures obeying these rules can ever grow. This 
latter question arises because there is no truly local set of rules for growing 
Penrose tilings from a central point ( 168). The matching rules illustrated 
in Figure 1 5b, for example, guarantee that a tiling is Penrose if it obeys 
the rules at all points in space. But, adding tiles in a manner consistent 
with all the geometrical properties of Penrose tilings requires a nonlocal 
search of the tiling perimeter. Failure to conduct such a search introduces 
phason strain through violations of the matching rules. The flaw may not 
be fatal, however, because enhancements to the matching rules ( 1 69, 1 70) 
allow growth at slow rates with extremely low density of matching rule 
violations. Inclusion of a single topological defect (analogous to a screw 
dislocation) in the seed aids rapid growth. 

Onoda et al ( 1 69) have suggested that energetic interactions among 
atoms conspire, not only to create geometrical tiles, such as those in Figure 
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7 1 8  GOLDMAN & WIDOM 

l Ob-d, but also to create interactions between these tiles that mimic matching 
rules. In such a system, a quasiperiodic structure forms the ground state 
at absolute zero. Unfortunately, delicate balancing of atomic pair poten
tials at large distances may be required to ensure that any particular 
quasiperiodic structure is a ground state ( 1 7 1 ). This is because localized 
phason fluctuations, which correspond to rearrangement of a small num
ber of atoms, often leave the pair correlation function unaltered out to 
large distances. Requiring that the resulting small changes in energy be 
positive places constraints on the potentials at the corresponding length 
scale. Accordingly, no continuum atomic model has yet been proposed 
for rcal or hypothctical quasicrystals that reproduces the Penrose tiling 
structure. 

In fact, matching rules are not needed to explain quasiperiodic long
range order. Many hypothetical ( 1 72-1 75) and realistic (8, 63, 64, 1 24, 
1 26, 1 76) models explain the occurrence of fundamental clusters or decor
ated tiles on the basis of atomic interactions, but find near degeneracy [or 
differing arrangements of the basic building blocks in space (provided 
obvious constraints are obeyed). That is, the energy for arranging the tiles 
in a Penrose-like structure agrees roughly with the energy for arranging 
the tiles into large unit cell approximants, or many other structures. This 
near degeneracy suggests consid{:ration of tiling entropy ( 1 14, 1 77, 1 78) 
and its influence on long-range structure. One finds that among all con
ceivable tilings, the one with highest entropy (i .e. the most probable) shares 
the long-range quasiperiodicity of the Penrose tiling ( 1 79-1 8 1 ). That is, 
random tilings differ [rom Penrose tilings because of great numbers of 
localized phason fluctuations, but share the central characteristic of 
quasiperiodic long-range order. 

Thermodynamic stability of I;he quasicrystal state in random tiling 
models depends on the same configurational entropy that creates quasi
periodicity. The degeneracy of random tiling models will not be perfect 
in reality. Energetic interactions among tiles presumably cause a phase 
transition into an ordinary crystal state at low temperatures. As tem
perature rises, entropy of random tilings dominates energetic preference 
for the crystal state, thus leading to a phase transition (96, 1 82-1 84) into 
an "entropically stabilized" quasicrystal state. Experimentally, such phase 
transitions apparently do occur in some FCI and other equilibrium quasi
crystal-forming compounds (45, 126, 1 57). For instance, in AI65Cu23Fe ! 2  
the state is crystalline at temperatures below 670°C with a n  apparent 
rhombohedral unit cell size of 37 .7 A and angle (f. = 64.43°. Above 670°C, 
the state is quasicrystalline, and diffraction peaks sensitive to phason 
fluctuations (those with large (T.L) appear to grow in intensity as tem
perature increases (45). Theoretically, en tropic stabilization predicts such 
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QUASICRYSTAL STRUCTURE 7 19  

a growth in  intensity because the phason elastic constants increase with 
temperature ( 1 82, 1 83). Explaining quantitatively the instability of the 
quasicrystal phase and the transition (which appears weakly first order) 
into a crystal phase at low temperatures remains an open problem (80, 8 1 ,  
140, 1 57, 1 84-1 87).  

Although tiling models enjoy many qualitative successes, describe quasi
crystal structure and explain the origin of quasiperiodicity, they are not 
capable of predicting new quasicrystalline compounds. Em:rgetic pref
erences for icosahedral clusters and other geometrical and chemical 
assumptions are made implicitly to restrict attention to geometrical 
clusters. The properties and interactions of real atoms are ignored. A 
phenomenological theory based on quantum structural diagrams ( 1 88-
1 9 1 )  finds that compounds favor icosahedral order only over limited ranges 
of composition-weighted electronegativity. Marginal crystalline-com
pound-forming ability appears to be an additional requirement. On this 
basis, several metastable quasi crystal-forming compounds were proposed, 
including Ga-Mg-Zn, Ag-Mg-Al, Zn-Li-Al, and Au-Li-Al in proportions 
of I S : 35 : 50, which have been experimentally confirmed ( 1 89-191) .  Pro
viding a scientific basis for such a phenomenological theory requires exam
ination of electron band structure. 

5. MATERIALS PROPERTIES 
5. 1 Electronic and Vibrational Band Structure 

Quasicrystals may show unusual electronic and vibrational properties that 
result from their quasiperiodic order and icosahedral symmetry. In nearly 
free electron models, electron dispersion relations follow the free electron 
parabola, except near Brillouin zone boundaries, at which point avoided 
level crossings open gaps (46). Materials in low dimensions show such 
effects most clearly. In one dimension, avoided crossings create gaps in 
the density of states (DOS). In two or more dimensions, gaps need not 
appear in thl� DOS because the zone boundary position depends on direc
tion in reciprocal space. Still, zone boundaries create DOS singularities 
that diminish in strength as dimension increases. 

Fibonacci sequences provide a one-dimensional laboratory for examin
ing the effec1:s of quasiperiodicity ( 1 92, 1 93). The quasiperiodic structure 
fills reciprocal space densely with Bragg peaks. At a wavevector equal to 
half the magnitude of the wave vector of each peak, a gap opens in the 
band structure (Figure 1 6) so that the dispersion relation acquires a dense 
set of discontinuities. Alternatively, we describe the band structure by 
considering a series of periodic approximants to the quasiperiodic Fibon
acci sequence. For each approximant, the band structure contains a num-
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Figure 16 Band structure of Fibonacci chain. The horizontal axis plots mode number (in 

a periodic lattice, this would be wave number); energies are plotted vertically. (Courtesy of 

F. Nori.) 

ber of bands equal to the number of sites in the approximant unit cell. As 
this unit cell size grows, each band splits up into a collection of smaller 
bands, each collection mirroring the entire band structure of the previous 
approximant. In the limit of infinite cell size, the band structure becomes 
a Cantor set. Intermediate between the continuous bands of a crystalline 
chain and the pure point spectrum of a random chain, such a band structure 
is called "singular continuous" ( 194). 

Continuous electron bands with extended electronic eigenstates allow 
electrical conductivity (46) . Point spectra with exponentially localized 
eigenstatcs prevent conductivity ( 195). A Cantor set spectrum is an inter
esting intermediate case. The electronic states decay algebraically accord
ing to a self-similar function (they are "critical"). It is natural to wonder 
whether a material with such a band structure will be an insulator or a 
conductor. When the Fermi energy lies on an allowed level, the trans
mission coefficients depend on thi� locations of the edges of the sample and 
on the phase of the wavefunction ( 1 96). Even when the Fermi energy lies 
in one of the gaps, the exponential decay of the wavefunction may be so 
slow that in a system of finite size the conductivity is appreciable ( 1 94). 

In higher dimensions singularities, but not in general gaps, appear in 
the DOS. In fact, Sokoloff ( 1 97) has shown that in three dimensions, a 
perfect quasilattice, such as a Penrose lattice, conducts electrons without 
resistivity. Actual resistivities tend to be quite high in real quasicrystalline 
materials, which range from 1 50 flO-em in U-Pd-Si ( 1 6) to 5000 flO-em in 
A I-Cu-Ru ( 1 98). This latter value lies close to the minimum metallic 
conductivity ( 1 99). The high resistivities are partly due to a low electronic 
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QUASICRYSTAL STRUCTURE 721 

density of states at  the Fermi surface. Measurements (200) and calculations 
(201 , 202) reveal that the Fermi surface lies in a pseudo gap for both the 
quasicrystal and its approximants. Yet, the resistivity of the quasicrystal 
state exceeds that of the crystal approximant by as much as a factor of 
six. This may reflect the "critical" nature of wave functions near the Fermi 
energy (20 1 ,  202). Or, a combination of intrinsic disorder, perhaps similar 
to random tiling disorder, and resonant d-band scattering creates unusu
ally short e lectron mean free paths ( 197). 

Total energy calculations and "Hume-Rothery" considerations may 
help explain stability of quasicrystal forming compounds. Total energy 
calculations of clusters of d-band atoms by Phillips & Carlsson (203) find 
the energetic preference for icosahedral structure extends only over a range 
of roughly 2-5 d-band electrons per atom. Furthermore, they suggest 
that electronic stability of tetrahedrally close packed crystals ( 1 24) and 
quasicrystals requires an angle-dependent, four-body interaction. Band 
structure ca.!culations of quasicrystalline and related crystalline structures 

(20 1 , 202, 204-207) reveal densities of states containing Van Hove singu
larities and pseudogaps. When the Fermi energy lies in a DOS minimum 
(i.e. a diffraction peak lies at Q = 2kF) quasicrystal formation is favored 
(208). Experimental studies (200) of trends in Hall coefficients, thermo
powers, ancl low temperature specific heats as composition is varied reveal 
the presence of pseudogaps and support the notion of Hume-Rothery 
stabilization for electron ratios close to 2.17 and 2.42 electrons/atom. 

Neutron scattering measurements of the vibrational density of states 
(VDOS) of AI-Mn (209) and U-Pd-Si (2 1 0) icosahedral alloys show con
siderably less structure than corresponding crystalline phases close by 
in composition. In fact, the frequency spectrum of icosahedral U-Pd-Si 
resembles that of the glassy phase. Based upon theoretical and experi

mental studies of one- and two-dimensional quasiperiodic systems ( 1 93, 
2 1 1-2 1 5) one might expect a great deal of structure in the VDOS of 
quasiperiodic alloys. The absence of sharp structure may result from 
oricntational averaging intrinsic to powder measurements, the effects of 
finite instrumental resolution, or decreasing strength of singularities in 
high dimensions. The similarity between the icosahedral and glassy VDOS 
in AI-Mn and U-Pd-Si suggests that short-range order in the quasicrystal 
phase resembles that of the glassy phase. 

In contrast, the VDOS of icosahedral AI-Li-Cu resembles the VDOS of 
the cubic R-phase. Both show distinct bands at nearly the same frequency 
with variances only in the relative weight of the peaks (2 1 6) .  This result 
suggests similar short-range order and interatomic forces in both the 
icosahedral phase and its cubic approximant. Low temperature acoustic 
measuremems of atomic tunneling states in AI-Li-Cu and AI-Mg-Zn like-
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722 GOLDMAN & WIDOM 

wise show that the extent of disorder in the icosahedral phase is appreciably 
closer to the crystalline, rather than glassy, phase. Interestingly, this 
measurement also correlated the density of tunneling states with the degree 
of phason strain (2 1 7). 

Single grain inelastic neutron scattering measurements on AI-Li-Cu 
(218) and A I-Cu-Fe (2 19) icosahedlral phase alloys show that the low-lying 
acoustic branches of the dispersion curves are isotropic. This isotropy is 
expected because of the high symmetry of the icosahedral point group (8) 
and is also observed in ultrasonic measurements on single grains of AI-Li
Cu (220). In AI-Li-Cu, the acoustic branches well away from the zone 
center exhibit "quasi" -zone boundaries. Furthermore, the phonon spec
trum of longitudinal modes along icosahedral twofold axes resembles 
theoretical calculations for a one-dimensional Fibonacci chain (221-224). 
This may be because the sequence of strong diffraction peaks along the 
twofold axis resembles that from a Fibonacci sequence. 

5.2 Magnetism 

Splitting of atomic orbitals depends sensitively on the local symmetry of 
the crystal field at individual atomic sites. Cluster models of quasicrystals 
suggest the presence of sites with nearly icosahedral symmetry-a sym
metry sufficiently high that atomic d-bands remain unsplit. In contrast, 
cubic or lower symmetry splits the band into two or more components. 
As a result, a substantial d-band DOS close to the Fermi energy may be 
localized on these sites. This could (225, 226) enhance the tendency towards 
magnetism, encourage vacancy formation, or cause distortions of the local 
symmetry (20 1 ,  202). 

The crystalline phases cubic a-AI-Mn-Si, orthorhombic AI6Mn, and p
Al4Mn do not exhibit magnetic moments, whereas the icosahedral phases 
of AI-Mn and AI-Mn-Si, at Mn concentrations higher than 14 atomic %, 
exhibit magnetic moments that increase with increasing M n  concentration 
(227-229). A simple model explains the concentration dependence of the 
moment (230) by postulating two classes of sites: one magnetic, one non
magnetic. This scheme first populates the nonmagnetic sites, then fills the 
additional magnetic sites after the Mn concentration exceeds 14 atomic 
%. Studies of Cr and Fe substitutions for Mn (23 1 -233) support this 
picture. Substitution of Fe for Mn affects the magnetic moment only 
slightly (presumably because it sits on the nonmagnetic sites), whereas 
replacement of Mn by Cr decreases the moment in proportion to the 
decrease in the Mn concentration. NMR and Mossbauer measurements 
of AI-M n  alloys and AI-Cu-Fe, however, question the validity of this two
site model. Instead they suggest a continuous distribution of transition 
metal sites (234-236). Interestingly, icosahedral AI-Cu-Fe is weakly dia-
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QUASICRYSTAL STRUCTURE 723 

magnetic with a temperature independent susceptibility. The magnetic 
moment in the icosahedral phase may not be intrinsic, but instead may 
arise from small clusters of Mn (23 1-233, 237). The origin of a magnetic 
moment in the icosahedral alloys, still the subject of controversy, has been 
reviewed by Stadnik et al (236). 

Both AI-TM and U-Pd-Si icosahedral alloys exhibit Curie-Weiss sus
ceptibility with negative e, which indicates anti ferromagnetic exchange 
interactions between magnetic ions. At low temperature, cusps in the ac 
susceptibility for these alloys are observed. Several groups (227, 238, 239) 
report a transition to a spin-glass state in Al-Mn. In U-Pd-Si, the absence 
of a difference in field cooled and zero-field cooled ac susceptibility suggests 
an antiferromagnetic transition (240). 

Although AI-TM-Si quasicrystals with low metalloid concentrations 
choose paramagnetic or spin-glass ground states, higher metalloid (Si or 
Ge) concentrations favor ferromagnetism. Ferromagnetism occurs in both 
glassy (227) and icosahedral (24 1 )  Al-Mn-Si alloys for Si concentrations 
in excess of 25-30 atomic % with Tc � 1 00 K. Ferromagnetism was also 
reported in samples of icosahedral AI-Mn-Ge (T c � 530 K) and AI-Cu
Mn-Ge (Tc � 470 K) for Ge concentrations in the range of 20-30 atomic 
% (242). Me:asurements of the temperature dependence of the magnetiza
tion in a magnetic field of 4 kOe however, reveal an oddly shaped (concave, 
rather than convex) order parameter, which suggests that the order is 
not quite ferromagnetic. Very recent studies indicate that the apparent 
magnetic ordering in these samples arises from small inclusions of a second 
phase of crystalline AlGeMn (Fe) (243). 

CONCLUSIONS 

In summary, we remind the reader of the principal characteristics of 
quasicrystals described in this paper. Thermodynamically stable quasi
crystal states possess icosahedral and decagonal symmetry. Because ico
sahedral and decagonal symmetry are crystallographically forbidden, their 
translational order is quasiperiodic, rather than periodic. Six-dimensional 
spaces therefore prove useful for both indexing the diffraction patterns and 
describing th,;: real-space atomic structure. In addition to the quasiperiodic 
spatial order,. quasicrystals differ from ordinary crystals, as they possess a 
class of fluctuations known as "phasons," which corresponds to special 
types of atomic rearrangements. Uniform phason strain may cause a 
quasi crystal to crystallize, whereas phason fluctuations may play a role in 
stabilizing the quasicrystal state at high temperatures. Investigations of 
electronic properties of quasi crystals suggest that "Hume-Rothery" con-
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724 GOLDMAN & WIDOM 

siderations of pseudo-gaps in the electron band structure at the Fermi 
surface may also help explain quasicrystal stability. 

Much remains to be studied in quasicrystal science. For example, one 
might ask whether icosahedral quasicrystals occur in Borates, Clathrates, 
or chiral liquid crystals (244). To date, only metallic quasicrystals are 
known, but there is no explanation for why nonmetallic materials should 
not possess such phases. Regarding the determination of quasicrystalline 
structure, the chief remaining problem appears to involve interpretation 
of regions of low occupation probability on the six-dimensional atomic 
surfaces. Are these regions the result of insufficient experimental resol
ution, or do they signify the presence of phason disorder? Aside from 
questions of this type, the structure problem appears essentially solved. 
One unsolved problem related to structure is the description of phason 
fluctuations at the atomic level and an explanation for their apparent 
mobility in FCI materials, but not in SI materials. 

Of more pressing importance than these questions of existence and 
structure, however, are the related issues of materials properties and poten
tial applications. Now that high quality samples are available, we hope 
that experiments can probe the intrinsic properties of quasicrystals. The 
macroscopic icosahedral symmetry and long-range quasiperiodic order 
may both lead to novel properties. The rotational symmetry alone, for 
instance, alters the form of macroscopic crystal tensors. The quasiperiodic 
translational order is expected to cause some electronic wave functions to 
become "critical." It would be of great interest to confirm this experi
mentally and to understand the iimpact of criticality on transport pheno
mena. Finally, one must ask whether the novel rotational and translational 
order of quasicrystals allows practical applications. A small number of 
potential applications have emerged, including the decorative uses of quasi
periodic patterns and a suggestion that quasicrystals be used as low-friction 
coatings on aluminum frying pans (245). 

ACKNOWLEDGMENT 

We wish to thank S. Ebalard, F. W. Gayle, K. Hiraga, L. X. He, M. V. 
Jaric, K. F. Kelton, A. R. Kortan, F. Nori, M. Shin, F. J .  Spaepen, and 
K. J. Strandburg for providing figures used in this paper. We would like 
to thank H. F. Franzen, B. N. Harmon, and J. E. Shield for critical reading 
and comments on the manuscript. We acknowledge useful discussions with 
C. Guryan, C. L. Henley, R. W. McCallum, K. Rabe, and P. W. Stephens. 
Ames Laboratory is operated for the United States Department of Energy 
by Iowa State University under Contract No. W-7405-ENG. M .  Widom 

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
1.

42
:6

85
-7

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

 o
n 

06
/0

7/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



QUASICRYSTAL STRUCTURE 725 

acknowledges support from the National Science Foundation through 
Grant No. DM R-891 88 1 0  and from the A. P. Sloan Foundation. 

Literature Cited 

I .  Shechtman, D., Blech, I. 1 985. Metall. 
Trans. A 1 6 :  1 005 

2.  Shechtman, D., Bleeh, I., Gratias, D.,  
Cahn, J. W. 1 984. Phys. Rev. Lett. 53: 
1 9 5 1  

3. Jaric, M .  V . ,  ed. 1 988. Introduction to 
Quasicrystals, Vol. 1 .  Boston : Aca
demic 

4. Jaric, M. V.,  ed. 1 988. Introduction to 
the Mathematics of Quasicrystals, Vol . 
2. Boston: Academic 

5. Jarie, M.  V. , Gratias, D., eds. 1 9�9. 
Extended lcosahedral Structures, Vol. 
3.  Boston: Academic 

6. Strandburg, K.,  ed. 1 99 1 .  Bond Orien
tational Order in Condensed Matter 
:c,ystems. Berlin: Springer 

7. Steinhardt, P. J., DiVincenzo, D. P. 
1 99 1 .  Quasicrystals: The State of the 
Art. Singapore: World Scientific 

8. Henley, C. L. 1 987. Comm. Condens. 
Matter 1 3: 59 

9. Steinhardt, P. J., Ostlund, S., eds. 1987. 
The Physics 0/ Quas/crystals. Singa
pore: World Scientific 

1 0. Yacam{lll, M. J.,  Romeu, D.,  Castano, 
V., Gomez., A., eds. 1 990. Quasicrystals 
and Incommensurate Structures in Con
densed JvIatter. Singapore: World 
Scicntific 

I I . Jarie, M. V., Lundqvist, S., eds. 1 990. 
Quasicrystals. Singapore: World Scien
tific 

12 .  Fujiwara, T., Ogawa, T., eds. 1 990. 
Quasicrystals. Berlin: Springer-Verlag 

1 3 .  Kuo, K. H.,  ed. 1 987. Proc. Int. Work
shop Quasicrystals, Beijing, China. 
Mater. Sci. Forum 22-24 

1 4. Gratias, D.,  Michael, L., eds. 1 986. 
International Workshop un Aperiodic 
Crystals. J.. Phys. Colloq. 47: C3 

1 5. Bancel, P., Heiney, P. A .  1 986. See Ref. 
1 4, p . 34 1 

16 .  Poon, S . .r., Drehman, A. J., Law
less, K. R. 1 985. Phys. Rev. Lett. 55: 
2324 

1 7 . Horn, P. M., Malzfeldt, W., DiVin
cenzo, D. P., Toner, J., Gambino, R. 
1 986. Phys. Rev. Lett. 57: 1 444 

1 8 .  Follstaedt, D. M.,  Knapp, J. A. 1 987. 
Nucl. Inst. Methods Phys. Res. B24/25: 
542, and references therein 

19 .  Kimura, K., Hashimoto, T., Suzuki, 
K.,  Nagayama, K.,  Ino, H. 1985. J. 
PItys. Suc . .lpn. 54: 32 1 7  

20. Bendersky, L., Kaufman, M .  1 986. 
PIti/us. Mag. B 53: L75 

2 1 .  Chen, C.  H., Chen, H. S. 1 986. Phys. 
Rev. B 33: 28 14 

22. Ramachandrarao, P., Sastry, G. V. S. 
1985. Pramana 25: L225 

23. Mukhopadhyay, N. K., Subbanna, G. 
N., Ranganathan, S., Chattopadhyay, 
K. 1 985. Scr. Metall. 20: 525 

24. Ball, M. D., Lloyd, D. J. 1 985 .  Scr. 
Metall. 19 :  1065 

25. Sainfort, P., Dubost, B., Dubus, A. 
1 985. C. R. A cad. Sci. Paris 30 1 :  689 

26. Tsai, A. ,  Inoue, A. ,  Masumoto, T. 
1 988. J. Mater. Sci. Lett. 7: 322; 1 988. 
Jpn. J. Appl. Phys. 27: L 1 587 

27. Zhang, Z., Ye, H. Q., Kuo, K. H. 1 985. 
Philos. Mag. A52: L49 

28. Dong, C, Hei, Z. H.,  Wang, L B.,  
Song, Q. H . ,  Wu, Y. K. ,  Kuo, K.  H. 
1 986. Scr. Metall. 20: / 155 

29. Kelton, K. F.,  Gibbons, P. C, Sabes, 
P. N .  1 988. Phys. Rev. B 38: 7810 

30.  Holzer, J. C.,  Kelton, K. F.,  Levine, L . 
E., Gibbons, P. C 1 989. Ser. Metall. 
23: 691 

3 1 .  Zhang, X., Kelton, K. F. 1 990. Philos. 
Mag. Lett. 62: 265 

32. Chen, H. S., Inoue, A. 1 987. Scr. 
Metall. 22: 527 

33. Kelton, K. F. 1989. Phase Transit. 
1 6/ 1 7: 367 

34. Schaefer, R. J., Bendersky, L. 1 988. See 
Ref. 3, p. I I I  

35. Bendersky, L. A., Ridder, J. D .  1986. 
J. Mater. Res. I: 405 

36. Robertson, J. L., Moss, S. C., Kreider, 
K. G. 1 988. PItys. Rev. Lett. 60: 2062 

37. Chen, L C, Spacpen, F. 1 988. Nature 
336: 366 

38. Shen, Y., Poon, S. J., Shiflet, G. J .  1 986. 
Phys. Rev. B 34: 3 5 1 6  

39. Tsai, A.  P . ,  Inoue, A . ,  Bizen, Y . ,  Masu
moto, T. 1 989. Acta Metall. 37: 1443 

40. Holzer, J. c., Kelton, K. F. 1 990. Pre
print 

4 1 .  Dubost, B., Lang, .T. M., Tanaka, M. ,  
Sainfort, P. ,  Audier, M .  1 986. Nature 
324: 48 

42. Gayle, F. W. 1 987. J. Mater. Res. 2: I 
43. Bartges, c., Tosten, M. H., Howell, P.  

R., Ryba, E. R. 1 987 . .J. Mater. Sci. 22: 
1 663 

44. Ohashi, W., Spacpcn, F. 1 987. Nature 
330: 555 

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
1.

42
:6

85
-7

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

 o
n 

06
/0

7/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



726 GOLDMAN & WIDOM 

45. Baneel, P. A. 1 989. Phys. Rev. Lett. 63: 
2741 

46. Kittel, C. 1 986. Introduction to SoUd 
State Physics, p. 9. New York: Wiley 

47. Guryan, c., et aL 1 989. Phys. Rev. Lett. 
62: 2409 

48. Elser, V. 1986. Phys. Rev. B 32 : 4892 
49. Elser, V. 1 986. Acta Crystallogr. A 42: 

36 
50. Baneel, P. A., Heiney, P. A., Stephens, 

P. W.,  Goldman, A. 1., Horn, P. M. 
1985.  Phys. Rev. Lett. 54:  2422 

5 1 .  Bak, P. 1 985. Phys. Rev. Lett. 54: 1 517; 
1 985. Phys. Rev. B 32: 5764 

52. Duneau, M. ,  Katz, A 1985. Phys. Rev. 
Lett. 54: 2688 

53. Janner, A., Janssen, T. 1 977 . Phys. RfV. 
B 1 5: 643 

54. de Wolff, P. M .  1 974. Acta Crystallow. 
A 30: 777 

55. Kalugin, P. A., Kitaev, A. Y., Levitov, 
L. S. 1 985. JETP Lett. 4 1 :  1 45 

56. Kramer, P., Neri, R. 1 984. Acta Cry
stallogr. A 40: 580 

57. de Bruijn, N.  G. 1 98 1 .  Proc. K. Ned. 
Akad. Wet. A84: 39, 53 

58. Levine, D.,  Lubensky, T. c., Ostlund, 
S., Ramaswamy, S., Steinhardt, P. J.,  
Toner, J. 1985. Phys. Rev. Lett. 54: 1 520 

59. Lubensky, T. c., Socolar, J. E. S., 
Steinhardt, P. J., Baneel, P. A., Heiney, 
P. A. 1 986. Phys. Rev. Lett. 57: 1 440 

60. Soeolar, 1 .  E. S.,  Wright, D .  C. 1987. 
Phys. Rev. Lett. 59: 221 

6 1 .  Cahn, J. W., Shechtman, D.,  Gratias, 
D. 1 986. J. Mater. Res. 1 :  1 3  

62. Gahler, F.,  Rhyner, 1. 1 985. Phys. Rev. 
Lett. 55: 2369 

63. Elser, V., Henley, C. L. 1985. Pllys. 
Rev. Lett. 55: 2883 

64. Audier, M. ,  Guyot, P. 1986. Philos. 
Mag. B 53: L43 

65. Rokhsar, D. S., Mermin, N. D.,  
Wright, D. C. 1 987 . Phys. Rev. B 35: 
5487 

66. Mermin, N. D.,  Rokhsar, D. S., 
Wright, D. C. 1 987. Phys. Rev. Lett. 
58: 2099 

67. Bak, P., Goldman, A. 1. 1 988. See Ref. 
3 

68. Devaud-Rzepski, J. ,  Quivy, A.,  Cal
vayrac, Y.,  CornierQuiquandon, M. ,  
Gratias, D. 1 989. Phi/os. Mag. B 60: 
855 

69. Ebalard, S., Spaepen, F. 1 990. J. 
Mater. Res. 5: 62 

70. Mukhopadhyay, N. K., Ranganathan, 
S. ,  Chattopadhyay, K. 1 987. Phi/os. Mag. Lett. 56: 1 2 1 ;  1 989. Phi/os. Mag. 
Lett. 60: 207 

7 1 .  Henley, C. L. 1 988. Phi/os. Mag. Lett. 
58: 87 

72. Goldman, A 1., Guryan, C. A, 

Stephens, P. W., Parsey, 1. M., Aepp1i, 
G., ct al. 1 988.  Phys. Rev. Lett. 6 1 :  1 962 

73. Tsai, A. P.,  Chen, H. S.,  Inoue, A., 
Masumoto, T. 1 99 1 .  Phys. Rev . B 43: 
8782 

74. Mukhopadhyay, N. K., et aL 1 987. J. 
Mater. Res. 2: 299 

75. Denoyer, F.,  Heger, G., Lambert, M.,  
Lang, J .  M.,  Sainfort, P 1 987. 1. Phys. 
48: 1357 

76.  Swamy, V. T., Ranganathan, S., Chat
topadhyay, K. 1989. J. Mater. Res. 4: 
539 

77. Kelton, K. F., Gibbons, P. c., Sabes, 
P. N. 1 988. Phys. Rev. B 38: 78 1 0  

78 . Gibbons, P. c., Kelton, K.  F . ,  Levine, 
L. E. ,  Phillips, R. B. 1 989 . Philos. Mag. 
B 59: 593 

79. Jarie, M. V., Nelson, D. R. 1 988. Phys. 
Rev. B 37: 4458 

80. Ishii, Y. 1 99 1 .  Phys. Rev. B. Submitted 
8 1 .  Wid om, M. 1 99 1 .  Phil. Mag. Lett. Sub

mitted 
82. Gibbons, P. c., Kelton, K. F.,  Levine, 

1.. E., Phillips, R. B. 1 990. See Ref. 1 0, 
p. 5 1 6  

8 3 .  Sastry, G. V. S . ,  Suryanafayana, C., 
Van Tendeloo, G. 1 982. Phys. Status 
Solidi A 73: 267 

84. Shechtman, D.,  Schaefer, R. J., Bian
caniello, F. S. 1 984. Metall. Trans. A 
1 5: 1 987 

85. Bendefsky, L.  1 985. Phys. Rev. Lett. 
55: 1 46 1  

86. Chattopadhyay, K., et al. 1985. Curro 
Sci. 54: 895 

87. Bendersky, 1.., Schaefer, R. J., Bian
canicllo, F. S., Boettingef, W. J., Kauf
man, M. J., Shechtman, D. 1 985. Ser. 
Metall. 1 9: 909 

88. Schaefer, R. J. ,  Bendersky, L. 1986. 
Scr. Metall. 20: 745 

89. Kuo, K. H. 1 990. J. Less Common Met . 
1 63 :  9 

90. Idziak, S.,  Heiney, P. A., Baneel, P. A. 
1 987. Mater. Sci. Forum 22-24: 353 

91 .  He, L. X.,  Wu, Y. K.,  Kuo, K.  H. 1 988. 
J. Mater. Sci. Lett. 7: 1284 

92. Kortan, A. R., Thiel, F. A., Chen, H.  
S.,  Tsai, A. P.,  Inoue, A, Masumoto, 
T. 1 989. Phys. Rev. B 40: 9397 

93. Steurer, W. 1 989. Acta Crystallogr. B 
45: 534 

94. Ho, T. L. 1 986. Phys. Rev. Lett. 56: 468 
95. Koopmans, B. ,  Schurer, P. J. ,  van def 

Woude, F. 1 9�7 . Phys. Rev. B 35: 3005 
96. Ishii, Y. 1 990. See Ref. 1 2, p. 1 29; 1 989. 

Phys. Rev. B 39: 1 1 862 
97. Choy, T. C., et al. 198�. Philos. Mag. 

E 58: 35 
98. Aragon, J. L., 1.'( al. 1990. Scr. Metall. 

24: 723 
99. Mukhopadhyay, N.  K., Chattopad-

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
1.

42
:6

85
-7

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

 o
n 

06
/0

7/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



hyay, K", Ranganathan, S, 1 99 1 ,  See 
Ref. 7, p. 2 1 2 

100. Fung, K K, et al. 1986. Phys. Rev. 
Lett. 56: 2060 

1 0 1 ,  Li, X. Z. ,  Kuo, K. H. 1 988. Philos. 
Mag. Lett. 58: 1 67 

1 02. Wang, N., et al. 1 987. Phys. Rev. Lett. 
59: 195 1  

103 .  Wang, N" Kuo, K. H .  1 989. Philos, 
Mag. B 60: 347 

104. Chen, H. ,  U, D. X., Kuo, K. H, 1 988, 
Phys, Ref. Lett. 60: 1 645 

105. Ishimasa, T., et al. 1 985. Phys. Rev. 
Lett. 55: 5 1 1 

106. Kuo, K. H. 1 989. Int. l. Mod. Phys. 3: 
665 

1 07. Kuo, K. H. 1 990. See Ref. 1 1 , p. 92 
108. Ho, T. L"  Li, Y. H. 1989. Phys. Rev. 

Lett. 62: 9 1 7  
1 09. Lequan, M . ,  Yuzhen, W .  1 990, Phys. 

Rev. Lett. 65: 3409 
1 10, He, L. X., Li, X. Z., Zhang, Z" Kuo, 

K. H.  1 988. Phys, Rev. Leu. 6 1 :  1 1 1 6 
1 1 1 .  Lu, S. S., Chang, T. I'!57. Acta Sci. 

Sin. 1 3: I SO 
1 12 .  Amelinckx, S., Van Heurck, c., Van 

Tende1oo, G. 1 99 1 .  See Ref. 7, p. 300 
1 1 3 .  Stephens, P. W., Goldman, A. l. 1 986. 

Phys. Rev. Lett. 57: 2770 
1 1 4. Shaw. L. 1"  Elser, V., Henley, C. L. 

1 990. Phys. Rev. 43: 3423 
l i S .  Hiraga, K., et al. 1 985. l. Phys. Soc. 

lpn. 54: 4077 
1 1 6. Guyot, p" Audier, M" Lequette, R.  

1 986. See Ref. 1 4, p. 389 
1 1 7.  Knowles, K.  M., et al. 1 985. Philos. 

Mag. B 52: L3 1 
1 1 8 .  Reyes-Gasga, 1" Van Tende1oo, G., 

Yacam{m, M .  J. 1 99 1 . See Ref. 10, p. 
356 

1 19 .  Hiraga, K", Hirabayashi, M. ,  Inoue, A, 
Masumoto. T. 1 987. l. Micros. 146: 245 

1 20. Burns, M. M. ,  Fournier, 1.-M. ,  Go1ov
chenko, J. A. 1 990. Sci. Am, 263: 29 

1 2 1 ,  Hiraga, K., et aL 1 988. Jpn. J. Appl. 
Phys. 27: L95 1 

1 22. Kortan, A. R., Becker, R. S., Thiel, F, 
A., Chen, H. S. 1 990. Phys. Rev, Lett. 
64: 200 

1 23 .  Bergman, G., Waugh, 1. L. T., Pauling, 
L. 1 957. Acta Crystallogr, 1 0: 254 

1 24. Widom, M. 1 988. See Ref. 3, p, 59 
1 25 ,  Romeu, L. D.  1 990. See Ref. 1 0, p. 1 40 
1 26. Audier, M "  Guyot, P. 1 990. See Ref. 

1 1 , p, 74 
1 27. Shoemaker, D. P., Shoemaker, C. B ,  

1988. See Ref. 3, p. 1 
1 28. Hiraga, K. 1 990. See Ref. 1 2, p. 68 
1 29. Ohashi, W. 1 990. PhD thesis. Harvard 

Univ., Cambridge, Mass. 
1 30. Spacpen, F. 1990. See Ref. 1 1 , pp. 1-1 8  
1 3 1 .  Henley, C .  L .  I'!'! ! .  Phys. Rev. B 43: 

993 

QUASICRYSTAL STRUCTURE 727 

1 32. Chen, H., Burkov, S. E., He, Y. ,  Poon, 
S. J., Shiflet, G. J. 1 990. Phys. Rev. 
Lett. 65: 72 

1 33. Yamamoto, A., Kato, K, Shibuya, T., 
Takeuchi, S .  1 990. Phys. Rev. Lett. 65: 
1 603 

1 34. Cahn, 1. W., Gratias, D., Mozer, B. 
1 988. l. Phys. 49: 1 225; 1 988. Phys. 
Rev. B 38: 1 638 

1 35. Qiu, S. Y., Jaric, M. V., Janot, c., de 
Boissieu, M ,  1 990. Phys. Rev. Lett. 
Submitted 

1 36. de Boissieu, M. ,  et al. 1990. See Ref. 
I I , p. 109 

1 37. Lubensky, T. C. 1 988. See Ref. 3, p. 
1 99 

138 .  Ma, Y. J., Stern, E. A., Li, X. O. Janot, 
C. 1 989. Phys. ReI!. B 40: 8053 

1 39. Axe, J. D., Bak, p, 1 982. Phys. Rev. B 
26: 4963 

140. Ishii, y, 1 990. Philos. Mag, Lett. 62: 
393; 1 989. Phys. Rev. B 39: 1 862 

1 4 1 ,  Cullity, B. D, 1 967. Elements of X-Ray 
Diffraction, Chap. 9. London: Addi
son-Wesley 

1 42. Heiney, P. A., Bance1, P. A. ,  Horn, P. 
M., Jordan, J. L., LaPlaca, S . ,  el ai. 
1 987. Science 238: 660 

1 43 .  Levine, L. E., et al. 1 990. Preprint 
144. Koskenmaki, D. c., Chen, H, S. ,  Rao, 

K.  V. 1 986. Phys. Rev. B 33: 5328 
1 45. Audier, M., Sa in fort, P., Dubast, B. 

1 986. Philos. Mag. B 54: LI05 
1 46. Goldman, A.  I., el al. 1990. See Ref. 

I I , pp. 60-73 
147. Field, R. D., Fraser, H. L. 1 984, Mater. 

Sci. Eng. 68: L I7  
1 48. Carr, M .  J. 1 986, J. Appl. Phys. 59: 

1063 
149. Yang, C. Y. 1 979. J. Cryst. Growth 47: 

274 
1 50. Yang, C. Y., Yacaman, M. 1., Heine

mann, K. 1979. J, Crysl. Growth 47: 
283 

1 5 1 .  Shechtman, D.  1 986. See Ref. 1 4, p. I 
1 52. Denoyer, F.,  Heger, G., Lambert, M. ,  

Lang, J. M. ,  Sainfort, P. 1 987. J .  Phys. 
48: 1 357 

1 53 .  Pauling, L. 1 989. See Ref. 4, pp. 1-
36 

1 54. Bancel, P. A., Heiney, P. A., Stephens, 
P. W., Goldman, A. l. 1 986. Nature 
3 1 9: 104 

1 55. Bancel, P., et a!. 1 989. Proc, Natl. Acad. 
Sci. USA 86: 8600 

1 56. Pauling, L. 1 989. Proc. Nat!. A cad. Sci. 
USA 86: 8595 

1 57. Hiraga, K., Sun, W., Lincoln, F. J. 
1 99 1 .  Jpn. J. Appl. Phys. 32: L302; 
1 99 1 .  Mater. Trans. JIM 32: 308 

1 58. Goldman, A. I., Shield, J. E., Guryan, 
C. A, Stephens, P. W. 1 990. See Ref. 
I I , p. 60 

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
1.

42
:6

85
-7

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

 o
n 

06
/0

7/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



728 GOLDMAN & WIDOM 

1 59.  Stephens, P. W., Goldman, A. 1. 1 986.  
Phys. Rev. Lett. 56: 1 1 68; 57:  233 1 

1 60. Elser, V. 1987. In Proceedings of the 
XVth International Colloquium on 
Group Theoretical Methods in Physics, 
ed. R. Gilmore, D .  H. Feng. Singapore: 
World Scientific; 1 99 1 .  See Ref. 5, p.  
105 

1 6 1 .  Nori, F.,  Ronehetti ,  M., Elser, V. 1 %8. 
Phys. Rev. Lett. 6 1 :  2774 

1 62. Stephens, P. W. 1 988. See Ref. 4, p. 37 
163 .  Robertson, J. L., Moss, S. 1 99 1 .  Z. 

Phys. B. In press; 1 99 1 .  Phys. Rev. Lett. 
66: 353 

164. Levine, D., Steinhardt, P. 1. 1984. Phys. 
Rev. Lett. 53: 2477; 1 986. Phys. Rev. B 
34: 596 

1 65. Soeolar, 1. E. S., Steinhardt, P. J. 1 986. 
Pilys. Rev. B 34: 3345 

1 66. Gardner, M. 1977. Sci. Am. 236( 1) :  1 10 
1 67. Grunbaum, B . ,  Shepard, G. C. 1 987. 

Tilings and Patterns. New York: Free
man 

1 68.  Penrose, R.  1 988. See Ref. 4, p. 53 
1 69. Onoda, G. Y., Steinhardt, P. J., DiVin

cenzo, D. P., Socolar, J. E. S. 1 988. 
Pilys. Rev. Lett. 60: 2653; 1 989. Phys. 
Rev. Lett. 62: 1 2 1 0  

170. Jaric, M .  V . ,  Ronchetti, M .  1 989. Phys. 
Rev. Lett. 62: 1 209 

1 7 1 .  Burkov, S. E. 1 988. J. Stat. Pilys. 52: 
453 

1 72.  Widom, M.,  Strandhurg, K. 1.,  
Swendsen, R. H. 1986. Phys. Rev. Lett. 
58: 706 

173.  Leung, P. W., Henley, C. L., Chester, 
G. V. 1989. Phys. Rev. B 39 : 446 

1 74. Lancon, F. ,  Billard, L., Chaudhari, P. 
1986. Europhys. Lett. 2: 625 

1 75. Lancon, F., Billard, L. 1 988 . J. Phys. 
49: 249 

1 76. Henley, C. L. 1 990. See Ref. 1 2  
1 77. Henley, C. L .  1 988 . J. Phys. A 2 1 : 1649 
178.  Shaw, L. J., Henley, C. L. 1 99 1 .  J. Phys. 

A .  Suhmitted 
1 79.  Widom, M.,  Deng, D. P., Henley, C. 

L. 1989. Phys. Rev. Lett. 63: 3 1 0  
1 80. Strandburg, K.  J . ,  Tang, L. Jaric, M .  

V. 1 989. Phys. Rev. Lett. 63: 3 1 4  
1 8 1 .  Henley, C. L. 199 1 .  See Ref. 7 
1 82.  Henley, C. L. 1 990. See Ref. 1 0, p. 1 52 
1 83. Widom, M. 1990. See Ref. I I , p. 3�.7 
1 84. Li, W., Park, H. ,  Wid om, M. 1 990. J. 

Stat. Phys. 6 1 :  5 1  
185 .  Biham, 0., Mukamel, D . ,  Shtrikman, 

S. 1988. See Ref. 3, p. 1 7 1  
1 86. Aragon, J .  L . ,  Reyes-Gasga, J . •  Jose

Yacaman, M .  1990. Phi/os. Mag. Lett. 
62: 337 

1 87. Kawamura, H. 1 986. Prog. Theor. 
Phys. 70: 352 

1 88. Villars, P., Hulliger, F. 1 987. J. Less 
Common Met. 1 32: 289 

1 89.  Villars, P., Phillips, J. c., Chen, H. S .  
1 986. Phys. Rev. Lett. 57:  3085 

190. Chen, H. S., Phillips, J. c., Villars, P., 
Kortan, A. R., Inoue, A.  1 987. Phys. 
Rev. B 35: 9326 

1 9 1 .  Rabe, K. M. ,  Kortan, A. R., Phillips, 
J.  C., Villars, P. 1 99 1 .  Phys. Rev. B 43 

1 92. Kohmoto, M. ,  Sutherland, B.,  Tang, 
C. 1 987. Phys. Rev. B 35: 1024 

1 93. Niu, Q., Nori, F. 1 986. Phys. Rev. Lett. 
57: 1 467 

194. Sokoloff, 1.  B. 1985.  Phys. Rep. 126: 
1 89 

1 95. Simon, B. 1 982 . Adv. Appl. Math. 3:  
463 

196. Ostlund, S. ,  Pandit, R. 1 984. Phys. Rev. 
B 29: 1 394 

1 97. Sokoloff, J. B. 1 986. Phys. Rev. Lett. 
57: 2223 

1 98.  Biggs, B. D. ,  Poon, S. J., Munirath
nam, N. R. 1 990. Phys. Rev. Lett. 65: 
2700 

1 99. Mott, N. 1987. Conduction in Non
Crystalline Materials. New York: Ox
ford 

200. Wagner, J. L., Biggs, B. D., Poon, S. J. 
1990. Phys. Rev. Lett. 65: 203 

201 .  Fujiwara, T. 1989. Phys. Rev. B 40: 942 
202. Fujiwara, T., Yokokawa, T. 1 990. See 

Ref. 1 2, p. 196; 199 1 .  Phys. Rev. Leu. 
66: 333 

203. Phillips, R. B., Carlsson, A. E. 1 988. 
Phys. Rev. B 37: 1 0880; 1 990. Phys. 
Rev. B 42: 3345 

204. Smith, A. P., Ashcroft, N. W. 1987. 
Phys. Rev. Lett. 59: 1 365 

205. Yaks, V. G.,  Kamyshenko, V. V.,  
Samolyuk, G. D.  1 988. Phys. Lett. A 
1 32: 1 3 1  

206. Friedel, J .  1 988. Helv. Phys. Acta 6 1 :  
538 

207. Carlsson, A. E., Phillips, R. B.  1 99 1 .  
See Ref. 7 

208. Baneel, P. A., Heiney, P. A. 1 986. Phys. 
Rev. B 33:  791 7  

209. Miceli, P .  F . ,  Youngquist, S. E., Neu
mann, D. A., Zabel, H.,  Rush, 1.  1 . ,  
Rowe, J. M .  1 986. Phys. Rev. B 34: 
8977 

2 10. Suck, I.-B. ,  Bretscher, H. ,  Rudin, H . ,  
Grutter, P., Guntherodt, H .  J .  1 987.  
Phys. Rev. Lett. 59: 102 

2 1 1 .  Merlin, R., Bajema, K. ,  Clarke, R., 
luang, F. V., Bhattacharya, P. K .  1 985. 
Phys. Rev. Lett. 55: 1 768 

2 1 2. Nakayama, M., Hato, H., Nakashima, 
S. 1987. Phys. Rev. B 36: 3472 

2 1 3 .  Niu, Q., Nori, F. 1 989. Phys. Rev. B 
39: 2 1 34 

2 1 4. Behrooz, A. ,  et a1. 1986. Phys. Rev. 
Lett. 57: 368 

2 1 5 .  He, S., Maynard, J. D. 1 989. Phys. Rev. 
Lett. 62: 1 888 

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
1.

42
:6

85
-7

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

 o
n 

06
/0

7/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



216.  Suck, J.-B., et al . 1 990. In Phonons '89, 
Vol. 1 ,  ed. S. Hunklinger, W. Ludwig, 
G. Weib, p. 576. Singapore: World 
Scientific: 

2 1 7. Birge, N. 0., et al. 1 987. Phys. Rev. B 
36: 7685 

2 1 8 .  Goldman, A. I., et al. 1 990. Phys. Rev. 
B 43: 8763 

2 1 9. Quilichini, M. ,  Heger, G., Hennion, B., 
Lefebvre, S., Quivy, A. 1 990. J. Phys. 
5 1 :  1 785 

220. Reynolds, G. A. M., et aJ. 1 990. Phys. 
Rev. B 4.1 :  1 194 

221 .  Ashraff, J. A., Stinchcombe, R. B. 
1 989. Phvs. Rev. B 39: 2670 

222. Ashraff,
' 

J. A., Luck, J.-M., Stinch
combe, R. B. 1 990. Phys. Rev. B 4 1 :  
43 1 4  

223. Benoit, G, Possigue, G . ,  Azougarh, A. 
1 990. J. 1'hys. Condens. Matter 2:  25 19  

224. Patel, H . ,  Sherrington, D.  1 989. Phys. 
Rev. B 40: 1 1  1 8 5  

225. Widom, M. 1 985. Phys. Rev. B 3 1 :  6456 
226. McHenry, M. E., Eberhart, M. E.,  

O'Handley, R. c., Johnson, K .  H. 
1 986. Phys. Rev. Lett. 56: 81 

227. Hauser, J. J., Chen, H .  S., Waszczak, 
J. V. 1 986. Phys. Rev. B 33:  3577 

228. Youngquist, S. E., et al. 1 986. Phys. 
Rev. B 34: 2960 

229. Hauser, J. J . ,  et al. 1986. Phys Rev. B 
34: 4674 

230. Warren. W. W .. Chen. H.-S . . Espinosa. 
G. P. 1 986. Phys. Rev. B 34: 4902 

QUASICRYSTAL STRUCTURE 729 

23 1 .  McHenry, M. E., ct al. 1989. Phys. Rev. 
B 39: 361 1 

232. Edagawa, K., et al. 1 987. J. Phys. Soc. 
Jpn. 56: 2629 

233. Eibschutz, M. ,  et aJ. 1987. Phys. Rev. 
Lett. 59: 2443 

234. Bennett, L. H . ,  Rubinstein, M.,  Xiao, 
G., Chien, C. L. 1987. J. Appl. Phys. 
6 1 :  4364 

235. Stadnik, Z. M.,  Stroink, G. 1 988. Phys. 
Rev. B 38: 1 0447 

236. Stadnik, Z. M.,  et aJ. 1989. Phys. Rev. 
B 39: 9797 

237. Machado, F. L. A., et aJ. 1 987. Solid 
State Commun. 6 1 :  145, 691 

238. Bellissent, R., Hippert, F., Monod, P., 
Vigneron, F. 1 987. Phys. Rev. B 36: 
5540 

239. Berger, c., et al. 1988. Phys. Rev. B 37: 
6525 

240. Wong, K. M., Poon, S. J. 1 986. Phys. 
Rev. B 34: 737 1 

241 .  Dunlap, R. A., McHenry, M. E., Sri
nivas, V., Bahadur, D. ,  O'Handley, R. 
C. 1 989. Phys. Rev. B 39:  4808 

242. Tsai, A. P., et a!. 1 988. Jpn. J. Appl. 
Phys. 27: L2252 

243. Stadnik, Z. M. ,  Stroink, G. 1 99 1 .  Phys. 
Rev. B 43: R94 

244. Lubensky, T. c., Tokihiro, T., Renn, 
S. R. 1 990. Phys. Rev. Left. 67: 89 

245. Anonymous. 1990. Fr. Adv. Sci. Tech
no!. 4: 3 

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
1.

42
:6

85
-7

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

 o
n 

06
/0

7/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 


	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Physical Chemistry Online
	Most Downloaded Physical Chemistry Reviews
	Most Cited Physical Chemistry Reviews
	Annual Review of Physical Chemistry Errata
	View Current Editorial Committee


	ar: 
	logo: 



