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Abstract 
High entropy and multiprincipal element alloys present exciting opportunities and challenges for 
computational modeling of their structure and phase stability. Recent interest has catalyzed rapid 
development of techniques and equally rapid growth of new results. This review surveys the essential 
concepts of thermodynamics, total energy calculation, and the bridge between them provided by 
statistical mechanics. Specifically, we review the electronic density functional theory of alloy total 
energy as applied to supercells and special quasirandom structures. We contrast these with the 
coherent potential approximation and semi-empirical approximations. Statistical mechanical approaches 
include cluster expansions, hybrid Monte Carlo/molecular dynamics simulations, and extraction of 
entropy from correlation functions. We also compare first principles approaches with CALPHAD and 
highlight the need to augment experimental databases with first principles derived data. Numerous 
example applications are given highlighting recent progress utilizing the concepts methods that are 
introduced. 

Introduction 
 
Modeling the structure and the thermodynamics of multicomponent materials presents a number of 
interesting and exciting scientific challenges. Recently developed multicomponent alloy systems stand in 
contrast to traditional alloys, which traditionally contain just one or two primary constituent chemical 
species, with other species present in small concentrations. Current research pays increasing attention 
to multi-principal element alloy systems1,2 (MPEAs) containing many chemical species. Special effort is 
given to complex concentrated alloys3 (CCAs), in which several elements are present simultaneously in 
high concentrations. Cases where the elements substitute freely are known as concentrated solid 
solution alloys4 (CSSAs), while the specific case where multiple elements are present in high 
concentration, and they also substitute freely, are termed high entropy alloys2 (HEAs). This review 
focuses on CSSAs and HEAs. 

Stabilization of a single phase through entropy of mixing is a foundational notion of HEAs.  The ideal 
configurational entropy of chemical substitution, 



𝑆𝑆𝑐𝑐ℎ𝑒𝑒𝑒𝑒 = −𝑘𝑘𝐵𝐵 ∑ 𝑥𝑥𝛼𝛼 ln𝑥𝑥𝛼𝛼𝛼𝛼 ,      (1) 

is maximized when all elements substitute freely, which inhibits separation into multiple phases. It is 
also maximized when all lattice sites are equivalent, which tends to favor simple crystal Bravais lattice 
structures such as face centered cubic (FCC) and body centered cubic (BCC) whose primitive cells contain 
only a single site, or hexagonal (HCP) whose primitive cell contains two equivalent sites. Finally, it is 
maximized as a function of composition 𝑥𝑥𝛼𝛼 when all species are present in equal proportions, i.e. 
𝑥𝑥𝛼𝛼 = 1/𝑁𝑁 for 𝑁𝑁 species. In this case, 𝑆𝑆𝑐𝑐ℎ𝑒𝑒𝑚𝑚 = 𝑘𝑘𝐵𝐵 ln𝑁𝑁. The greater the number of species, the greater 
the value of Schem, hence motivating the search for equiatomic or nearly equiatomic compounds with 
large 𝑁𝑁. 

Despite the increase of 𝑆𝑆𝑐𝑐ℎ𝑒𝑒𝑒𝑒 for a random solid solution with increasing 𝑁𝑁, thermodynamic stability 
depends on minimizing the Gibbs free energy, 

𝐺𝐺(𝑁𝑁,𝑃𝑃,𝑇𝑇; 𝐱𝐱) = 𝐻𝐻 − 𝑇𝑇𝑇𝑇,     (2) 

with H the enthalpy. As the number of constituents grows, the range of pairwise chemical interaction 
strengths tends to grow. It may turn out that associating groups of strongly interacting chemical species 
to reduce H minimizes the free energy more effectively than maximizing the entropy does, leading to 
phase separation. Thus taking N large may be a counterproductive strategy for seeking thermodynamic 
stability5. Owing to the factor of absolute temperature T multiplying the entropy S, enthalpy always 
wins out at low temperature. A second effect further diminishes the advantage of taking N large; as the 
number of species grows, so too does the number of potential competing phases, further reducing the 
chances of stabilizing a single phase6. 

As seen from equation (2), to predict the stability of a given alloy system requires calculating the both 
the enthalpy (i.e. the energy at fixed pressure) and the entropy.  Accurate calculation of the enthalpy 
depends on precise understanding of interatomic interactions. While this can be achieved in particular 
cases using empirical potentials, fitting such potentials becomes increasingly difficult as the number of 
species grows. Hence a parameter-free first principles approach is advantageous, and this will be the 
primary focus of this review. The entropy, also, presents significant challenges. First of all, the total 
entropy has many contributions, 

S = Svib + Schem + Selec + Smag + …,     (3) 

where each term represents a different physical process and must either be calculated or its neglect 
must be justified. Expression (1) for Schem is itself only a simplified approximation, based on the 
assumption of a totally random distribution. In reality, chemical interactions correlate the occupation 
probabilities of different chemical species on nearby lattice sites. These correlations reduce Schem below 
the ideal value. 

In the following we first review the basic thermodynamic laws that govern phase stability and phase 
diagrams. Then we turn to methods to calculate the energy and enthalpy. Here our main focus is on 
quantum mechanics-based first principles total energy calculation within the approximation of 



electronic density functional theory. However we do address the use of fitted interaction potentials and 
also the empirical Miedema energy model. Given an energy calculation method we still need to provide 
a structure model to which it will be applied. For disordered solid solutions we will discuss the Coherent 
Potential Approximation (CPA), and supercell methods including Special Quasirandom Structures (SQS7).  

Methods of statistical mechanics are required to incorporate entropy into the free energy. We will 
discuss each contribution to Eq. (3) separately and explain in detail how it may be calculated. Then we 
will concentrate on the problem of Schem and how to account for nonideal mixing. Here we will describe 
the use of cluster expansion approximations to total energy, and an alternative method based on direct 
simulation through a hybrid application of Monte Carlo and molecular dynamics. We discuss, as an 
aside, the revisions needed in the event of sublattice ordering. 

Calculation of Phase Diagrams (CALPHAD8) provides an alternative approach to thermodynamic 
prediction. Based on interpolation of empirical thermodynamic functions fitted to existing experimental 
or first principles-derived data, it is a powerful tool for phase diagram prediction. However its 
applicability to HEAs and more general CSSAs depends on the availability of thermodynamic databases 
that are often incomplete, or the combination of existing databases that are mutually inconsistent. We 
survey the existing databases for HEAs and address the strategy for augmenting them with first-
principles-derived data. 

Finally, we give concrete examples of these methods in action, taken from the existing literature. 
Specifically we examine applications of the coherent potential approximation, supercells, database 
mining, and cluster expansions. Owing to the great interest in HEAs and related compounds, many other 
books9,10 and review articles3,11–16 exist that cover similar topics to this one. This interest is motivated 
both by their intrinsic fundamental scientific interest and also by their potential applications that exploit 
their promising mechanical17–20 and other properties21–27.  

Thermodynamics 
The centerpiece of alloy thermodynamics is the Gibbs free energy, G(N,P,T; x), which depends on the 
total number of atoms N, the pressure P, and the temperature T. When more than a single chemical 
species is present, we must specify the number of atoms of each type, Nα=xα N, hence defining the 
mole fractions xα subject to the constraint ∑ xα = 1. We collect the full set of mole fractions {xα} into a 
single vector x. The space of compositions x is a simplex in N-1 dimensions: the single point x=1 for N=1 
the line 0 ≤ 𝑥𝑥 ≤ 1 for N=2, a triangle for N=3, etc.  As expressed previously in equation (2), G can be 
separated into the enthalpy H=E+PV, with E the energy and V the volume, and an entropic 
contribution  –TS, with S the entropy. For solid materials at atmospheric pressure, the product PV is 
generally negligible and we may consider the enthalpy as simply the energy of the structure under the 
condition P=0. G has a special numerical value related to the chemical potentials µα, 

𝐺𝐺 =  ∑ 𝜇𝜇𝛼𝛼𝑁𝑁𝛼𝛼𝛼𝛼 .      (4) 



Under certain circumstances multiple phases i may be present, each containing the number of atoms N(i) 
at composition x(i), resulting in free energy 𝐺𝐺(𝑁𝑁,𝑃𝑃,𝑇𝑇; 𝐱𝐱) = ∑ 𝐺𝐺(𝑖𝑖)

𝑖𝑖  with 𝐺𝐺(𝑖𝑖)�𝑁𝑁(𝑖𝑖),𝑃𝑃,𝑇𝑇;  𝐱𝐱(𝑖𝑖)� =

 ∑ 𝜇𝜇𝛼𝛼𝑥𝑥𝛼𝛼
(𝑖𝑖)𝑁𝑁(𝑖𝑖)

𝛼𝛼 . 

In thermal equilibrium, the pressure P, the temperature T, and, the individual chemical potentials µα, 
are shared in common among all phases, because the equilibrium state minimizes the total free energy, 
G. Indeed, the total free energy G is obtained as the convex hull of the set of all functions G(i)(N(i), P,T; 
x(i)) defined over the composition space. Within a single phase, G(i) varies smoothly, and the slope with 

respect to composition variables 𝑥𝑥𝛼𝛼
(𝑖𝑖) yields the chemical potential µα. When phases coexist, G varies 

linearly along the tie-line or tie-plane of common tangency. If all phases had definite stoichiometry, i.e. 
they exist only at unique compositions x(i), the convex hull G may be easily obtained through the 
optimization method known as linear programming; the more general case of continuously varying G(i) 
becomes a nonlinear optimization problem that is more difficult to solve. 

From the differential 

𝑑𝑑𝑑𝑑 = 𝑉𝑉 𝑑𝑑𝑑𝑑 − 𝑆𝑆 𝑑𝑑𝑑𝑑 + ∑ 𝜇𝜇𝛼𝛼𝑑𝑑𝑁𝑁𝛼𝛼𝛼𝛼      (5) 

we see there are N+2 free variables. If the system has p phases in equilibrium, p independent Gibbs-
Duhem relations of the form 

∑ 𝑁𝑁𝛼𝛼
(𝑖𝑖)𝑑𝑑𝜇𝜇𝛼𝛼𝛼𝛼 = 𝑉𝑉 𝑑𝑑𝑑𝑑 − 𝑆𝑆 𝑑𝑑𝑑𝑑     (6) 

must be obeyed. Hence F=N+2-p thermodynamic degrees of freedom may be varied while remaining 
under the condition of phase coexistence. Equivalently at most N+2 phases may coexist in equilibrium. 
However, metallurgical experiments are frequently performed at atmospheric pressure, removing one 
degree of freedom. Hence at any particular chosen temperature (thus removing a second degree of 
freedom), at most N phases may coexist. At an arbitrarily chosen composition x, concentrated 
intermetallic systems typically exhibit the maximum number of possible coexisting phases. It is quite 
rare for an equiatomic multicomponent alloy to exist as a single phase in equilibrium. 

When elements combine to form a compound, we define the changes, ∆G, ∆H and ∆S, as the free 
energy, enthalpy and entropy of formation. For example, the free energy of formation is the free energy 
of the compound minus the composition-weighted average of the pure element free energies. Negative 
free energy of formation means that it is thermodynamically favorable for the elements to combine and 
form the compound. Since ∆G differs from G by a linear function of composition, they share the same 
set of states on their convex hulls, namely the set of thermodynamically stable states. 

First principles total energy 

Density functional theory 
The total energy of a crystal structure is a function of the atomic positions and their chemical species. 
While an explicit form for that function is not known exactly, a variety of computational methods exist 



to approximate it that we survey here. A suitable starting point, and the most accurate method that is 
practical to apply, is known as electronic density functional theory28 (DFT). This approach treats the 
atomic positions as classical variables, describing the structure through a set of positions {Ri} and their 
atomic numbers Zi. The electrons, in contrast, are treated quantum mechanically, capturing the nature 
of interatomic bonding and its variation with respect to the individual chemical nature of different 
atomic species. That is, we apply the Born-Oppenheimer approximation to separate classical (atomic) 
degrees of freedom from quantum (electronic). 

In principle the electrons are described by a many-body wavefunction obeying antisymmetry under 
exchange of electron pairs. Each electron is subject to a potential energy of interaction with every other 
electron and also with every ionic core. In practice that problem cannot be solved for more than a small 
number of electrons. Instead we replace the exact many-body Schrodinger equation with a set of 
approximate single-electron Schrodinger equations known as the Kohn-Sham equations29. 

�− ℏ2

2𝑚𝑚
∇2 +  𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓)�𝜓𝜓𝑖𝑖 = 𝐸𝐸𝑖𝑖𝜓𝜓𝑖𝑖.     (7) 

Here, each electron is subject to an effective potential Veff that includes the Coulomb interaction with 
the ionic cores, a Hartree potential due to the interaction with the average density of all electrons, and 
an additional term known as the exchange-correlation potential 𝑉𝑉𝑋𝑋𝑋𝑋[𝜌𝜌(𝒓𝒓)] that is a functional of the 
global electron density ρ(r), whose form must be approximated. Popular choices for VXC include the 
local density approximation (LDA30), in which the potential at position r depends only on the values of 
the electron density ρ at that point, and the generalized gradient approximation (GGA31), in which the 
potential at r depends both on the value of ρ and on its gradient. 

Because Veff  depends on the electron density 𝜌𝜌(𝒓𝒓) = ∑ |𝜓𝜓𝑖𝑖(𝒓𝒓)|2𝑖𝑖 , with the sum over all occupied 
electron states, the equations must be solved self-consistently. Even within the density functional 
approximation, solutions can be difficult owing to rapid variation of 𝜓𝜓𝑖𝑖 near the ionic cores. A further 
approximation based on pseudopotentials or the projector augmented wave method32,33 alleviates this 
difficulty by special treatment of the core region and treating only outer shell valence electrons. 

A number of computer programs that are widely available or even public domain solve the Kohn-Sham 
equations to yield total energies that can be accurate to within a few meV/atom (a few tenths of a 
Joule/mole). This is sufficient in most cases to identify favorable low energy structures of alloys, with the 
convex hull of enthalpy vs. composition reproducing the experimentally known low temperature stable 
phases34,35. A wealth of additional information comes as a side benefit, including: the electronic 
wavefunctions and density of states D(E), which govern the electrical conductivity, optical spectra, and 
the electronic free energy Felec; the ground state charge density 𝜌𝜌(𝒓𝒓) which reveals the nature of 
chemical bonding; forces acting on individual atoms, which can be used to relax the atoms to their 
stable positions, to calculate phonon vibrational density of states g(ω), or to perform ab initio molecular 
dynamics (AIMD36); the mechanical stress tensor of the complete structure, which can be used to 
optimize the volume and to calculate elastic constants. 



Supercell and SQS 
Since DFT calculation requires the positions and chemical identities of every atom as input, special 
consideration is required to calculate the entropy of a random solid solution. We can exploit the large 
volume and large number of atoms in bulk matter to address this problem through averaging in the 
thermodynamic limit. Think of the bulk system as consisting of many overlapping subregions; we could 
calculate the energy of many such subregions (invoking the “nearsightedness” of electronic structure37), 
then approximate the bulk as an average over local regions, weighted by their frequency in the bulk. 

Bravais lattice structures such as FCC and BCC contain only a single atom in their primitive cell, which is 
then repeated infinitely to fill space. To explicitly form a structure of N chemical species requires at least 
N atoms (and even more if their concentrations xα are not equal), hence motivating the concept of a 
supercell containing several contiguous primitive cells, that itself can be repeated infinitely to fill space. 
The chemically decorated supercell is thus a unit cell of a more complex non-Bravais lattice structure. 
Given a supercell of S atomic sites, and N1, N2, …, Ns atoms of species 1, 2, ..., s to occupy them, the 
number of possible decorations of the supercell, S!/N1!N2!...Ns! grows very rapidly with the size S of the 
supercell. Fortunately, owing to the law of large numbers, sampling a subset of possible supercell 
decorations is sufficient to obtain an excellent average. 

An alternative to sampling many decorations of a supercell is to design a special structure that 
represents a typical decoration. In a maximally random (uncorrelated) solid solution, the probability for  
a given interatomic bond to connect species α and β is yαβ=xαxβ, similarly any triplet has probability 
wαβγ=xαxβxγ and any quadruplet has probability zαβγδ=xαxβxγxδ. However, in a supercell of modest size 
(see Figure 1) there can be large deviations from these frequencies. Special quasirandom structures 
(SQS7) are specially designed to match selected correlation functions, typically including the first few 
neighbor pairwise bonds but rarely including a triplet or a quadruplet. There is a danger that optimizing 
certain correlation functions may strongly skew others, resulting in a highly unrepresentative structure. 
An example of the unreliability of SQS is provided in Figure 2, which shows the variation in energy with 
respect to differing assignments of chemical species to the 4 site classes in a 4-component 64-atom 
equiatomic SQS38. Since there are 24 ways to assign 4 species to 4 site classes, there are a total of 24 
inequivalent configurations. If the SQS were truly representative, the energy should not depend on 
which element is assigned to a given site class. 

 

   
FIG. 1 Four-component SQS structures for (a) FCC, (b) BCC, and (c) HCP alloys38. Each color represents a different SQS site 
class. 



 

FIG. 2.  Energy variation for different assignments of elements to SQS site classes38. CoCrFeNi is FCC, CoOsReRu is HCP, and 
MoNbTaW is BCC, and the SQS structures are illustrated in Figure 1. 

Sensitivity to chemical species distribution should diminish with increasing supercell size S, and these can 
be efficiently generated through Monte Carlo methods39.  The supercell should be chosen large enough to 
allow variation of local environments, but not so large that the O(S3) scaling of DFT calculation time 
renders the calculations prohibitively expensive. If phonon calculations are to be performed, the 
calculation time grows as O(S4), because of the requirement to displace each atom independently. An 
alternative to the SQS approach is to sample a variety of specific ordered structures utilizing the “small 
set of ordered structures” (SSOS) approach40. 

CPA 
The coherent potential approximation41 sidesteps the need to explicitly assign chemical species to sites. 
The electronic structure problem is solved by a Green function method based on the multiple scattering 
of electrons off atomic potentials. Each atom of species α is assumed to be surrounded by effective 
atoms placed on the remaining lattice sites, whose scattering potential is given by the composition-
weighted average of all atomic species. The set of species-dependent scattering potentials is then solved 
self-consistently. Every atom feels an identical environment, avoiding the arbitrariness implicit in 
supercell methods. Further, the composition can be varied continuously. However, there are 
disadvantages as well. First, the effective atom is a fiction, and the resulting uniformity of environment 
is not correct. Second, because all surrounding lattice sites are identically occupied, each atom sits in a 
position of high symmetry and experiences no force displacing it from its own lattice site, so that lattice 
distortion is absent. 

FP-tuned pair potentials and EAM 
Because of the computational requirements of DFT, it can be useful to trade chemical accuracy for 
speed and simplicity through the use of empirical potentials. The simplest of these are pair potentials, in 
which atoms interact pairwise, resulting in a simple expression for the total potential energy 



𝑉𝑉 = ∑ ∑ 𝑉𝑉𝛼𝛼𝛼𝛼�𝑟𝑟𝑖𝑖𝑖𝑖�𝑖𝑖<𝑗𝑗𝛼𝛼≤𝛽𝛽      (8) 

Where the pair potential 𝑉𝑉𝛼𝛼𝛼𝛼�𝑟𝑟𝑖𝑖𝑖𝑖� is the interaction of the ith atom of species α with the jth atom of 
species β. The inequalities ensure that each bond is counted exactly once. The pair potential can be 
defined in terms of simple functions such as Lennard-Jones (“6-12”), Morse, Johnson, or they can be 
derived from perturbation theory42–44. The Friedel oscillations caused by insertion of metal ions into the 
electron gas can often be captured using a simple oscillatory function45. One peculiarity of pair 
potentials is that they exert only central forces, and hence the Cauchy relation among elastic constants 
(e.g. C12=C44 for centrosymmetric cubic crystals) is automatically obeyed. The Cauchy relation does not 
hold in real materials. 

An important generalization of the pair potential adds a nonlinear function of pairwise functions. The 
embedded-atom class of interactions46,47 (this also includes Finnis-Sinclair48 and Johnson49 potentials) is 
defined by 

𝑉𝑉 =  ∑ ∑ 𝑉𝑉𝛼𝛼𝛼𝛼�𝑟𝑟𝑖𝑖𝑖𝑖�𝑖𝑖<𝑗𝑗 + 𝛼𝛼≤𝛽𝛽 ∑ ∑ 𝐸𝐸�∑ ∑ 𝜌𝜌𝛼𝛼𝛼𝛼�𝑟𝑟𝑖𝑖𝑖𝑖�𝑗𝑗𝛽𝛽 �𝑖𝑖𝛼𝛼 .    (9) 

Here the “embedding function” E represents a contribution to the energy of atom i of type α embedded 
in the electron density created by neighboring atoms of type β at distance rij. Embedded atom 
potentials exert non-central many-body forces and thus are able to violate the Cauchy violate (i.e. 
exhibit proper elastic behavior). They also capture certain surface reconstructions such as contracted 
bond lengths near metallic surfaces46. 

Pair potentials and embedded atom-type potentials based on analytic functions contain parameters that 
must be defined separately for each pair of species αβ. These parameters can be fit to reproduce 
properties such as lattice constants (atomic size) and binding strength or elastic constants. In practice 
the number of parameters is too low to allow fitting of all physical quantities that may be of interest, 
resulting in potentials that are satisfactory for certain applications but must be used with caution 
outside of purposes for which they were designed. Even potentials created in tabulated form or though 
splines50,51, which are far more general than simple analytic functions, will not accurately reproduce 
properties for which they were not specifically designed, because the particular functional forms (8) and 
(9) are too restrictive and unable to capture the full range of many-body interactions. 

Equations (8) and (9) can be evaluated in a time of order S2, where S is the size of the system (i.e. 
number of atoms). Note that this is better scaling than obtained by DFT. For sufficiently large systems, 
the majority of atom pairs lie outside the range of the interaction Vαβ(r) or the electron density ραβ(r). In 
this case, the scaling can be reduced to order S1, provided that a list is obtained of which atoms lie with 
the interaction ranges of each other. However, the fitting of interaction parameters presents a scaling 
difficulty. If there are N chemical species, of order N2 parameters must be fit. If changes in composition 
or density are made they must be refit. This contrasts with DFT which requires only order N 
pseudopotentials (or none at all for all-electron methods). Pseudopotentials are widely available in 
advance and are highly transferable. 



Miedema model 
Finally, the Miedema model52 provides the simplest approach to calculation of enthalpy. Based on 
notions of atomic volume and solvation energy, and originally intended for application to liquids, it 
defines pairwise interactions of atomic species without regard to the actual crystal structure, resulting in  

∆𝐻𝐻𝛼𝛼𝛼𝛼 = 𝑓𝑓�𝑥𝑥𝛼𝛼 ,𝑥𝑥𝛽𝛽��𝑥𝑥𝛼𝛼∆𝐻𝐻𝛼𝛼 𝑖𝑖𝑖𝑖 𝛽𝛽
𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑥𝑥𝛽𝛽∆𝐻𝐻𝛽𝛽 𝑖𝑖𝑖𝑖 𝛼𝛼

𝑠𝑠𝑠𝑠𝑠𝑠 �    (10) 

with 

𝑓𝑓�𝑥𝑥𝛼𝛼 ,𝑥𝑥𝛽𝛽� =  𝑥𝑥𝛼𝛼𝑥𝑥𝛽𝛽�1 + 𝛿𝛿𝑥𝑥𝛼𝛼𝑥𝑥𝛽𝛽�      (11) 

representing the surface contact area of species α and β. Tabulated values of parameters are available 
for many elements. As applied to solid alloys, the Miedema model formation enthalpy contains two 
additional terms53, Helastic for elastic strain of solid solutions, and Hstruct that discriminates between FCC, 
HCP and BCC structures of transition metals and depends on their valence electron counts. Although 
Miedema defined the model for binary compounds, proposed generalizations to ternaries and beyond 
exist6,54,55. This has been used to screen large numbers of compounds to predict formation of high 
entropy metallic glass56–58 and to investigate formation rules for multicomponent alloys59–61. 

Combining first principles total energy with statistical mechanics 
The preceding section addressed methods to calculate the energy of a structure, while thermodynamics 
combines energy and entropy to form the free energy. Statistical mechanics provides the formal bridge 
between energy and free energy. Several physical excitations (atomic vibrations, chemical substitution,  
electronic and magnetic excitations) contribute to the entropy, and can be directly computed based on 
first principles total energy calculations. Here we begin by describing direct methods, then address 
certain convenient approximations. 

Direct methods 
Statistical Mechanics defines the free energy as F=-kBT ln Q, with the partition function Q obtained 
from an integral over all degrees of freedom, 

𝑄𝑄 =  1
ℎ3𝑁𝑁𝑁𝑁!∫d𝒓𝒓d𝒑𝒑d𝑠𝑠 𝑒𝑒−𝐸𝐸/𝑘𝑘𝐵𝐵𝑇𝑇,     (12) 

Here r and p represent the set of all positions and momenta, and s is a collection of other degrees of 
freedom should they exist (e.g. electronic or magnetic states). We assume that we can calculate E based 
on either first principles DFT or else based on interatomic potentials. Frequently, the energy can be 
decomposed into a sum of independent terms. For example, we can separate the kinetic energy of the 
atoms 𝐾𝐾 =  ∑ |𝒑𝒑𝑖𝑖|2/2𝑚𝑚𝑖𝑖𝑖𝑖  from the potential energy V(r,s) to obtain 𝑄𝑄 =  𝑍𝑍/Λ3𝑁𝑁, with the thermal de 

Broglie wavelength Λ =  �2𝜋𝜋ℏ2/𝑚𝑚𝑘𝑘𝐵𝐵𝑇𝑇, and 

𝑍𝑍 =  ∫d𝒓𝒓d𝑠𝑠 𝑒𝑒−𝑉𝑉(𝒓𝒓,𝑠𝑠)/𝑘𝑘𝐵𝐵𝑇𝑇.      (13) 



Notice we assume here a fixed volume V so the free energy is a Helmholtz free energy F(NVT). We will 
later discuss the transformation to the Gibbs free energy G(NPT). 

For crystalline solids, configuration space separates into basins that relax to distinct structures, and we 
can label the basin by its relaxed structure Γ. For example, Γ might specify a particular arrangement of 
chemical species in a random solid solution. Within a basin at sufficiently low temperatures, the system 
executes small oscillations around Γ. We define a vibrational free energy Fvib(Γ) by integrating 𝑒𝑒−𝑉𝑉/𝑘𝑘𝐵𝐵𝑇𝑇 
over the basin containing Γ. Assuming that the small vibrations have little impact on the electronic 
states, we may also define an electronic free energy Felec(Γ) from the occupation probabilities of single 
electron states, 𝑓𝑓𝑇𝑇,𝜇𝜇(𝐸𝐸) = 1/�𝑒𝑒−(𝐸𝐸−𝜇𝜇)/𝑘𝑘𝐵𝐵𝑇𝑇 + 1�. In this case, the electronic free energy Felec(Γ) = Uelec – 
TSelec with 

𝑈𝑈 =  ∫d𝐸𝐸 𝐸𝐸 𝐷𝐷(𝐸𝐸) �𝑓𝑓𝑇𝑇,𝜇𝜇(𝐸𝐸) − 𝑓𝑓0,𝐸𝐸𝐹𝐹(𝐸𝐸)�,         (14) 

and 

𝑆𝑆 =  −𝑘𝑘𝐵𝐵 ∫𝑑𝑑𝑑𝑑 𝐷𝐷(𝐸𝐸) �𝑓𝑓𝑇𝑇,𝜇𝜇(𝐸𝐸) ln𝑓𝑓𝑇𝑇,𝜇𝜇(𝐸𝐸) +  �1 − 𝑓𝑓𝑇𝑇,𝜇𝜇(𝐸𝐸)� ln �1 − 𝑓𝑓𝑇𝑇,𝜇𝜇(𝐸𝐸)��.  (15) 

D(E) is the electronic density of states, and the chemical potential µ is determined by 

 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∫𝑑𝑑𝑑𝑑 𝐷𝐷(𝐸𝐸) 𝑓𝑓𝑇𝑇,𝜇𝜇(𝐸𝐸).      (16) 

At low temperature µ approaches the Fermi energy EF, while at high temperatures it may be necessary 
to compute it exactly from Eq. (16). 

The vibrational free energy can be evaluated in the harmonic approximation as 

𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑘𝑘𝐵𝐵𝑇𝑇 ∫𝑑𝑑𝑑𝑑 𝑔𝑔(𝜔𝜔) ln[2 sinh(ℏ𝜔𝜔/2𝑘𝑘𝐵𝐵𝑇𝑇)]    (17) 

with 𝑔𝑔(𝜔𝜔) the vibrational density of states. This Fvib incorporates both the positional and momentum 
degrees of freedom, canceling the 1/Λ3N factor relating Q to Z. At high temperatures, the quasiharmonic 
approximation may be applied to account for thermal expansion by calculating the volume-dependence 
of vibrational frequencies. Including thermal expansion V(T) converts the Helmholtz free energy 
F(N,V,T) into the Gibbs free energy G(N,P,T). 

Since we have separated (approximately) the electronic and vibrational degrees of freedom, we may 
define a basin free energy 

𝐹𝐹(Γ) = 𝑉𝑉(Γ) + 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(Γ) + 𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣(Γ),    (18) 

with V(Γ) the relaxed energy in basin Γ. Then our partition function becomes 𝑍𝑍 =  ∑ 𝑒𝑒−𝐹𝐹(Γ)/𝑘𝑘𝐵𝐵𝑇𝑇Γ . It may 
be permissible to make a further approximation, taking Fvib and Felec independent of Γ. In this case the 
full free energy F=Fvib+Felec+Fconfig with Fconfig = -kT ln Zconfig and 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  ∑ 𝑒𝑒−𝑉𝑉/k𝐵𝐵𝑇𝑇Γ .      (19) 



The sum runs over distinct configurations of chemical species on lattice sites. If there is only a single 
relevant structure, for example a well-ordered crystalline solid, then no summation is needed and the 
calculation is complete. For a random solid solution there can be many terms. Within a sufficiently small 
supercell it may be possible to explicitly sum over configurations and obtain a reasonable estimate of 
the free energy62–64. However the number of configurations grows exponentially with the number of 
sites, so usually some other method will be required to explore the thermodynamics. 

An especially simple approximation is to take the enthalpy, and vibrational and electronic free energies 
of just a single representative structure (e.g. an SQS), then assign the ideal configurational entropy as in 
Eq. (1). In the event of chemical ordering onto sublattices65,66 such as B2 order67–69, one sums the 
sublattice entropies weighted by the fractions of atoms {𝑓𝑓𝑖𝑖} on each sublattice i, 

𝑆𝑆 =  −𝑘𝑘𝐵𝐵 ∑ 𝑓𝑓𝑖𝑖 ∑ 𝑥𝑥𝛼𝛼
(𝑖𝑖) ln 𝑥𝑥𝛼𝛼

(𝑖𝑖)
𝛼𝛼𝑖𝑖 .     (20) 

More generally, one can apply a mean field theory to represent both the energy and the entropy in 
terms of unknown short-range order parameters, then determine the order parameters that minimize 
the free energy70. The approximations of Eq. (1) and (20) are known as the Bragg-Williams 
approximation71. Including pair correlation functions (see below) results in the quasichemical or Bethe 
approximation72,73, while extension to multipoint correlations leads to Kikuchi’s cluster variation 
method74,75. 

Inclusion of magnetism is also feasible but the magnetic entropy presents difficulties. The magnetic 
contribution to the enthalpy can be easily obtained through spin-polarized density functional theory. 
Many of the popular face centered cubic HEAs based on CoCrFeNi exhibit complex magnetic structure 
with the Cr atoms tending to order antiferromagnetically relative to the others, leading to the possibility 
of magnetic frustration. Indeed, multiple self-consistent solutions of the Kohn-Sham equations can be 
found corresponding to different patterns of positive and negative moments. At low temperatures in 
the ferromagnetic state, magnetic excitations known as spin waves reduce the magnetization. A 
rigorous calculation of the magnetic entropy similar to the vibrational entropy can be performed if the 
spin wave density of states can be calculated. At elevated temperatures in the paramagnetic state, 
localized moments may persist on the individual atoms but long-range ferromagnetic order is destroyed. 
In this limit, an effective spin S can be defined for each atom, and the entropy approximated as 
𝑘𝑘𝐵𝐵 ln(2𝑆𝑆 + 1). Although rigorous calculation of magnetic entropy is not yet available for HEAs, 
experimental information is available76–78 owing to the possible application of HEAs in magnetic 
refridgeration21. 

Cluster expansion 
The initial distribution of chemical species among the sites of a lattice determines the final relaxed 
configuration Γ and its relaxed energy V(Γ).  The initial distribution can be represented by stating the 
chemical species σi occupying the lattice position i, which can be considered as a vector of species, 𝜎⃗𝜎. 
Under the assumption that the energy is determined primarily by short-range interactions, it is natural 
to seek a representation of the energy as a sum of interactions whose strength diminishes with 
increasing range. This sum, which may include single-atom and pair as well as many-body interactions, 



can be justified through a perturbative expansion of the total energy42–44. Each term depends on the 
atomic species and their relative positions through 

𝑉𝑉(𝜎⃗𝜎) =  ∑ 𝐸𝐸(𝜎𝜎𝑖𝑖)𝑖𝑖 + ∑ 𝐽𝐽𝑖𝑖𝑖𝑖�𝜎𝜎𝑖𝑖,𝜎𝜎𝑗𝑗�𝑖𝑖𝑖𝑖 + ∑ 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖�𝜎𝜎𝑖𝑖,𝜎𝜎𝑗𝑗,𝜎𝜎𝑘𝑘�𝑖𝑖𝑖𝑖𝑖𝑖 + ⋯.   (21) 

The functions E, J, K, … can be fit to a database of total energies for a variety of differently decorated 
supercells of a basic lattice. The Alloy Theoretic Automated toolkit (ATAT79) systematized a data 
generation and fitting procedure, and provided tools to utilize the cluster expansion as an effective 
Hamiltonian for use in Monte Carlo simulation. By combining Monte Carlo with thermodynamic 
integration, ATAT allows the user to calculate free energies of many distinct phases, and thus to predict 
phase diagrams exhibiting order-disorder transitions and phase separation80. Later enhancements81 
include the possibility to incorporate vibrational end electronic free energy, so that instead of expanding 
the relaxed total energy V, instead it can expand the basin free energy F(Γ) (Eq. (19)). 

In figure 3 we illustrate a cluster expansion for the binary refractory alloy system Mo-Ta. Elemental Mo 
and Ta both take the BCC structure, and many decorations of the BCC lattice with Mo and Ta atoms 
exhibit negative enthalpies of formation. The comparison of DFT energies with the best fit cluster 
expansion shows a typical fit, achieving a cross-validation error of 3 meV/atom with a set of 17 pair 
interactions Jij and 13 triplets Kijl. The convex hull contains 9 predicted ground states at a discrete set of 
compositions, separated by regions of phase coexistence. Ground state structures are labeled by their 
Pearson symbols. These ground states are not readily experimentally accessible because the dense set 
of structures lying close in energy  above the convex hull allows for a large configurational entropy that 
stabilizes the experimentally observed continuous solid solution at elevated temperatures. Cluster 
expansions are a natural starting point for application of mean field theories in order to predict order-
disorder of segregation phase transitions69,70. 

 



 

FIG. 3. Cluster expansion enthalpies for the body centered cubic Mo-Ta binary alloy (adapted from Ref.69). The data set of 
DFT-calculated enthalpies is shown with black squares, and the fitted cluster expansion with red crosses. Additional 
predicted structures with up to 9 atoms per cell are shown as green plus signs. Vertices of the convex hull (blue circles) 
identify stable structures labeled with their Pearson symbols. 

First principles hybrid Monte Carlo/molecular dynamics 
Monte Carlo simulation is a popular method for generating structures representative of the equilibrium 
ensemble. By attempting to swap the positions of different chemical species, and weighting the 
acceptance probability of the swap by the Boltzmann factor 𝑒𝑒−∆𝐸𝐸/𝑘𝑘𝐵𝐵𝑇𝑇, suitable short- or long-ranged 
chemical order will develop. Molecular dynamics is an alternative method to explore configuration 
space. By integrating the equations of motion it generates physically appropriate trajectories through 
the configuration space. Combining the two exploits the strengths of each to overcome inherent 
weaknesses of the other. While in principle molecular dynamics can access the full configuration space, 
in practice for solids the atomic diffusion rates is too low to efficiently sample different chemical 
ordering in distinct basins Γ. This is where Monte Carlo excels. Meanwhile, Monte Carlo swaps of 
chemical species do not generate small atomic displacements typical of atomic vibrations within a given 
basin Γ. This is where molecular dynamics excels. This hybrid method proves highly efficient for 
simulation of high entropy alloys82. 

To further enhance equilibration, MC/MD can be supplemented with replica exchange83, in which 
independent runs at neighboring temperatures are swapped with a Boltzmann-like probability 
𝑒𝑒∆(1/𝑇𝑇)∆𝐸𝐸. In this manner the proper weighting of the equilibrium ensemble is maintained at every 
temperature, while ensemble diversity is enhanced by swapping in independent configurations. An 
important variant of this method utilizes replicas with differing compositions and swaps atomic species 
between cells84. 

Hybrid MC/MD has been extensively applied to refractory alloys4,65,75,85,86. Figure 4a shows the structure 
of Al1.33CoCrFeNi at T=300K simulated using hybrid MC/MD with replica exchange. The basic structure is 



BCC, but lattice distortion is evident in the displacement of atoms from their ideal positions. The lattice 
distortion arises from a combination of a static atomic size effect and a dynamic contribution from 
thermal atomic vibrations75,86. In terms of the mean square deviation from ideal sites 〈|∆𝐑𝐑|2〉, the lattice 
distortion reduces the diffraction peak intensity at the reciprocal lattice vector G by the Debye-Waller 

factor 𝑒𝑒−2𝑊𝑊 with 2𝑊𝑊 =  1
3
〈|∆𝐑𝐑|2〉 |𝐆𝐆|2, and also creates diffuse scattering in the vicinity of the Bragg 

peaks75. Local atomic species-resolved lattice distortion can also be experimentally probed through 
XAFS87. Chemical ordering is evident in the alternation of Al-rich and transition metal-rich columns (see 
near the upper right-hand corner of the cell). The equilibrium phase at this composition contains 
domains of B2-like order and also tends to segregate Cr atoms from the other species68 (see near the 
lower right-hand corner). This is perhaps clearer to visualize in the radial distribution functions shown in 
figure 4b. First examine the distribution of atoms surrounding Al. The transition metal atoms, especially 
Co and Ni, primarily lie at the near-neighbor distance from Al, while the Al atoms lie at the second 
neighbor distance from each other. Meanwhile, notice the strong nearest and second neighbor peaks of 
Cr with itself. 

FIG. 4 (a) Simulated structure of Al1.33CoCrFeNi at T=300K viewed along the [001] direction. Colors indicate atomic species 
while sizes indicate vertical height. The simulation cell is outlined in dashed lines and extends periodically outside. The inset 
shows the vertical density profile. (b) and (c) Partial radial distribution functions gαβ(r) showing the atomic distributions 
around Al and Cr atoms. Purple curve at top is radial distribution function of elemental Cr. 

Correlation functions and mutual information 
Given a set of configurations selected from the equilibrium ensemble by Monte Carlo simulation of 
using either a cluster expansion or hybrid MC/MD, a variety of statistical and geometrical properties of 
the ensemble can be computed. Of particular interest are correlation functions88, notably the near 
neighbor pair frequencies yαβ. The ratio between these frequencies and their uncorrelated expectations, 



e.g. yαβ/xαxβ, reveal the preference for certain chemical species to associate.  Figure 4 illustrates the 
nearest neighbor pair correlation functions from MC/MD replica exchange simulations of Al1.33CoCrFeNi.  
Notice how the deviations of yαβ/xαxβ from 1 grow as the temperature drops, with increasing frequency 
of Co and Ni as neighbors of Al (and corresponding loss of these species as their own neighbors), and 
similarly the increasing frequency of Cr as its own neighbor. 

Short-range chemical order necessarily reduces the configurational entropy relative to the ideal mixing 
value of Eq. (1). The correlation function yαβ provides information about the likely chemical species β 
occupying a site adjacent to any given atom of species α. This can be quantified through the notion of 
mutual information 

𝐼𝐼�𝑦𝑦𝛼𝛼𝛼𝛼;𝑥𝑥𝛼𝛼� =  ∑ 𝑦𝑦𝛼𝛼𝛼𝛼 ln�𝑦𝑦𝛼𝛼𝛼𝛼 𝑥𝑥𝛼𝛼𝑥𝑥𝛽𝛽⁄ �𝛼𝛼𝛼𝛼 .    (22) 

 In view of the equivalence of entropy and information, the mutual information can be subtracted from 
the ideal entropy to derive an improved estimate of the true entropy89,90,  

𝑆𝑆 ≈  𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 4 𝑘𝑘𝐵𝐵 𝐼𝐼�𝑦𝑦𝛼𝛼𝛼𝛼;𝑥𝑥𝛼𝛼�,     (23) 

where the factor of 4 arises because there are 4 nearest neighbor bonds per site. This expression can 
also be derived as a special case of Kikuchi’s cluster variation method75,91,92, and it can be generalized to 
liquids90. Applying Eq. (1) to the composition Al1.33CoCrFeNi results in Sideal = 1.602 kB, or 𝑒𝑒𝑆𝑆/𝑘𝑘𝐵𝐵 =
4.96. This value is shown in figure 5a and labeled as “Point” because each single site contributes 
independently. Notice the value of S is slightly less than ln(5) = 1.609 because the composition deviates 
slightly from equiatomic. The entropy loss due to the mutual information of nearest neighbor (“NN”) 
pairs is small at high temperatures close to melting but grows substantially as temperature drops. 

 



FIG. 5. Entropy and pair correlations yαβ /xαxβ of Al1.33CoCrFeNi obtained from MC/MD simulation with replica exchange. In 
(a), the single point (ideal mixing) entropy is reduced by the information content of the nearest neighbor (NN) pair 
correlations (see Eq. (23)). In (b) species pairs αβ that deviate strongly from independence are labeled. 

CALPHAD 
CALPHAD is the last major technique we shall introduce. Standing for Calculation of Phase Diagrams, 
CALPHAD is based on interpolation techniques for thermodynamic functions, utilizing experimental or 
first-principles computed data for elements, and known binary and ternary alloy systems, to 
approximate the free energies of phases at compositions where data is lacking8. Interpolation on this 
data set yields approximate free energies 𝐺𝐺(𝑖𝑖)�𝑇𝑇;  𝒙𝒙(𝑖𝑖)� for multiple phases i at specified compositions or 
composition ranges.  Finally, the convex hull is computed over a desired range of compositions and 
temperatures. Several companies offer databases and associated software tools, notably PANDAT and 
Thermo-Calc93, each of which have developed databases geared towards the study of high entropy 
alloys.  There is also an open source effort94. 

The validity of CALPHAD rests on the accuracy and completeness of its underlying database. Traditional 
databases were structured around one or a few base elements such as aluminum, iron or nickel, with 
additional alloying elements intended to be present in low concentrations. Thermodynamic data for 
intermetallic compounds at intermediate compositions is sparse, and existing phases are often absent 
from the databases, requiring careful adjustment and optimization when a new alloy system is to be 
explored. Nonetheless, CALPHAD is an invaluable tool for obtaining a qualitative global view of the 
phase diagram, including many of the potential phases that may occur and how phase selection is 
affected by variation of temperature and composition. It can motivate critical experiments that in turn 
can be used to revise and improve the database. Several example applications of CALPHAD to HEAs and 
MPEAs are given in below. 

Example applications 
Many pioneering studies in high entropy alloys exemplify the above techniques and shed light on their 
structures and phase stability.  In the following describe a few  examples of the application of CPA, 
supercells, cluster expansion, and finally CALPHAD. 

Coherent potential approximation (CPA) 
We begin with example applications of the coherent potential approximation. One of the first papers on 
HEA mentioned the BCC to FCC transition in Aly(CoCrFeNi)1-y as the Al content y increases2,95. Note this 
composition can also be written as AlxCrCoFeNi, with y=x/(4+x). Figure 6 plots the CPA-calculated free 
energies96 of the BCC phase (black) and the FCC phase (red) as functions of y.  The enthalpies are taken 
from the CPA, while the entropies are assumed to be ideal mixing (i.e. Eq. (1) with xAl=y, and xα=(1-y)/4 
for CoCrFeNi. The two curves cross near y=2, indicating an exchange of stability, with greater Al content 
to the right favoring BCC and lower Al content to the left favoring FCC. However, the crossing region 
itself is thermodynamically unstable, as the pure phase free energies lie above the convex hull, defined 
by the common tangent construction and indicated in green. For Al content in this region from y=0.13 to 
y=0.24 a two phase mixture of FCC and BCC is predicted. 



 

FIG. 6 Gibbs free energy G=H-TS of Aly(CrCoFeNi)1-y as a function of aluminum content y. Calculated at T=300K (adapted from 
Tian96. VEC is valence electron count. 

This prediction is in excellent agreement with experiments on the HEA Aly(CrCoFeNi)1-y
95,97, which exhibit 

single phase FCC at low Al content, single phase BCC at high Al content, with mixed FCC and BCC in 
between.  We can understand this progression qualitatively from the perspective of valance electron 
count (VEC). Scanning across the periodic table, we see that BCC structures are prevalent at low valence, 
and FCC prevalent at high. Moving to alloys (both simple binaries98 and HEAs99–101), it appears that BCC 
extends up to VEC about 6.5 or 6.87, and FCC beyond 7.8 or 8, with complex structures, mixed behavior 
or phase coexistence expected in between.  

CPA is also capable of modeling chemical ordering. The Strukturbericht L12 (Pearson cP4, prototype 
AuCu3) structure singles out the cube corner  site in the FCC unit cell relative to the three face center 
sites. A study by Niu et al.102 addresses the chemical ordering of CrCoFeNi on the FCC lattice by 
preferentially occupying the cube corner site with one of the four species. They showed that separating 
the Cr atom significantly lowers the energy, and that this energy drop is related to the antiferromagnetic 
spin orientation of Cr relative to the remaining elements. A more general CPA-based study of chemical 
ordering in AlxCrCoFeNi utilized calculated the linear response of the energy to general spatial variation 
in composition101. In the equiatomic compound x=1 they predict depletion of Fe at the cube corner for 
FCC structures, and creation of Strukturebericht B2 (Pearson cP2, prototype CsCl) order between Al and 
Co at cube corner and body center, respectively, in the BCC phase. The magnetically driven phase 
transformation may mechanically strengthen the high entropy alloy103. 



Supercell with first-principles entropies 
Beyond the CPA, Feng, et al.65 calculated the free energy of a previously unknown quaternary, CrMoNbV 
. through explicit inclusion of configurational, vibrational and electronic free energies. This quaternary 
was chosen because expected competition from precipitation of a CrNbV Laves phase made it an 
interesting test of the concept of entropic stabilization. Hybrid Monte Carlo/molecular dynamics 
simulations were employed to generate supercells with suitable chemical short-ranged order, resulting 
in approximately 10% enhancements of near-neighbor frequencies of pairs from different columns of 
the periodic table (Cr and Mo each prefer to be neighbors of V and Nb). Chemical short-ranged order 
reduces enthalpies by approximately 6 meV/atom, however the order is sufficiently weak that the loss 
of substitutional entropy as given by Eq. (23) is negligible. Competing phase free energies were likewise 
calculated, including Cr-V substitutional entropy on one of the sublattices of CrNbV as given by Eq. (20). 
By calculating the free energy difference between the two phase mixture and the original equiatomic 
HEA, as a function of the CrNbV fraction precipitated, a transition was predicted at T=1600K. 
Subsequent experimental test confirmed a reversible transition from the two-phase mixture at low 
temperatures to the single-phase HEA at high temperatures. All terms in the entropy (configurational, 
vibrational and electronic) favored the HEA, with the configurational term being dominant. 

 

FIG. 7 (a) Free energy change from single phase HEA to a two-phase mixture; (b) Phase fractions as functions of 
temperature65. 

A similar approach104 applied to the Mo-Nb-Ta-V-W quinary refractory HEA and its alloy subsystems 
calculated G(x,T) for 178 potentially competing phases, from pure elements up through the HEA. It 
determined the full temperature-dependent phase diagrams of the quinary and the five constituent 
quaternary alloy systems. 

Extrapolation from binaries 
Recognizing that binary alloys are frequent and potent competitors for stability against HEAs, a group 
from Oak Ridge National Lab proposed to seek stable single phases by restricting the formation 



enthalpies of their constituent binary subsystems to a narrow range from modestly negative 
(compound-forming) to weakly positive (segregating)105. Lower (i.e. most negative) enthalpy limits were 
set by the value of −𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, while upper limits were set by a similar requirement against 
phase separation. They took data from existing databases of first-principles formation enthalpy, several 
of which are available online106–109. In this manner it proved possible to rationalize the successful single-
phase compounds such as FeCoNi alloyed with Cr, Pd or Mn, but not with Mo, Ti or V due to strong 
interactions with Fe and/or Ni. 

 

FIG. 8 Interaction energy matrix of Troparevsky, et al.105 based on data from AFLOW106 and the Alloy Database108. 

The same approach implies a rapid fall-off of the number of potential single-phase compounds 
containing N=5, 6 or 7 elements, because each additional element is likely to interact unfavorably (either 
bind or repel too strongly) with one or more of the other elements in the compound. A generalization of 
this claim6 suggests that in the composition space of an N-component alloy system, the stable 
compounds have an increasing probability to lie within M-component alloy subsystems, with M<N. The 
most likely values of M are 2 or 3. Thus, the use of binary interactions to screen for stability of 
multicomponent alloys is an excellent first approximation. If it were supplemented with data on 
ternaries then nearly all potential competitors would be accounted for. 

Cluster expansions 
Cluster expansions are effective Hamiltonians that efficiently describe the ground state energy of a given 
distribution of chemical constituents. They have been applied to several refractory element HEA-
forming compounds based on BCC lattices, including the quinary Mo-Nb-Ta-V-W88, and three 
quaternaries, Cr-Mo-Nb-V65,75,85, Nb-Ti-V-Zr75,85 and Mo-Nb-Ta-W69,85,110. Given an effective Hamiltonian, 
rapid search can reveal ground states exhibiting a wide variety of differing patterns of chemical order in 
alloy ground states. They can also be utilized in Monte Carlo simulation to reveal temperature-driven 
order-disorder phase transitions.  Figure 9 illustrates the outcome of such a simulation of Mo-Nb-Ta-V-
W, which simultaneously displays domains of chemical order and phase separation along with partial 



substitutional disorder88. Specifically Mo and Ta segregate into a domain that exhibits local B2-like 
chemical order, while Nb, and especially V, separate from each other and from Mo-Ta. Finally, W 
appears to mix readily into the other domains. 

 

FIG. 9 Simulated structure of Mo-Nb-Ta-V-W at T=400K reveals domains of chemically ordered Mo-Ta, and partially 
segregated domains of Nb and V88. 

The prevalence of short-range order is illustrated in Figure 10, which plots the diffuse diffraction 
intensities related to short-range chemical order in MoNbTaW. In a BCC solid solution, Bragg peaks obey 
BCC extinction rules, namely the (hkl) peaks are extinct whenever h+k+l is an odd integer. However, 
these odd peaks are present in chemically ordered variants of BCC such as B2. Short-ranged B2 order, 
like that seen between Mo and Ta in figure 9, can lead to diffuse peaks at the forbidden positions, as is 
shown in Figure 10a, which illustrates the intensity at positions (hkl)=(010) for MoTa, (120) for NbW, 
(210) for TaW and at (100) for NbMo. 

Fitting a cluster expansion is difficult. The series may require many terms110, even for a binary alloy, and 
the number of M-body terms grows roughly as NM for N species. The number also grows rapidly with the 
diameter of the cluster. The series coefficients may converge poorly as additional terms are added. 
Regularization methods such compressive sensing can significantly aid in fitting the coefficients of the 
cluster expansion111,112, but such tools have not been applied to HEAs to date. An illustration of the need 
for convergence is evident in figure 10b, which shows that the strength of the Mo-Ta peak diminishes 
substantially as the number of pairwise interactions in the cluster expansion is increased. 



 

FIG. 10 (a) Diffuse diffraction peaks indicating short-ranged B2-type chemical order in simulations at T=1300K. (b) Including 
interactions of increasing range diminish the strength of the B2 short-range order (copied from110). 

Owing to small fitting errors in the cluster expansion, the cluster expansion ground states may not 
properly identify the true DFT ground states. It is profitable to carefully relax and converge the DFT 
energies of all the predicted ground states as well as the low-lying states above the convex hull. In this 
manner it was possible to identify quaternary ground state structures85 of MoNbTaW that were not 
identified by the original cluster expansion. These Pearson type hR7 ground state structures are 
illustrated in figure 11. Their crystal structures are given in Table I. 

Table I. Crystallographic structure data of the predicted85 stable quaternary phases Mo2NbTa2W2 and Mo2Nb2TaW2. 

Pearson symbol hR7,  Space group R3m (#160) 
Lattice parameters  a = 4.55 Å , c = 19.75 Å, α = 90°, γ = 120° 
Atom Wyckoff x y z 
Ta1 3a 0 0 0.142 
W1 3a 0 0 0.289 
Mo1 3a 0 0 0.427 
Nb1 3a 0 0 0.569 
M=(Nb,Ta) 3a 0 0 0.716 
Mo2 3a 0 0 0.859 
W2 3a 0 0 0.997 
 



 

FIG. 11 Predicted85 stable Pearson type hR7 quaternary phases Mo2NbTa2W2 and Mo2Nb2TaW2. Atomic species are colored as 
shown. The red position can be either Nb or Ta. 

CALPHAD method 
CALPHAD has been widely applied to the study of HEAs and MPEAs because it provides fast screening of 
many alloy systems. A notable early effort to identify MPEAs with solid solution phases evaluated over 
130,000 alloy systems5. In addition to a tentative classification of alloy systems into categories such as 
solid solution-forming, intermetallic phase-forming, and mixed phase-forming, it provided a key 
conceptual advance. Contrary to the notion that increasing the number of components, N, necessarily 
favor formation of solid solutions through the increased configurational entropy, it turned out that the 
increased formation enthalpy of competing phases such as intermetallics grew more quickly than the 
ln(N) growth of the entropy. Hence, as N grows the fraction of alloy systems exhibiting solid solution 
phases actually decreases, as illustrated in figure 12. The reason is that in the high dimensional 
composition space with large N, most extrema of the free energy occur on the surface of the space, 
corresponding to alloy subsystems containing fewer elements6. 

An essential ingredient of the concept of HEAs is that the configurational entropy aids in stabilizing a 
single phase. Since the entropy enters the free energy multiplied by temperature, as –TS, it is 
reasonable to expect that the HEA should be stable at high temperature but transform into and ordered 
structure or decompose into a mixture of ordered structures at low temperature. Indeed, the third law 
of thermodynamics, requiring that entropy vanish in the limit as 𝑇𝑇 → 0K, prevents solid solid solutions in 
equilibrium at low temperature. Hence phase diagrams such as illustrated in figure 13113 are typical of 
CALPHAD predictions for MPEAs. At high temperature the FCC CoCrFeNi solid solution accepts Al to form 
AlxCoCrFeNi up to x=0.4. As temperature drops the single-phase FCC region shrinks towards x=0, losing 
stability first to a B2 phase consisting of chemical order between Al and transition metal atoms on a 
body centered cubic lattice (see, e.g. figure 13), and then to a combination of B2 and a Cr-rich sigma 
phase. 



 

FIG. 12. Frequency of structure as a function of the number of chemical species5. Solid Solution denotes a single phase solid 
solution. Intermetallics denotes one or more complex intermetallic structures form. Mixed means at least one each of solid 
solution and intermetallic. 

 

FIG. 13 CALPHAD-predicted phase diagram of AlxCoCrFeNi113. Notice the shrinking range of the single-phase FCC solid 
solution as temperature drops. 

Summary conclusion 
In summary, we reviewed basic principles of thermodynamics and the essential tools of quantum 
mechanics and statistical mechanics necessary to calculate thermodynamic stability from first principles. 
We gave several examples of their application to high entropy alloys and related compounds. 
Specifically, we discussed the application of the coherent potential approximation (CPA)14,41,96,101,102,114–



120, supercell and special quasirandom structure (SQS) methods38,66,121–125, empirical pair- and embedded 
atom-potentials126–133, and the Miedema approximation6,56,58–61,134–136. We explained how these may be 
combined for direct free energy calculation65,85,104,137, incorporated into cluster expansions69,70,85,88,110,138, 
used as the basis for computer simulation84–88,110,121,127,129,132,133,139,140, and exploited the resulting 
correlation functions4,75,85,90,92. Finally, we related these methods to the CALPHAD approach5,136,141–150, 
which historically has been empirical but now can be augmented with databases of first principles 
derived information. 
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