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Abstract: The vibrational entropy of a solid at finite temperature is investigated from the perspective
of information theory. Ab initio molecular dynamics (AIMD) simulations generate ensembles of
atomic configurations at finite temperature from which we obtain the N-body distribution of atomic
displacements, ρN . We calculate the information-theoretic entropy from the expectation value of
ln ρN . At a first level of approximation, treating individual atomic displacements independently, our
method may be applied using Debye–Waller B-factors, allowing diffraction experiments to obtain
an upper bound on the thermodynamic entropy. At the next level of approximation we correct the
overestimation through inclusion of displacement covariances. We apply this approach to elemental
body-centered cubic sodium and face-centered cubic aluminum, showing good agreement with
experimental values above the Debye temperatures of the metals. Below, the Debye temperatures,
we extract an effective vibrational density of states from eigenvalues of the covariance matrix, and
then evaluate the entropy quantum mechanically, again yielding good agreement with experiment
down to low temperatures. Our method readily generalizes to complex solids, as we demonstrate for
a high entropy alloy. Further, our method applies in cases where the quasiharmonic approximation
fails, as we demonstrate by calculating the HCP/BCC transition in Ti.

Keywords: ab initio; vibrational entropy; information theory

1. Introduction

The importance of entropy as a component of thermodynamic free energy, together
with the difficulty of its calculation, motivates continuing efforts seeking improved com-
putational approaches [1–11]. The entropy is a function of the state of the system, and is
in principle determined by the instantaneous values of every degree of freedom. Most
computational approaches to entropy calculation do not make explicit use of these values,
and instead apply some form of thermodynamic integration to relate the entropy in the
state of interest to some reference point of known entropy [12–14]. Our approach recognizes
that the entropy equals, in suitable units, the information required to fully specify the state
of the system. We capture this information in the form of many-body correlation functions
obtained from ab initio molecular dynamics (AIMD).

Multiple types of excitation contribute to the entropy of a solid. Neglecting correlations
among these, we may approximate the entropy as a sum

S ≈ Sv + Se + Sc + · · · (1)

where Sv arises from atomic vibrations [15], Se includes electronic excitations, the non-
vibrational configurational term Sc incorporates vacancies and chemical species substitu-
tions [16]. The additional terms may include magnetism and other effects [17]. The present
paper primarily addresses the vibrational contribution, but for comparison with experiment
we must include the electronic entropy. While our initial approach is classical, and intended
for applicability at elevated temperatures close to melting, we show how quantum effects
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can be incorporated to obtain accurate results below the Debye temperature. Additionally,
the electronic entropy is intrinsically a quantum mechanical property.

The following section presents our computational methods. The heart of our approach
rests on approximating the many-body displacement correlation function as a Gaussian
distribution matching the simulated covariance of atomic displacements. We then apply
the method to two test cases, face-centered cubic Al and body-centered cubic Na. In each
case we compare with standard thermodynamic data. We also show the applicability of
a simple approximation based on experimental Debye–Waller factors (thermal B-factors)
that allow experimental diffraction measurements to obtain approximate thermodynamic
entropies.

Our principal results for these test cases are illustrated in Figure 1 a,b. Notice first that
the Debye–Waller factors yield good qualitative results, lying within 1kB of the experimental
values, but remaining consistently high. This is because the Debye–Waller factors treat the
individual atomic vibrations independently, and neglect the mutual information contained
in displacement correlation functions that must reduce the vibrational entropy [3,8,18–
20]. Including the covariances of displacements and electronic entropies (curves labeled
classical) improves the agreement, but with negative deviations at low temperatures due to
the ln T divergence of the classical vibrational entropy.
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Figure 1. Entropies of (a) Al, and (b) Na. Black circles show experimental values from the NIST
JANAF Tables [21,22]. Orange triangles are calculated from Equation (16) using B-factors obtained
from [23,24]. Red squares add the classical vibrational entropy calculated from Equation (10) to the
electronic entropy calculated from Equation (15).

To overcome the deficiency of classical statistical mechanics at low temperatures,
we introduce a quantum version of our method where we interpret eigenvalues of the
covariance matrix as effective vibrational frequencies renormalized by anharmonic forces.
This reveals a relationship between our method and a different approach based on velocity
autocorrelation functions [25–27]. One could also consider our quantum approach as an
application of a temperature-dependent effective harmonic potential [10,11].

We then apply our method to two examples that are scientifically interesting and
technically challenging. First, we examine the high entropy alloy MoNbTaW [28,29]. Here
the chemically disordered structure makes the conventional phonon-based approach time
consuming. Unfortunately, it also increases the demands on AIMD run times and limits our
ability to improve statistics through symmetrization. Next, we address the temperature-
driven HCP to BCC transition of Ti. Owing to the presence of imaginary frequency modes
in the BCC state, the usual harmonic and quasiharmonic approaches cannot be applied,
while our method succeeds.

2. Methods
2.1. Probability Density Function

Our approach focuses on the N-body probability density function ρN(U ,P) of a classical
N-atom system in Cartesian phase space. The displacement variable U = (u1, u2, . . . , uN),
where ui ≡ ri −Ri defines atomic displacement of the position ri of atom i from its mean
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position (ideal lattice site) Ri, and P = (p1, p2, . . . , pN) incorporates the momenta {pi}.
Owing to the additivity of kinetic and potential energy, the phase space probability factors
into a product of density functions fU (U ) and fP (P)

ρN(U ,P) = h3N fU (U ) fP (P). (2)

The factor h3N comes from the constraint that the probability density integrates to 1

1
h3N

∫∫
· · ·

∫ ∞

−∞
ρN(U ,P)d3N U d3NP = 1. (3)

The entropy according to Gibbs [30] is (in units of kB)

S = − 1
h3N

∫∫
· · ·

∫ ∞

−∞
ρN(U ,P) ln ρN(U ,P) d3NU d3NP . (4)

This is identical to the Shannon [31] information-theoretic entropy.
According to classical Maxwell–Boltzmann statistics, the momentum distribution

function is Gaussian,

fP (P) =
exp(− 1

2P
TΣ−1
P P)√

(2π)3N det(ΣP )
, (5)

with ΣP a diagonal matrix of entries mi/β where mi is the mass of atom i and β = 1/kBT.
Formally, we set M = diag(m1, m1, m1, m2 · · · , mN), so that ΣP = M/β.

In contrast to the simplicity of the momentum distribution, the density function fU (U )
is difficult to describe precisely, considering the many-body and anharmonic interactions
among atoms. We choose to approximate it as a Gaussian with suitable covariance. Hence
we write

f (U ) =
exp(− 1

2U
TΣ−1
U U )√

(2π)3N det(ΣU )
, (6)

where ΣU is the covariance matrix

ΣU =


σ1,1 σ1,2 · · · σ1,N
σ2,1 σ2,2 · · · σ2,N

...
...

. . .
...

σN,1 σN,2 · · · σN,N

. (7)

The σi,j element of ΣU is the 3× 3 covariance matrix of the displacements ui and uj of the
ith and jth atoms,

σi,j =

 〈xixj〉 〈xiyj〉 〈xizj〉
〈yixj〉 〈yiyj〉 〈yizj〉
〈zixj〉 〈ziyj〉 〈zizj〉

, (8)

with x, y, and z the Cartesian coordinates of the displacement u. Diagonal elements of the
covariance matrix yield the variances, e.g., for our cubic lattices σi,i = 〈x2〉1. Due to the
Gaussian approximation, the many-body density fU (U ) factors into a product of two-body
correlations. Note that these two-body terms include anharmonic effects through the values
of their covariances.

Within these approximations, the entropy S of N atoms becomes

S =
1
2

ln(det (ΣU )) +
3
2

N

∑
i=1

ln(mi/βh̄2) + 3N. (9)

If all masses are equal, S simplifies to

S =
1
2

ln
(
(2πeΛ)3N det (ΣU )

)
(10)
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where Λ =
√

2πh̄2/mkBT is the thermal de Broglie wavelength for mass m at temperature
T. Subject to the Gaussian approximation, our method resembles the approach of Morris
and Ho [3], who applied it to a one-dimensional model system (see also Refs. [32,33]). Refs.
[8,9] apply this approach to solids and construct a tridiagonal Toeplitz matrix based on a
one-dimensional model of correlations between x coordinates of nearest neighbor atoms
Their entropies compare well with their target entropies calculated using thermodynamic
integration, including cases where the interactions are angle-dependent. However, the
formalism of Equation (4) applies generally, and we will examine corrections to the Gaussian
approximation in Section 3.3.1.

Figure 2 illustrates the covariance matrix ΣU for FCC Al at T = 900 K. Repeating
patterns reflect the symmetries of the FCC structure. Translational symmetry requires
that the covariance submatrix σi,j depends only on the relative position Ri,j = Rj − Ri =
ha + kb + lc, of the ith and jth atoms. Consequently, covariance matrices σi,j sharing the
same Miller indices hkl share the same value, σhkl . All 3× 3 matrices along the diagonal are
equivalent and share the form σ000 shown in part (d), whose off diagonal elements vanish
due to mirror symmetries. Three-fold rotational symmetry can be seen in the covariance
matrices σ011, σ101, σ110 (parts (e)–(g)) whose non-zero off-diagonal elements are yz, xz,
and xy components.
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Figure 2. (a) Complete AIMD simulated covariance matrix ΣU of FCC Al at 900 K in a 4× 4× 4
supercell of 256 atoms. (b) Submatrix of a 4-atom tetrahedron. (c) Unit cell of FCC Al illustrating
tetrahedron of four nearest neighbors. (d–g) Single site variance matrix σ000 and three nearest-
neighbor covariance matrices σ011, σ101 and σ110. Red color indicates positive covariance while blue
color indicates negative covariance. Color bar indicates sgn(σ) ln (|σ/σmin|).

2.2. Relation to Force Constant Matrix

The probability density ρ(x) of a classical oscillator in the harmonic potential
U = 1

2 mω2x2, in thermal equilibrium, is

ρ(x) =

√
βmω2

2π
e−

1
2 βmω2x2

, (11)

and the variance of its displacement is σ2 =
〈

x2〉 = 1/(βmω2). The force constant
C = U′′ = mω2 is related to the variance by C = 1/βσ2. For an N-particle system, the force
constant matrix C is defined in term of the second derivative of the potential U,

Ciµ,jν =
∂2U

∂uiµ∂ujν
. (12)
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where uiµ, ujν are elements of displacement U in which i, j denote atoms and µ, ν denote
x, y, z Cartesian coordinates. The mass-weighted covariance matrix, Σ̃iµ,jν =

√mimj Σiµ,jν,
relates to the mass-reduced force constant matrix C̃iµ,jν = Ciµ,jν/√mimj, by

C̃ =
1
β

Σ̃−1, (13)

hence measurement of the covariance matrix yields the complete set of force constants. The
matrices C̃ and Σ̃ are singular because of center of mass translation invariance. To invert
the singular matrix, we represent Σ̃ = ∑kµ λkµ|kµ〉〈kµ| where {(λkµ ≡ βω2

kµ)
−1, |kµ〉} is

the set of eigenvalues and eigenvectors of Σ̃. Then, noting that C̃ and Σ̃ share common
eigenvectors, we invert the nonvanishing eigenvalues to obtain C̃ = ∑kµ ω2

kµ|kµ〉〈kµ|.
For a harmonic potential U, the relationship Equation (13) is exact; for an anhar-

monic system we may take Equation (13) as defining temperature-dependent effective force
constants and vibrational frequencies [10,11].

2.3. Quantum Harmonic Entropy

The entropies predicted by our classical theory agree quite well with the experimental
values at high temperatures, but they fall below experiment at temperatures below the
Debye temperatures ΘD, as seen in Figure 1. The negative deviation is a consequence of
the negative divergence of ln (u2/Λ2) ∼ 2 ln T as T → 0. Experimentally S → 0 for all
materials, by the third law of thermodynamics, because quantum mechanics inhibits the
excitation of vibrational modes with frequencies greater than kBT/h̄.

To overcome the singularity of classical entropy, we adopt entropy of the quantum
harmonic oscillator, using effective harmonic frequencies ωkµ obtained from eigenvalues of
our covariance matrix as discussed in Section 2.2. Summing over the nonzero vibrational
frequencies, the entropy with quantum corrections is

S = ∑
kµ

[
− ln(1− e−βh̄ωkµ) +

βh̄ωkµ

eβh̄ωkµ − 1

]
. (14)

This yields better agreement when temperature is below the Debye temperature as shown
in Figure 1. In particular, the limit S→ 0 as T → 0 is obeyed.

This quantum model is harmonic in the sense that it is exact for quadratic potentials
U, but it incorporates anharmonicity through the effective vibrational frequencies which
were derived from the simulated covariance matrix. Errors due to applying the quantum
harmonic model should be small at low temperatures, where motion generically becomes
harmonic. Some prior studies employ time-dependent velocity correlation functions, then
Fourier transform over time to obtain frequencies [25–27]. The systematics of that approach
differ markedly from ours, as in principle we do not require time evolution at all; we only
simulate trajectories for the sake of enlarging our configurational ensemble.

The model Hamiltonian can be constructed in the actual harmonic limit of small
oscillations by evaluating the force constants within density functional perturbation theory.
This mode substantially underestimates the high temperature entropy as it neglects thermal
expansion. The quasiharmonic approximation can be used to predict thermal expansion,
resulting in improved agreement, or better yet we can evaluate the force constants at the
experimental lattice parameters. As seen in Figure 1 the quasiharmonic approximation
utilizing experimental lattice constants agree with experiment about as well as our new
method.

2.4. ab initio Methods

Ab initio molecular dynamics (AIMD) simulations are performed for FCC Al in
supercells of size 4× 4× 4 (256 atoms) and 6× 6× 6 (864 atoms), and for BCC Na in a
6× 6× 6 supercell (432 atoms). We use the Vienna Ab initio Simulation Package (VASP [34])
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using augmented plane wave potentials [35] with the Perdew–Burke–Ernzerhof (PBE [36])
generalized gradient exchange correlation functional. We use a single electronic k-point and
default plane wave energy cutoffs. When possible we use experimental lattice constants at
the appropriate temperatures. The molecular dynamics simulations use Nosé thermostats
with the default Nosé mass parameters. Our time steps are 2 fs, and our runs extend to 40
ps for Al (4× 4× 4) and 8 ps for (6× 6× 6), and 7 ps or greater for Na.

After allowing the simulated systems to approach equilibrium, the variances and
covariances are calculated from a continuing simulation by averaging uiuj over many sam-
ples. We also average over Ω reflection, rotation and translation symmetry operations Tk
such that σi,j =

1
Ω ∑k Tkuiuj becomes symmetry invariant. In principle, all the information

needed to evaluate the entropy is contained in just a single representative structure of
sufficient size, but the time averaging helps to reduce statistical error.

We perform phonon calculations as implemented in phonopy [37] to obtain force con-
stants and vibrational frequencies, and then calculate vibrational entropy as discussed
in Section 2.3. Rather than calculating the thermal expansion ab initio, as in the tradi-
tional quasiharmonic approximation [38], we simply evaluate the force constants at the
experimentally known temperature-dependent lattice constant a(T).

Electronic entropy is evaluated as

S = −
∫

dED(E)[ fT,µ(E) ln fT,µ(E)

+(1− fT,µ(E)) ln (1− fT,µ(E))] (15)

with D(E) the electronic density of states calculated from a structure with lattice constant
a(T), and fT,µ the Fermi-Dirac occupation function. The chemical potential µ is obtained as
a function of T using the program Felect [39].

3. Applications
3.1. Test Cases: FCC Al and BCC Na

Our method successfully predicts vibrational entropy for Al and Na, as shown in
Figure 1. Figure 3 compares the residual errors of various approximations by subtracting
off the experimental entropies. Curves labeled “Debye–Waller” and “single-site” neglect
correlations among the displacements of different atoms. In this case the entropy reduces to

S1 =
∫

dpduρ1(p, u) ln (ρ1(p, u)) =
3
2

ln
[
2πe(σx/Λ)2

]
, (16)

where ρ1 is the single-body probability, and σ2
x = 〈u2

x〉 is the mean square displacement.
This quantity is related to the Debye–Waller factor [40] that diminishes the diffraction
intensity of a peak of wavevector q by the factor exp (−q2〈u2〉/3). The displacements are
sometimes given in terms of B = 8π2〈u2〉/3. In Figure 1, we compare the experimental
entropies of Al and Na with the prediction of Equation (16) using experimental values of
the B-factor. Given the seeming disparity between crystallographic and thermodynamic
methods, the agreement is quite striking.
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Figure 3. Residuals of (a) Al and (b) Na after subtracting experimental values from our calculated
entropies (compare with Figure 1). In addition, we show our vibrational quantum model (blue
diamonds) calculated from Equation (14) using effective vibrational frequencies calculated by Equa-
tion (13); single-site model (green triangles) from Equation (16); combined single-site and two-body
model (S1 − (z/2)I2) (brown crosses) and the quasiharmonic prediction (magenta plus signs) with
vibrational frequencies calculated by phonopy. All calculations are performed at the experimentally
determined volumes for each temperature. All curves, except for Debye–Waller and single-site,
include electronic entropy.

Note that the Debye–Waller and single-site entropies exceed the experimental values.
The displacement of a single atom applies forces that displace nearby atoms, reducing the
total amount of information needed to specify a given configuration U . A similar effect is
found in the entropy of liquids, where the mutual information content of pair correlation
functions reduces the entropy below the value for an ideal gas at the same overall density
[18–20]. The mutual information of the two-body correlation function,

I2 =
∫

du1du2 f2(u1, u2) ln ( f2(u1, u2)/ f1(u1) f1(u2)) =
1
2

ln (|Σu1u2 |/|Σu|2) (17)

where f1 and f2 are the independent and joint probabilities for displacements u1 and u2 of
near-neighbor atoms, Σu1u2 is a 6× 6 covariance matrix, and Σu is the 3× 3 single atom
covariance matrix σ000. Figure 3 shows that reducing the single-site entropy by the mutual
information of its neighbors results in improved agreement with experiment. Thus, we take
S1 − (z/2)I2, where z is the coordination number and z/2 is the number of neighbors/site.
However, continuing to subtract the mutual information with even further neighbors (not
shown) strongly overcorrects at low temperatures.

To better understand how the covariance matrix and entropy are influenced by the
range of correlations, and by our finite MD simulation cells, we study the convergence
of covariance matrix elements and corresponding entropy of Al, including only matrix
elements σhkl of pairs separated by R ≤ Rhkl = |ha + kb + lc|. Figure 4a,b show that the
absolute value of det (σhkl) drops rapidly with increasing the bond length, suggesting our
simulation cell size is sufficient to capture the dominant collective motions of the solid,
although some indication of cell size dependence can be seen in the excess correlation
around [hkl] = 004 at T = 300 K. Similar decay of correlations was observed in other
simulations [8,41]. Comparing T = 900 K with T = 300 K, we see similar variation with
Rhkl , while the values at high temperature are nearly two orders of magnitude larger.

Figure 4c,d shows the complete entropy calculated according to Equation (10) with
the covariance matrix ΣU truncated (i.e., all entries set to zero) beyond Rhkl . Comparing
convergence of the 4 × 4 × 4 (256 atom) cell with the 6 × 6 × 6 (864 atom) cell in part
(d) suggests the 4× 4× 4 cell is adequate for entropy calculation at high temperatures.
Convergence is irregular in the smaller cell at low temperatures (part (d)), and the complete
covariance matrix is required for accurate results.
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Figure 4. Left: Comparison of covariance matrix elements σhkl as bond length increases for Al at (a)
T = 300 K and (b) T = 900 K. Right: Convergence of entropy S after including all covariance matrix
elements σhkl of pairs within R ≤ Rhkl at (c) T = 300 K and (d) T = 900 K.

The improvement in entropy upon including the full covariance matrix is evident
at high temperatures in Figures 1 and 3 (see curves labeled “classical”). As discussed
previously in Section 2.3, it suffers an unavoidable ln T negative divergence at temper-
atures below the Debye temperature. This divergence is alleviated at low temperatures
through the quantum model (Section 2.3) that utilizes effective vibrational frequencies.
The quasiharmonic model, which is quantum-mechanical based on harmonic frequencies
obtained from density functional perturbation theory at temperature-dependent volumes,
is also quite accurate at all temperatures.

3.2. High Entropy Alloy: Vibrational Entropies of MoNbTaW

Although high entropy alloys (HEAs) acquire their name from the entropy of chem-
ical substitution, their vibrational entropy may exceed their substitutional entropy by a
considerable margin. Substitutional entropy is relevant for stability mainly because the
vibrational entropy of the mixture lies close to the average vibrational entropy of the ele-
ments [42]. Here, we investigate the applicability of our covariance method to calculate the
vibrational entropy of MoNbTaW [28]. Since chemical substitution is prevalent in HEAs, we
have to choose what specific arrangement of atoms to take. We will take as representative
structures the final configurations from hybrid MC/MD simulations [29], which reflect the
temperature variation of chemical order in cells of 128 atoms.

We calculate the vibrational entropy Sv
cm of a specific chemical configuration at each

temperature using the covariance matrix ΣU obtained from from MD simulations. Figure 5a
plots entropies Sv

cm + Se of theses structures. We compare our prediction with the average
experimental entropies of pure elements, Savg, and with the quasiharmonic vibrational
entropies Sv

qha + Se of a cF16 quaternary Heusler MoNbTaW structure at the same lattice
parameters as our MD simulations. The vibrational entropy was nearly independent of
the cF16 chemical arrangement. These temperature-dependent lattice parameters were
determined by varying the volume until the simulated total pressures vanish on average. It
is seen from Figure 5a that both quasiharmonic and covariance matrix entropies are close
to, but slightly smaller than, the averaged entropy Savg of pure elements, consistent with
prior calculations [43].
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Figure 5. (a) Comparison plot of the average of experimental elemental entropies [44–47], Savg,
with the entropy Sv

qha + Se calculated using the quasiharmonic approximation, the entropy Sv
cm + Se

calculated from the covariance matrix, and the entropy Sv
pacm + Se calculated from the pair-averaged

covariance matrix (pacm). (b) Convergence of vibrational entropy Sv
cm as simulation time increases

compared with vibrational entropies Sv
qha and Sv

pacm.

The vibrational entropy derived from the covariance matrix converges slowly because
these chemically disordered structures lack symmetry and we cannot employ symmetry
averaging as discussed in Section 2.4. As a result, the covariance matrix has poor statistics
and is hard to converge as illustrated in Figure 5b. Unfortunately, we lack an extrapolation
formula for entropy vs. simulation time. At long times these entropies converge towards
entropies calculated from the quasiharmonic approximation Sqha.

In an effort to alleviate the poor statistics, we introduce a pair averaged covariance
matrix (pacm), Σ̄U , that maintains the chemical identities at each site while averaging of
their chemical environments. The (i, j) element of the full covariance matrix ΣU is the 3× 3
matrix σ

αβ
i,j , where the superscripts remind us that the chemical species at site i is c(i) = α

and the chemical species at site j is c(j) = β. Let the Pαβ
i,j be the set of all pairs (i′, j′) such

that Ri′ ,j′ = Ri,j and c(i′) = α and c(j′) = β. We define the (i, j) element of Σ̄U as

Σ̄U (i, j) = σ̄
αβ
i,j =

1

Nαβ
i,j

∑
i′ ,j′

σ
αβ
i′ ,j′ (18)

where the sum runs over the set Pαβ
i,j containing Nαβ

i,j elements. The entropy computed from
Σ̄U is expected to provide a close upper bound on Sv

cm.

3.3. BCC to HCP Phase Transition in Titanium

Certain elements and compounds are so strongly anharmonic that the entropy simply
cannot be calculated within the harmonic or quasiharmonic approximation. Elements in
columns 3 and 4 of the Periodic Table undergo diffusionless (Martensitic) phase transfor-
mations from BCC (β-phase) stable at high temperature to HCP (α-phase) stable at low
temperature. Harmonic analysis predicts their BCC states to be mechanically unstable at
low temperature because they exhibit imaginary vibrational frequency modes. Eigenvec-
tors of these modes describe the transformation pathway [48,49]. The instability prevents
application of conventional harmonic or quasiharmonic calculations of the entropy. Our
calculation method circumvents this difficulty because it does not require the calculation of
vibrational frequencies.

These structural phase transitions are of practical importance, motivating considerable
efforts to predict transition temperatures and understand their mechanisms [10,11,50–54].
Proposed methods include phase space partitioning [50–52], effective force constant av-
eraging (temperature dependent effective potentials) [10,11], and an “augmented lattice”
model [51]. Predicted transition temperatures range from 1095 K to 1114 K, in general
agreement with in agreement with the experimental transition temperature Tc = 1166 K
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[55]. We apply our covariance matrix method to calculate vibrational entropy and predict
the transition temperature Tc = 1060 K.

We perform AIMD simulations for both BCC and HCP Ti at lattice constants that are
fitted to experimental measurements with quadratic functions of temperature. Considering
the scattering of experimental measurements of lattice constants, we choose to fit Refs. [56,
57] for lattice parameters of BCC Ti and Refs. [56,58,59] for HCP Ti. To minimize size effect,
we prepare simulation cells with the same number of atoms—an orthorhombic 256-atom
4 × 4 × 4 supercell based on a 4-atom unit cell (a = a, 0, 0; b = 0, a,−a; c = 0, a, a) for BCC
Ti, and an orthorhombic 256-atom 4× 4× 4 supercell based on a 4-atom unit cell (a = a, 0, 0;
b = 0,

√
3a, 0; c = 0, 0, c) for HCP Ti.

A comparison of calculated total entropy Sv
cm + Se and experimental entropy is illus-

trated in Figure 6a. Electronic entropies Se are calculated from Equation (15) with electronic
density of states obtained at the given volume for each temperature. As shown in Figure 7,
BCC Ti has a substantially higher electronic entropy than HCP Ti due to the pseudogap
at the Fermi energy of the HCP density of electronic states. Formation of the pseudogap
drives the Burger’s distortion from BCC to HCP [49]. Entropy of HCP Ti from our work
compares well to the experimental entropy except one value at T = 1400 K which falls in
the region where HCP is thermodynamically unstable. The entropy of BCC Ti, in contrast,
is overestimated by an amount of 0.5kB to 1.0kB at all temperatures.
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Figure 6. (a) Comparison of calculated entropy and experimental entropy of α-phase Ti and β-phase
Ti. (b) Comparison of calculated and experimental enthalpy. (c) Comparison of experimental and
calculated free energies. Yellow and green backgrounds shade regions of stability of the α and β

phases, respectively, as determined by experiment. Experimental data is plotted with solid lines
in regions of stability, and dashed lines in regions of instability. Experimental data comes from
NIST-JANAF Thermochemical Tables[55,60,61]. Calculated entropies S = Sv + Se.
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Figure 7. (a) Calculated electronic entropies Se of BCC and HCP Ti. (b) Electronic densities of states of
BCC and HCP Ti evaluated at their volumes at T = 1200 K. Fermi smearing of width σ = kBT = 0.103
eV has been applied.

Enthalpies are obtained by averaging energies over our MD simulations. To place
enthalpies on the experimental scale, we shifted all of our calculated enthalpy values so
that our enthalpy of α matched the experimental value at T = 800 K. For both phases our
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simulation matches well with measurement at temperatures below the α→ β temperature
while at higher temperatures it falls below the experimental enthalpy. Finally, we compute
the Gibbs free energy G = H − TS based on our calculated entropy and enthalpy of HCP
Ti at T = 800 K, 1000 K, 1200 K and BCC Ti at T = 1200 K, 1400 K, 1600 K and predict α-β
phase transition temperature Tpred

c = 1060 K (see Figure 6).
To understand the overestimate of BCC entropy, which leads to a low estimate of Tc, we

compare calculated phonon spectra and vibrational density of states derived from our force
constant matrix (see Figure 8) with results from Ref. [62]. Note that our effective vibrational
frequencies fall systematically below the experiment, explaining the overestimate of entropy.
We tested to see if this could be due to errors in lattice constant, but the impact of volume
changes was not sufficient to explain our disagreement. Presumably the fault lies in some
aspect of our simulation method. Below, we investigate possible explanations in finite size
effects, or anharmonicity, but these also turn out to be too small to explain the discrepancy.
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Figure 8. (a) Calculated vibrational dispersion spectral of BCC Ti at T = 1200 K in a cubic cell with
250 atoms. (b) Calculated vibrational density of states. Red and blue dots in (a), and red curve in (b)
come from Petry [62].

To evaluate the impact of simulated cell size on the entropy of BCC Ti, we perform
entropy calculation for three sizes: 54-atoms, 128-atoms, and 250-atoms. Figure 9 shows
a linear relation between entropy Sv

cm and inverse size 1/N. With larger cells, entropy
increases, and so does the disagreement with experiment. This finite size effect for BCC
Ti resembles the finite size effect in high-pressure high-temperature BCC Fe [63], so we
believe the effect is real, but it does not explain the overestimation.

We tested different exchange correlation functionals. LDA [64] increased the vibrational
entropy at T = 1200 K by about 0.2kB, while SCAN [65] decreased it by about 0.1kB. It seems
that the choice of functional may provide a partial explanation for the 0.4kB excess.
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Figure 9. Calculated vibrational entropy Sv
cm versus the inverse of the simulated number of atoms,

1/N, for BCC Ti at T = 1200 K. Experiment [62] is at T = 1208 K.

3.3.1. Anharmonicity

We investigate the effect of anharmonic corrections to the single site probability density

ph(u) =
e−

x2+y2+z2

2σ2√
(2πσ2)3

=
e−

R2

2σ2√
(2πσ2)3

. (19)

At the lowest order of anharmonicity, the probability density pa(u) includes the isotropic
term

I(u) = (x2 + y2 + z2)2, (20)

and the anisotropic term

A(u) = x4 + y4 + z4 − 3
(

x2y2 + x2z2 + y2z2
)

, (21)

which are invariant under cubic symmetry operations. The anharmonic probability density
is hence approximated by

pa(u) =
1
Z

exp
(
− R2

2σ2

)
exp

(
− a

4σ4 I(u)− b
4σ4 A(u)

)
, (22)

where Z is the normalization factor

Z =
∫

V
dupa(u), (23)

and the integration volume V is the Wigner-Seitz cell of an atom.
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In practice we cut off the integration at the cube V = [−8σ,+8σ]3, as justified by the
rapid vanishing of pa(u). We calculate averages 〈R2〉, 〈R4〉, and 〈A〉 during our simulation,
then we fit values of σ, a, and b by solving the simultaneous nonlinear equations

〈R2〉 =
∫

V
duR2 pa(u) (24)

〈R4〉 =
∫

V
duR4 pa(u) (25)

〈A〉 =
∫

V
duA(u)pa(u) (26)

where the probability pa(u) is given by Equation (22). Finally, the positional part of the
anisotropic entropy, Sa, is calculated from

Sa = −kB

∫
V

dupa(u) ln pa(u). (27)

Table 1 compares the influence of anharmonicity in FCC Al with BCC Ti, and presents
numerical values of the averages in Equation (24) and the solutions for σ2, a, b and entropy S.
Anharmonicity tends to reduce the entropy for both FCC Al and BCC Ti, yet the reduction
is insufficient to explain our entropy excess in BCC Ti. Differences in the signs of the a and b
parameters between FCC Al and BCC Ti imply opposite deviations of our harmonic model
from the simulated distribution. In FCC Al, the simulated distribution is more narrow,
with a higher probability at origin than in our harmonic model; in BCC Ti, the simulated
distribution is broader and lower at the origin. Our anharmonic model captures these
deviations, as shown in the marginal distributions p(x) in Figure 10.

Table 1. Statistical averages of 〈R2〉, 〈R4〉 and 〈I〉, and harmonic entropy Sh from MD simulations.
Correction to harmonic entropy and parameters σ2, a, b, and Sa − Sh of FCC Al at T = 500 K and
BCC Ti at T = 1200 K. 〈

R2〉 [Å]
〈

R4〉 [Å4] 〈I〉 [Å4] Sh [kB]

FCC Al 0.05933 0.005945 0.00003873 5.5450
BCC Ti 0.19061 0.06040 −0.002597 9.4353

σ2 [Å2] a b Sa − Sh [kB]

FCC Al 0.01918 −0.005718 −0.001890 −0.00017975
BCC Ti 0.06433 0.003210 0.01596 −0.001227

−4σ−3σ−2σ −σ 0 σ 2σ 3σ 4σ
x

0

0.5

1

1.5

2

2.5

3

p
(x

)

HIST
HA
ANI

−σ/2 σ/20

(a)

−4σ−3σ−2σ −σ 0 σ 2σ 3σ 4σ
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
(x

)

HIST
HA
ANI

σ/2−σ/2 0

(b)

Figure 10. Marginal probability distributions p(x) of (a) FCC Al at T = 500 K and (b) BCC Ti
at T = 1200 K. Crosses (HIST) are histograms of the simulated data, red lines (HA) are fits to
the harmonic model ph (Equation (19)), and blues lines (ANI) are fits to the anharmonic model pa

(Equation (22)).

To examine the anisotropies, we plot the marginal distributions pa(x, y) in Figure 11.
In FCC Al, atomic displacements are reduced in the near-neighbor directions [110] and
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correspondingly enhanced in the [100] directions. In BCC the displacements are reduced in
the nearest-neighbor directions [111] (not shown). Four such bonds project onto the [100]
directions, while only two project onto [110], explaining the observed pattern. Overall, FCC
Al is more isotropic than BCC Ti and hence has a smaller angular entropy correction.
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Figure 11. Difference of harmonic and anharmonic marginal probability distributions, pa(x, y)−
ph(x, y) for FCC Al (Left) and BCC Ti (Right).

4. Conclusions

We apply the information-theoretic entropy formula Equation (4) to evaluate the
vibrational entropies of solids from the variance and covariance of atomic displacements.
This approach generalizes prior work on the information-based entropy of liquids [18–20].
In the case of liquids, the single atom entropy (ideal gas term) overestimates the entropy
and must be corrected by removing the mutual information of the pair correlation functions.
In the case of solids, the variance of individual atomic displacements can be measured
through diffraction experiments that yield the Debye–Waller B-factor. Thus, we find a
crystallographic approach to estimate the thermodynamic entropy. However, as in the
case of liquids, the one-body approximation overestimates the entropy by the information
content of correlation functions, and we can improve the entropy estimate by including the
covariance of atom pairs. This might be possible to achieve through diffraction experiments
that measure the second-order thermal diffuse scattering [40]. It is easy to achieve through
AIMD simulations of the atomic displacement covariance matrix, as we demonstrate in
this paper for elemental Al and Na.

The method applies generally to solids, but the particular implementation given here
relies on the accuracy of a Gaussian approximation to the distribution function. Hence
it is most likely to work when the atomic displacements are small, and it is likely to
fail in molecular solids where coherent bond rotations are present. Although we mainly
demonstrated the method for elemental solids, it also holds in principle for complex
crystalline and noncrystalline solids. We give an example of such an application for the
MoNbTaW high entropy alloy.

The quasiharmonic method may be equally accurate and more efficient than our AIMD
method when anharmonicity mainly enters through thermal expansion, but a simulation-
based approach in principle includes additional anharmonic contributions. Doing so may
require correlations beyond those captured by the Gaussian approximation (see Section
3.3.1). Our simulation-based approach seems most useful when the simulation has already
been completed for other purposes. Then, the entropy comes essentially for free on top of
whatever other information was sought.

In some cases the quasiharmonic method cannot be applied due to the presence of
imaginary frequency vibrational modes. The high temperature BCC phases of columns
3 and 4 of the periodic table exhibit such modes; they achieve mechanical stability only
through their entropies. For elemental Ti, our AIMD method is capable of estimating the
vibrational entropy, although the modes seem slightly softer than observed in experiment.
We also point out the unexpected strong contribution to stability from the electronic entropy.

Our simulation approach based on the probability distribution is more flexible than
the velocity-velocity correlation method because it does not rely on an underlying harmonic
model, at least in the high temperature limit. Further, because it does not depend upon
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the dynamics, it can be used in conjunction with Monte Carlo simulation in addition to
molecular dynamics. It requires only a single representative configuration provided the
cell is sufficiently large, rather than demanding a long continuous trajectory.
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