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Vibrational Dynamics of Icosahedrally Symmetric Biomolecular Assemblies
Compared with Predictions Based on Continuum Elasticity
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†Department of Physics & Astronomy, School of Arts and Science, and ‡Department of Computational Biology, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania; and §Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania

ABSTRACT Coarse-grained elastic network models elucidate the fluctuation dynamics of proteins around their native conforma-
tions. Low-frequency collective motions derived by simplified normal mode analysis are usually involved in biological function, and
these motions often possess noteworthy symmetries related to the overall shape of the molecule. Here, insights into these motions
and their frequencies are sought by considering continuum models with appropriate symmetry and boundary conditions to approx-
imately represent the true atomistic molecular structure. We solve the elastic wave equations analytically for the case of spherical
symmetry, yielding a symmetry-based classification of molecular motions together with explicit predictions for their vibrational
frequencies. We address the case of icosahedral symmetry as a perturbation to the spherical case. Applications to lumazine syn-
thase, satellite tobacco mosaic virus, and brome mosaic virus show that the spherical elastic model efficiently provides insights on
collective motions that are otherwise obtained by detailed elastic network models. A majorutility of the continuummodels is the possi-
bility of estimating macroscopic material properties such as the Young’s modulus or Poisson’s ratio for different types of viruses.
INTRODUCTION

Recent years have seen growing numbers of studies that

resort to normal mode analysis (NMA) as a simple, yet phys-

ically meaningful, way of studying the dynamics of proteins

under equilibrium conditions (1). NMA has been a method

used in computational biology for more than two decades

(2–4). Although NMA is much more efficient than methods

based on full atomic simulations, it becomes prohibitively

expensive as the size of the biomolecular system increases

because of the computational cost of energy minimization

at the atomic scale, as well as the eigenvalue decomposition

of increasingly large Hessian matrices.

Coarse-grained models have been developed to reduce the

computational cost, while maintaining structural informa-

tion. These include: the one-parameter Gaussian network

model (5) and anisotropic network model (ANM) (6,7); the

rotational translational block (8–10) or block NMA (11);

and hierarchical ANM (12) and hierarchical clustering based

on Markovian stochastics (13). Such reduced models proved

useful for exploring the complex machinery of supramolec-

ular systems such as the ribosomal complex (14,15), GroEL-

GroES (16–18), virus capsids (19–21), or large structures

determined by cryo-electron microscopy (22–25).

These studies suggest that molecular shape governs

dynamics, especially the low frequency dynamics that are

the dominant modes of functional reorganization (26). Indeed,

one can gain insights into the collective motions relevant to
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biological function by examining the lowest frequency modes

predicted by NMA conducted either at the atomic level, or by

using low-resolution models (27–29). These low frequency

modes often are highly symmetric (Fig. 1), and exhibit

similarities between different biological molecules.

In this study, we explore the utility of carrying coarse-grain-

ing to its extreme by substituting continuum models for discre-

tized ones. A major utility of adopting a continuum model is to

be able to derive analytic solutions that can assist in assessing

the basic aspects of complex processes. Here, a continuous

mass density replaces the discrete masses, elastic moduli

(Young’s modulus and shear modulus) replace the springs

linking the masses, and continuum elastic wave equations

replace the usual Newton’s equations of motion. Although

the discrete Newton’s equations yield a set of coupled ordinary

differential equations that can be solved using matrix diago-

nalization, the continuum wave equation is a partial differen-

tial equation. Provided the material is spatially isotropic and

homogeneous, and the boundary conditions not too compli-

cated, the wave equation can be solved analytically.

We solve the continuum elastic wave equations for systems

with spherical symmetry, exploiting the symmetry to express

our solutions using the natural basis set provided by vector

spherical harmonics. We compare the collective dynamics

predicted for biomolecular systems using discretized models

with the vibrational spectra of solid and hollow spheres (see,

for example, Fig. 1). Specifically, the analytical solutions

based on the continuum elastic wave equations are compared

with those obtained with simple toy models based on the

Mackay icosahedron (see Fig. SC1 in Supporting Material)

(30) and with naturally occurring supramolecular assemblies:

lumazine synthase (LS, Fig. 2) (31), an enzyme responsible

for the synthesis of riboflavin (vitamin B2); satellite tobacco

mosaic virus (STMV, Fig. 3 and Fig. SD1) (32), one of the
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FIGURE 1 Correspondence between

ANM modes and vector spherical

harmonics illustrated for lumazine syn-

thase. The diagrams on the left display

the structure from PDB file 1NQW

(31) color-coded according to the

mobilities of residues predicted by the

ANM, from blue (small) to red (large).

The arrows indicate the directions of

collective motions on or above the

middle surface, halfway between the

inner and outer radii. The interior

portion (i.e., inside the middle surface)

is shown as opaque, and the exterior

portion as transparent. The middle and

right columns display the equivalent

vector fields and mode shapes generated

by the ANM for a hollow sphere with

comparable dimensions and packing

density. The diagrams on the right

column are also colored by the mobil-

ities of the nodes. The labels on the

left indicate the vector spherical

harmonics corresponding to the dis-

played modes.
smallest viruses known; and triangulation number T ¼ 1

particle of brome mosaic virus (BMV, see Fig. SE1) (33),

a virus that infects a type of grass known as Bromus.

The low-lying vibrational frequencies and their associated

normal modes closely follow patterns predicted by spherical

symmetry and can be reproduced using a small number of

parameters defined by elastic theory. Deviations from these

predictions can be interpreted as weak perturbations that

lower the spherical symmetry to icosahedral symmetry,

which is naturally selected by many biological molecules.

Comparison of discretized models with continuum elastic
theory predictions permit us to assess macroscopic mechan-

ical properties of the examined biomolecular systems, such

as their Young’s moduli (normalized with respect to the

ANM force constants) and Poisson’s ratios.

THEORY

Anisotropic network model

The basic approach in ANM is to determine the ensemble

of normal modes of motion accessible to a given structure
Biophysical Journal 96(11) 4438–4448
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FIGURE 2 Results for LS. (a) Three-dimensional struc-

ture of LS (PDB file: 1NQW (31)), with the surface colored

by geometric position to illustrate the icosahedral

symmetry. (b) Cross-sectional view of the same structure.

(c) Mass distribution as a function of radial position,

used as basis for defining the inner and outer radii of the

hollow sphere model used in continuum elasticity theory,

and (d) comparison of the ANM eigenvalues with those

found by the continuum elasticity theory for a hollow

sphere with the same dimensions and packing density.
under equilibrium conditions, assuming that the close

neighborhood of the energy minimum can be approximated

by a harmonic potential. Conventional NMA requires

energy minimization before eigenvalue decomposition of

the 3N � 3N Hessian matrix representative of the second

derivatives of the potential with respect to the components

of all 3N generalized coordinates that define the structure.

In ANM, the nodes of the elastic network are typically
Biophysical Journal 96(11) 4438–4448
defined by the Ca atom coordinates, and the springs

are representative of the interresidue interactions within

a cutoff distance rc (6,7). The native structure deposited

in the Protein Data Bank (PDB) is assumed to be the

equilibrium state so that no further energy minimization

is required.

In particular, the ijth super-element (3 � 3 matrix) of the

Hessian takes the form
FIGURE 3 Results for STMV empty capsid. (a) Three-

dimensional structure of STMV (PDB file: 1A34 (32),

capsid only), with the surface colored by geometric posi-

tion to illustrate the icosahedral symmetry. (b) Cross-

sectional view of the same structure. (c) Mass distribution

as a function of radial position, used as basis for defining

the inner and outer radii of the hollow sphere model used

in continuum elasticity theory, and (d) comparison of the

ANM eigenvalues with those found by the continuum elas-

ticity theory for a hollow sphere with the same dimensions

and packing density.
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Hij ¼
gGij�
R0

ij

�2

24XijXij XijYij XijZij

YijXij YijYij YijZij

ZijXij ZijYij ZijZij

35; (1)

which directly follows from the adoption of a harmonic

potential with uniform force constant g,

E ¼ g

2

X
jjjsi

Gij

�
Rij � R0

ij

�2

: (2)

Here Rij and R0
ij are the respective instantaneous and equilib-

rium distances between nodes i and j. Gij is the ijth element

of the Kirchhoff matrix G of interresidue contacts, set equal

to 1 if R0
ij is smaller than a cutoff distance rc, and zero other-

wise (5,7). Xij, Yij, and Zij are the components of the distance

vector R0
ij. The diagonal elements of H are defined as the

negative sum of all off-diagonal terms in a given row (or

column; H is symmetrical).

The squared frequency and shape of each mode is given

by the nonzero eigenvalue (lk) and corresponding eigen-

vector (v(k)), respectively, of H. We denote the nonzero

eigenvalue of H as lk (1 % k % 3N – 6) in ascending order,

and the corresponding eigenvector as vðkÞ ¼ ½vðkÞ1 ;.; v
ðkÞ
N �

T
,

where v
ðkÞ
i ð1%i%NÞ is the three-dimensional displacement

vector of residue i induced by mode k. We are interested

here in the lowest frequency portion of the mode spectrum,

which we obtain by Arnoldi iteration (34,35).

Continuum elastic theory

For an isotropic elastic medium, the equation of motion can

be written as a wave equation (36)

r€u ¼ mV2u þ ðl þ mÞVV$u; (3)

where m is the shear modulus, l a Lamé coefficient, and r the

density of the material, whereas u ¼ u(r, t) represents the

displacement from equilibrium and V is the gradient operator

with respect to the position vector r. Specifying the elastic

constants l and m is equivalent to specifying the Young’s

modulus E and Poisson’s ratio s, in particular

m ¼ E

2ð1 þ sÞ; l þ m ¼ E

2ð1 þ sÞð1� 2sÞ: (4)

The Poisson ratio is defined as the ratio of the strains along

the transverse and axial directions in response to an axial

stress. In the case of presently considered spherical models,

these two respective directions are, for example, the tangen-

tial and radial directions.

In a normal mode, the entire medium oscillates at a single

temporal frequency u. The solution then separates into

spatial and temporal parts, so that u can be written as

u ¼ Re
�
u0ðrÞe�iut

�
: (5)

If u0 is divergenceless (i.e., V$u0 ¼ 0), then substitution into

the wave equation (Eq. 3) yields V2u0 þ k2u0 ¼ 0, where
k ¼ u/ct is recognized as a transverse wavenumber, and

the transverse sound speed is given by

ct ¼
ffiffiffi
m

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2ð1 þ sÞr

s
: (6)

If instead u0 is curl-free (i.e., V � u0 ¼ 0), then substitution

yields V2u0 þ q2u0 ¼ 0, where q ¼ u/cl is recognized as

a longitudinal wavenumber, and the longitudinal sound

speed is given by

cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l þ 2m

r

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1� sÞ

rð1 þ sÞð1� 2sÞ

s
: (7)

Notice that the longitudinal and transverse wavenumbers

obey the relation

q

k
¼ ct

cl

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2s

2ð1� sÞ

s
: (8)

When analyzing problems with spherical symmetry it is

advantageous to represent the displacement field u0 in a basis

of spherical harmonics and spherical Bessel functions. Solu-

tions to Eq. 3 take the generic form (37–40)

u0ðrÞ ¼ c0V4ðrÞ þ c1LjðrÞ þ c2V � LjðrÞ; (9)

where L ¼ r �7 is the angular momentum operator, and

4ðrÞ ¼ jlðqrÞYlmðq;fÞ
jðrÞ ¼ jlðkrÞYlmðq;fÞ

: (10)

Here Ylm(q, f) is a spherical harmonic, and jl is the spherical

Bessel function of the first kind and is analytic at the spatial

coordinate r ¼ 0. Vector fields of these forms, known as

vector spherical harmonics, are discussed in greater detail

in Appendix SA in Supporting Material. If the sphere is

hollow, so that our solution does not include the point r ¼ 0,

then we must add to u0 a function of the form

~u0ðrÞ ¼ d0V~4ðrÞ þ d1L~jðrÞ þ d2V � L~jðrÞ; (11)

where

~4ðrÞ ¼ nlðqrÞYlmðq;fÞ
~jðrÞ ¼ nlðkrÞYlmðq;fÞ

: (12)

Here nl is the spherical Bessel function of the second kind,

and is nonanalytic at the origin.

The three terms in Eq. 9 (and also in Eq. 11) have physical

interpretations related to sound waves. The first term, as the

gradient of a scalar function, is longitudinal in the sense that

the direction of the vector u0 is parallel to the direction in

which the amplitude varies. The second term is transverse,

because it is perpendicular to the first. It is also perpendicular

to the radial direction; that is, at every point r, it lies tangent

to the sphere of radius r. The third term is also transverse,

and is perpendicular to the first two terms.
Biophysical Journal 96(11) 4438–4448
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Discrete allowed wavenumbers are determined by the

boundary conditions. For free boundaries, the appropriate

condition is vanishing normal component of the stress tensor

t. Elements of t can be written in term of the elements of

strain tensor, uik, which can be derived from the displace-

ment vector, u0 (36), as

tik ¼
E

1 þ s

�
uik þ

s

1� 2s
ulldik

�
; (13)

where ull is the trace of the strain tenor, and dik is the Kro-

necker delta. The normal component vanishes if t,bn ¼ 0,

with bn the normal to the surface at the boundary. In spherical

coordinates, i and k refer to the unit vectors br, bq, or bf. The

appropriate boundary condition for a sphere of radius R is

thus (37)

t îrjr¼R¼ 0: (14)

Since i takes on three allowed values (br, bq, and bf), Eq. 14

constitutes a set of three linearly independent equations.

Similarly, for a hollow sphere we obtain two sets of equa-

tions (38),

t îrjr¼R1
¼ 0

t îrjr¼R2
¼ 0;

(15)

where R1 and R2 are the inner and outer radii, respectively,

yielding a set of six linearly independent equations.

These boundary condition equations are solved using

methods of linear algebra as discussed in Appendix SB.

Solutions exist only for well-defined quantized values of

the wavenumbers q and k, and therefore only for special

vibrational frequencies u ¼ clq ¼ ctk.

Each mode has a degeneracy arising from spherical

symmetry. Specifically, the frequency depends on the total

angular momentum index l but does not depend on the

azimuthal angular momentum index m, which ranges from

– l to þ l by integers. Therefore, each allowed frequency

has degeneracy

Ul ¼ 2l þ 1 ¼ 1; 3; 5; 7;. : (16)

Spherical, icosahedral, and tetrahedral symmetry

The solutions to the equation of motion Eq. 3 are constrained

by the requirements of spherical symmetry (41,42). Given

a solution with a specific vibrational frequency (i.e., a normal

mode), any spatial rotation generates a new solution of iden-

tical vibrational frequency. The set of all solutions of iden-

tical frequency form an invariant set known as an irreducible

representation. A linearly independent subset forms a basis

of the irreducible representation. The number of elements

in the basis is known as the dimension of the irreducible

representation, and corresponds to the degeneracy of the

vibrational mode.

Spherical harmonics provide basis sets for irreducible

representations of the spherical rotation symmetry group
Biophysical Journal 96(11) 4438–4448
SO(3). For a given angular momentum l, the set {Ylm, m ¼
– l, .,þ l} constitutes a basis for an Ul-dimensional irreduc-

ible representation. Consequently, any normal mode u0 can

be expressed in terms of spherical harmonics multiplying a

function of radius r, as in Eqs. 10 and 12, or equivalently using

the vector spherical harmonics. Conversely, given a normal

mode u0 obtained from the diagonalization of the Hessian

matrix, we may identify its angular momentum content by

projecting it onto vector spherical harmonics as shown in

Appendix SA.

At the atomistic level, biological structures always break

spherical symmetry, with icosahedral rotation symmetry

being prevalent (43). Owing to the chirality of the protein

subunits, we consider only pure rotations, without inversion

or reflection (44–46). The symmetry-breaking may be

confined to the internal structure, with the external bound-

aries remaining nearly spherical, as in the case of LS and

STMV. In other cases, the external shape may strongly break

the spherical symmetry, as in the case of the T¼ 1 particle of

BMV (see Appendix SE). This distinction is illustrated by

a toy model we introduce based on the Mackay icosahedron

(30). The Mackay icosahedron consists of 20 independent

grains of face-centered cubic crystal arranged with special

orientations inside an icosahedron (see Fig. SC-1 a). By defi-

nition, it exhibits both internal and external icosahedral

symmetry. We can utilize this structure to generate a spher-

ical object where the nodes are icosahedrally arranged. To

this aim, we project each node along the radial direction,

so that they are located at the same radial distance, forming

concentric shells (see Fig. SC-1 b). By varying the inner and

outer radii, one can obtain corresponding solid or hollow

spheres (see Fig. SC-1, c and d). For example, we create

an analog of the structure of LS, by setting the inner and

outer radii of the hollow sphere in a 2:1 ratio.

Because the symmetry group Y of the icosahedron

comprises a finite subset of the full rotational symmetry group

of a sphere, the icosahedral symmetry group has finitely many

irreducible representations. As listed in Table 1, these are: the

one-dimensional unit representation A; two three-dimen-

sional representations F1 and F2; a four-dimensional repre-

sentation G; and a five-dimensional representation H (42).

Since the dimensionality of the irreducible representations

TABLE 1 Icosahedral group character table showing angular

momenta l and irreducible representations (‘‘irreps’’)

l irreps 1C0 15C2 20C3 12C5 12C5
2

0 A 1 1 1 1 1

1 F1 3 �1 0 t �t–1

2 H 5 1 �1 0 0

3 F2 3 �1 0 �t–1 t

3 G 4 0 1 �1 �1

4 G þ H 9 1 0 �1 �1

5 F1 þ F2 þ H 11 �1 �1 1 1

6 A þ F1 þ G þ H 13 1 1 t �t–1

Here t ¼ ð
ffiffiffi
5
p
þ 1Þ=2 is the Golden Mean, and Cn indicates an axis of n-fold

rotational symmetry.
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determines the degeneracy of each normal mode, we see that

the allowed degeneracies of vibrational frequency are 1

(nondegenerate), 3, 4, and 5. No other degeneracies may

occur. This pattern of degeneracies differs from the spherical

case as given in Eq. 16.

The subgroup relationship between the icosahedral group

and the full rotation group, Y 3 SO(3), allows us to relate irre-

ducible representations of Y to the spherical harmonics Ylm.

We identify l ¼ 0 with A, l ¼ 1 with F1, and l ¼ 2 with H.

For l ¼ 3 and beyond, the spherical harmonics contain

multiple irreducible representations of Y, as listed in Table 1.

For instance, l¼ 3 contains both F2 and G. The l¼ 0 spherical

harmonic, Y00, is the unit representation of the spherical

symmetry group, whereas the unit representation A of the

icosahedral group is contained in l ¼ 0, 6, 10, 12, .. Notice

this pattern reproduces the pattern of projections of icosahe-

drally symmetric structures discussed in Appendix SA.

We will occasionally need to consider a further reduction of

symmetry, to that of a tetrahedron with symmetry group (41)

T 3 Y. The tetrahedral group T has irreducible representations

A (dimension 1), E (dimension 2), and F (dimension 3). The

allowed degeneracies of vibrational frequencies are thus 1, 2,

and 3. Irreducible representations of Y are sometimes reducible

as representations of T. We can write A ¼ A, F1¼ F, F2 ¼ F,

G ¼ A þ F, and H ¼ E þ F, where the left-hand side of the

equation corresponds to icosahedral representations and the

right-hand side corresponds to tetrahedral representations.

For a given vibrational mode (i.e., eigenvector of the

Hessian H), we can form arbitrary linear combinations of

degenerate modes and the result is still a mode (eigenvector)

of the same frequency. When considering modes of a given

type of vector spherical harmonic, we take linear combina-

tions to make them real rather than complex, and we group

them further into combinations corresponding to irreducible

representations of the icosahedral and tetrahedral symmetry

groups.

Calculational procedures

In the following, we compare the eigenvalue spectra obtained

from ANM with the predictions of continuum elastic theory.

A priori, we do not know the elastic constants E and s (or

equivalently m and l, or sound speeds ct and cl), so we deter-

mine these by least-squares fitting to the eigenvalues obtained

from ANM. Elastic constants E, l, and m have units of Pa (or

N/m2), whereas the Poisson’s ratio s is dimensionless. The

ANM force constant g has units of N/m (note the conversion

factor 1 N/m¼ 1.44 kcal/mol� Å2). Eigenvalues l¼u2 will

be quoted in units of (rad/ps)2. Fits of continuum elasticity to

ANM eigenvalues yield the relative Young’s modulus E/g,

which we quote in units of nm–1. The uncertainty in the rela-

tive Young’s modulus is also estimated from the linear fit.

To construct the ANM, we take a cutoff distance of

rc ¼ 15 Å and we assign an average amino-acid mass of

108 Da to each node (in the case of STMVþRNA, the node
mass is 120 Da). Hollow-sphere continuum models are

defined in a consistent manner by using the first and last peaks

in the mass distribution functions as the inner and outer radii

R1 and R2, respectively (Figs. 2 and 3, and Fig. SD1 and

Fig. SE1). For the hollow-sphere model representing the LS

structure, we take R1 ¼ 41.8 Å and R2 ¼ 78.0 Å. The mass

density is obtained from r ¼ M/V, where M is the total mass

and V the hollow-sphere volume.

Using the solvability conditions (Eq. SB4 and Eq. SB5 in

the Appendix SB), we calculate the allowed wavenumbers k
and q arising from boundary conditions for a given geometry

(Eqs. 14 or 15). Notice that k and q depend on the Poisson’s

ratio s but not the Young’s modulus E or the density r. Then,

from the sound speeds (Eqs. 6 and 7), we predict the resonant

frequency u ¼ ctk ¼ clq.

To fit the elastic constants we define a mean-squared

difference (MSD) between the ANM and the continuum

eigenvalues,

MSD ¼ 1

N

X
n

�
lðANMÞ

n � lðcontÞ
n

�2
; (17)

where the sum runs over each distinct eigenvalue ln whose

eigenvector v(k) has angular momentum l % 3. For a given

s, the optimal Young’s modulus E can be determined analyt-

ically by minimizing the MSD (Eq. 17) using the relation

lðcontÞh c2
t k2 ¼ E

2rð1 þ sÞ k
2: (18)

In this manner, we obtain the MSD for arbitrary s, then select

the optimal s that minimizes the MSD.

RESULTS

Overview

The results obtained for the four biological structures analyzed

in this study—LS; STMV empty capsid; STMV containing its

genetic material (RNA); and T¼ 1 particle of BMV—are pre-

sented in the respective Figs. 2 and 3, and Fig. SD1 and

Fig. SE1. In each case, panel a displays the molecular system

color-coded by the geometric position (see below), panel b
a cross-sectional view, panel c the mass distribution as a func-

tion of radial position, and panel d the comparison of the

dispersion of modes predicted by the ANM and the continuum

model. A principal result from this study is the identification of

the types of modes operating in each system, expressed in

terms of their icosahedral and vector spherical representations,

as summarized in Table SC1 and Table SC2 for toy models

and in Tables 2 and 3 for biological systems (see also

Fig. 1). Table 4 summarizes the results, i.e., the Poisson’s

ratios and effective Young’s moduli corresponding to each

system (columns 3 and 4), and the correlation between the

two sets of data in terms of MSD (Eq. 17) and correlation coef-

ficient (columns 5 and 6). More details for each examined

system will be presented below.
Biophysical Journal 96(11) 4438–4448
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Results for toy models

Before we proceed to the results for the four biomolecular

systems, we first note that the results for the filled and hollow

spheres constructed from the Mackay icosahedron confirm

that the mode spectra from ANM and continuum elastic model

yield a remarkably high correlation (respective MSD values

of 0.0136 ps–4 and 0.0192 ps–4, and correlation coefficients

above 0.99; see Fig. SC1 and Table 4) in so far as the distribu-

tion of eigenvalues is concerned. The comparison yields Pois-

son’s ratios of s ¼ 0.26 and 0.27, and relative Young’s

modulus E/g¼ 31.2� 0.4 nm–1 and 32.8� 0.7 nm–1. As dis-

cussed in Spherical, icosahedral, and tetrahedral symmetry,

spherical symmetry modes of high angular momentum (e.g.,

l ¼ 3) split into multiple icosahedral symmetry modes (e.g.,

F2 and G) with different eigenvalues. For our toy models,

the reduction of spherical to icosahedral symmetry is weak,

TABLE 2 ANM eigenvalues and mode types of lumazine

synthase

Mode #

Eigenvalue

(ps–2)

Tetrahedral

representations

Icosahedral

representations

Vector spherical

representations

1–2 0.83817 E H
V2 þW23–5 0.84045 F

6–8 1.41542 F H
X29–10 1.42215 E

11–13 1.98688 F G
V3 þW314 1.99022 A

15–17 2.18280 F F2

18 3.09788 A A V0

19–21 3.26416 F F2 X3

22–24 3.29502 F G
25 3.30125 A

26–28 3.44217 F F1 V1

Icosahedral symmetry breaking r6/r0 ¼ 0.0049 and tetrahedral symmetry

breaking r4/r6 ¼ 0.1148.

TABLE 3 ANM eigenvalues and mode types of STMV (capsid

only)

Mode # Eigenvalue (ps–2)

Icosahedral

representations

Vector spherical

representations

1–5 0.43242 H V2 þW2

6–8 0.73901 F2 V3 þW39–12 0.82876 G

13–17 1.05426 H X2

18–21 1.22444 G
V4 þW422–26 1.46058 H

27 1.81925 A V0

28–32 2.13790 H
V5 þW533–35 2.28670 F2

36–38 2.30968 F1 V1

Icosahedral symmetry breaking r6/r0 ¼ 0.0066.
Biophysical Journal 96(11) 4438–4448
so the eigenvalue splitting is small, as is evident in Table

SC1 and Table SC2 (e.g., compare eigenvalues of F2 and G).

Lumazine synthase

LS is a hollow, nearly spherical molecule consisting of 60

identical subunits arranged with icosahedral symmetry.

ANM calculations were based on the crystallographic struc-

ture resolved in a body-centered cubic lattice with space

group I23, deposited in the PDB (47) (ID:1NQW (31)). As

a result, the structure exhibits tetrahedral symmetry, which

may be viewed as a reduced form of icosahedral symmetry.

Accordingly, the degeneracies of the accessible vibrational

modes are 1, 2, and 3 (see Table 2). For example, the fivefold

degenerate (lowest frequency) mode observed in the case of

the solid and hollow spheres is now split into two sets of

modes, with degeneracies 2 and 3. Note that the distinction

between the frequencies of these two sets of modes appears

only at the third significant digits of the corresponding

eigenvalues.

The continuum elastic model adopted for LS requires the

use of inner and outer radii, which were deduced from the

mass distribution calculated as a function of radial distance

(Fig. 2 c). The red dotted bars delimit therein the inner and

outer radii as R1 ¼ 41.8 Å and R2 ¼ 78.0 Å, respectively.

Table 2 lists the representations of the ANM modes in the

icosahedral and spherical symmetry groups. For example,

the lowest frequency (doubly degenerate) mode (modes 1

and 2) corresponds to the vector spherical harmonics V2

and W2 (see Appendix A), whereas the nondegenerate

mode 18 corresponds to V0, as illustrated in Fig. 1. Compar-

ison of the outputs from both methods permit us to evaluate

the two macroscopic quantities E/g ¼ 36.2 � 0.3 nm–1 and

s ¼ 0.30 (with MSD of 0.0040 ps–4) for the respective rela-

tive Young’s modulus and Poisson’s ratio that best represent

the global relaxational behavior of LS.

Virus capsids STMV and BMV

The ANM calculations for STMV were performed using the

PDB structure (ID:1A34 (32)). Note that STMV has T ¼ 1,

i.e., it is composed of 60 icosahedrally arranged identical

subunits. In this case, the reduction of spherical symmetry

to icosahedral is slightly stronger (Fig. 3); however, no

breaking of icosahedral symmetry due to crystallographic

lattice type is evident. The eigenvalues calculated with

ANM are listed in Table 3 for the empty capsid and in Table

SD1 for the capsid with RNA (see Appendix SD). Taking

R1 ¼ 55.4 Å for the empty capsid and R2 ¼ 86.0 Å, we

find the eigenvalues match continuum elastic theory with

E/g ¼ 26.0 � 1.1 nm–1 and Poisson’s ratio s ¼ 0.24 with

MSD of 0.0317 ps–4.

Results for the RNA-containing STMV capsid are dis-

cussed in Appendix SD, and our study of BMV is presented

in Appendix SE.
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TABLE 4 The results of fitting the eigenvalues

Density r (kg/m3) Poisson’s ratio s

Relative Young’s

modulus E/g (nm–1) Mean-squared difference (ps–4) Fitting correlation

Solid sphere 905.99 0.26 31.2 � 0.4 0.0136 0.9984

Hollow sphere 941.53 0.27 32.8 � 0.7 0.0192 0.9966

Lumazine synthase 987.60 0.30 36.2 � 0.3 0.0040 0.9993

STMV 823.82 0.24 26.0 � 1.1 0.0317 0.9863

STMVþRNA 981.79 0.20 28.5 � 1.7 0.0980 0.9674

BMV 561.39 0.30 6.58 � 0.2 0.0016 0.9932
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DISCUSSION

Having compared vibrational modes and eigenvalue spectra

from simplified toy models and three different protein assem-

blies (LS, STMV, and BMV), we note that the global modes

in all cases may be expressed as combinations of vector

spherical harmonics. These modes, which are likely to be

biologically relevant, can be predicted and classified purely

on the basis of molecular symmetry, which explains their

distinctive shapes, and the strong resemblance between

modes of different structures. Given the values of two elastic

moduli, we can predict the vibrational frequencies of many

low-lying modes. For spherical symmetry, these predictions

are highly accurate, and the accuracy remains high even for

biological assemblies with icosahedral symmetry.

For example, the lowest frequency mode for all hollow

structures turns out to be fivefold degenerate, with vector

spherical harmonic type V2 þ W2 (icosahedral type H).

This mode can be visualized physically as the result of

squeezing a sphere radially inwards at the poles, allowing it

to bulge outwards at the equator. Such a deformation occurs

when a molecule is probed with an atomic-force microscope,

and the hollow spheres are quite soft in response to this force

(49,50). The applied uniaxial strain of the AFM tip couples to

the mode of type H just discussed (superconductivity in the

Fullerenes is also related to this mode (51,52)).

To estimate the effective spring constant of this global

deformation, we may express the energy as

E ¼ M

2
lHa2

H � aHPHF; (19)

where M represents the mass of the capsid, aH is the amplitude

of deformation in mode H, and PHF is the projection of the

applied force F onto the deformation v(H). That is,

PHF ¼
P

i Fi,v
ðHÞ
i , where Fi is the force acting on the ith

node and v(H) is assumed normalized to 1. The first term in

Eq. 19 represents deformation energy, whereas the second

represents the work done by the applied force. Minimizing

the energy yields the displacement in the direction of the

applied force as h¼PHaH¼P2
HF/MlH and an effective spring

constant

keff ¼
vF

vh
¼ MlH

P2
H

: (20)

This estimate is actually an upper bound on keff because

other modes can share in the deformation energy if the
applied force projects onto them also. The more general

result is (42)

1=keff ¼
X

k

P2
k

Mlk

; (21)

where Pk represents the projection onto the eigenvector v(k).

Recently, Eyal and Bahar explored the single molecular

response of external forces with elastic network models (53).

Next lowest in frequency (for our hollow sphere, LS and

BMV) is the fivefold degenerate mode of vector spherical

harmonic type X2 and icosahedral type H. This mode can

be visualized as the result of twisting the upper and lower

hemispheres in opposite directions.

For empty and filled STMV, modes of vector spherical

harmonic type V3þW3 (icosahedral types F2 and G) appear

at frequency below X2. These modes are poorly fit by the

continuum elastic theory and involve disordered protein

chains (and nucleic acids) in the interior of the sphere.

Deformations of vector spherical harmonic type V0 (icosa-

hedral type A) are nondegenerate because they preserve

icosahedral symmetry. They correspond to radially directed

displacements of angle-independent magnitude—a shrinking

or swelling (breathing) of the entire structure. This type of

deformation occurs in response to strong internal pressure

(such as genome packaging in a bacteriophage) or external

pressure (such as osmotic pressure). Such icosahedrally

symmetric modes have been chosen to strongly correlate

with the structural changes occurring during capsid matura-

tion (21). It is notable that the eigenvalue of this mode is

substantially higher than the low frequency modes just dis-

cussed, implying relative resistance against these naturally

occurring forces. Because of the high symmetry, it is easy

to calculate the response of the shell to pressure differentials.

For example, the increase in outer radius of a spherical shell,

subject to internal pressure p, is (36)

u ¼
�

pR3
1R2

R3
2 � R3

1

��
3ð1� sÞ

2E

�
: (22)

Experimental observation of capsid dimensions in the

presence of strong pressure differentials can thus yield infor-

mation about elastic constants.

For a solid sphere, the relative frequencies of the lowest two

mode types are interchanged relative to their order in the

hollow sphere. As shown in Table SC1 for the solid sphere,
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the eigenvalue of the spheroidal squeezing modes V2 þW2

(modes 6–10) become higher than the torsional twisting

modes X2 (modes 1–5), reflecting the increased resistance

to compression of the material near the center of the sphere.

Similarly, in the solid sphere, the spheroidal l ¼ 1 modes

(Table SC1, modes 11–13) appear at lower frequency than

the l¼ 3 modes, whereas in the hollow sphere the l¼ 1 modes

(Table SC2, modes 18–20) appear above the frequency of the l
¼ 3 modes. In the solid sphere, these l¼ 1 modes correspond

to an optical phonon in which the heavy interior of the sphere

displaces in the opposite direction from the surface. In the

hollow sphere (Fig. 1), these modes involve oppositely

directed displacements of the poles and equator.

Although neither our ANM method, nor continuum elas-

ticity, can predict either the value of the ANM force constant

g, or the continuum Young’s modulus E, our fitting method

yields ratios E/g so that knowledge of one allows prediction

of the other. For example, a g ¼ 0.1 N/m implies a Young’s

modulus of E ¼ 3.28 GPa for the hollow sphere.

In the absence of experimental knowledge of elastic

constants (or, equivalently, sound speeds), we could obtain

the elastic constants by fitting to vibrational frequencies

calculated on the basis of an intermolecular force field (54).

In this case, the continuum theory is no longer needed to

predict vibrational frequencies; however, it is still useful for

the purpose of classifying the calculated normal modes. Addi-

tionally, the elastic constants obtained are needed for other

applications of the continuum elastic theory, such as finite

element analysis of deformation.

Recently Young’s moduli have been obtained from nano-

indentation experiments. Bacteriophage f29 has a value of

E ¼ 1.8 � 0.2 GPa (55), which is close to hard plastics

and other proteins such as actin, tubulin (56), and lysozyme

crystals (57,58). The cowpea chlorotic mottle virus is soft in

comparison, with Young’s moduli of 140 MPa and 190 MPa

for the wild-type and mutants, respectively (49), which are

similar in magnitude to soft plastics and Teflon (56). For

murine leukemia virus particles, the Young’s moduli of

immature and mature capsids are 0.23 GPa and 1.03 GPa

(50), which are comparable to bacteriophage f29 and micro-

tubules (~0.8 GPa) (59).

A longitudinal sound speed cl¼ 1817 m/s was measured by

ultrasound in lysozyme single crystals (57). Assuming Pois-

son’s ratio s ¼ 1/3 yields a predicted transverse sound speed

of ct ¼ 915 m/s. Brillouin scattering measurements (60)

yielded sound velocities of STMV capsids ranging from

cl ¼ 1920 m/s (fully hydrated) to cl ¼ 3350 m/s (fully dehy-

drated). Assuming s ¼ 1/3, these sound speeds for STMV

imply Young’s moduli of 3.7 and 11.2 GPa, respectively.

We note that a generic value for the Gaussian network

model force-constant has been deduced by Kundu et al.

(61), based on the comparison of predicted residue fluctua-

tions with experimental B-factors. Accordingly, the force

constant is given by kBT/g ¼ 0.87 � 0.46 Å2, or g ¼ 0.48 �
0.35 N/m. Using this value together with the ratio E/g ¼
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26 nm–1 obtained here for STMV (Table 4), the Young’s

modulus becomes E ¼ 12 � 9 GPa, which is comparable

to that inferred from Brillouin scattering data.

Note that the Poisson’s ratio is unaffected by a scaling of

g, hence our fitting serves as a prediction of the value of s.

Experimentally s has been hard to obtain for biological

molecules, and values around 0.3 have been assumed (55)

based on analogy with similar materials. Inspecting Table 4,

we see predicted values in the range of 0.2–0.3.

Simple scaling laws follow from the continuum theory.

For example, for a set of biomolecular assemblies sharing

a common shape and elastic constants but differing in size,

our theory predicts the allowed wavenumbers q and k vary

as the inverse of the linear dimension. Consequently, the

lowest vibrational frequency also varies as the inverse of

the linear dimension.

Our analysis so far deals with spherical and icosahedral

structures. Similar ideas can be applied to other symmetries.

For example, modes in cylindrical molecules should be

described as plane waves along the axis of the cylinders,

sinusoidal oscillations around the circumference, and cylin-

drical Bessel functions in the radial direction. Such an anal-

ysis has been carried out for cylindrical viruses (62) allowing

predictions of Raman vibrational frequencies.

In summary, our method provide a means of identifying and

classifying the types of normal modes that arise from the struc-

tural symmetry, by expressing them in terms of icosahedral

and vector spherical representations. The fitting procedure

yields a relationship between the Young’s modulus (E), which

is a macroscopic elastic constant, and the microscopic force

constant (g) representative of residue-residue interactions.

In addition, it yields the optimal Poisson’s ratio (s), which

depends only on topological properties of the elastic network.

Our continuum model is restricted to the study of symmetric

movements undergone by isotropic materials. Recent molec-

ular simulations of STMV and BMV (63,64) and nanoinden-

tation experiments with viral capsids (65–67) revealed

asymmetric fluctuations and inhomogeneities in mechanical

properties (68), which are beyond the scope of our theory.
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