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High-entropy and multiprincipal element alloys present exciting opportunities and challenges for
computational modeling of their structure and phase stability. Recent interest has catalyzed rapid
development of techniques and equally rapid growth of new results. This review surveys the
essential concepts of thermodynamics and total energy calculation, and the bridge between them
provided by statistical mechanics. Specifically, we review the electronic density functional theory
of alloy total energy as applied to supercells and special quasirandom structures. We contrast
these with the coherent potential approximation and semi-empirical approximations. Statistical
mechanical approaches include cluster expansions, hybrid Monte Carlo/molecular dynamics
simulations, and extraction of entropy from correlation functions. We also compare first-principles
approaches with Calculation of Phase Diagrams (CALPHAD) and highlight the need to augment
experimental databases with first-principles derived data. Numerous example applications are given
highlighting recent progress utilizing the concepts and methods that are introduced.

I. INTRODUCTION

Modeling the structure and the thermodynamics of
multicomponent materials presents a number of interest-
ing and exciting scientific challenges. Recently devel-
oped multicomponent alloy systems stand in contrast to
traditional alloys, which traditionally contain just one or
two primary constituent chemical species, with other
species present in small concentrations. Current research
pays increasing attention to multiprincipal element
alloy1,2 (MPEA) systems containing many chemical
species. Special effort is given to complex concentrated
alloys,3 in which several elements are present simulta-
neously in high concentrations. Cases where the elements
substitute freely are known as concentrated solid solution
alloys4 (CSSAs), while the specific case where multiple
elements are present in high concentration, and they also
substitute freely, are termed high-entropy alloys2 (HEAs).
This review focuses on CSSAs and HEAs.

Stabilization of a single phase through entropy of
mixing is a foundational notion of HEAs. The ideal
configurational entropy of chemical substitution,

Schem ¼ �kB
X
a

xa ln xa ; ð1Þ

is maximized when all elements substitute freely, which
inhibits separation into multiple phases. It is also

maximized when all lattice sites are equivalent, which
tends to favor simple crystal Bravais lattice structures
such as face-centered cubic (FCC) and body-centered
cubic (BCC) whose primitive cells contain only a single
site, or hexagonal close packed (HCP) whose primitive
cell contains two equivalent sites. Finally, it is maximized
as a function of composition xa when all species are
present in equal proportions, i.e., xa 5 1/N for N species.
In this case, Schem 5 kB ln N. The greater the number of
species, the greater the value of Schem, hence motivating
the search for equiatomic or nearly equiatomic com-
pounds with large N.
Despite the increase of Schem for a random solid

solution with increasing N, thermodynamic stability
depends on minimizing the Gibbs free energy,

G N;P;T ; xð Þ ¼ H � TS ; ð2Þ

with H the enthalpy. As the number of constituents
grows, the range of pairwise chemical interaction
strengths tends to grow. It may turn out that associating
groups of strongly interacting chemical species to reduce
H minimizes the free energy more effectively than
maximizing the entropy does, leading to phase separa-
tion. Thus taking N large may be a counterproductive
strategy for seeking thermodynamic stability.5 Owing to
the factor of absolute temperature T multiplying the
entropy S, enthalpy always wins out at low temperature.
A second effect further diminishes the advantage of
taking N large; as the number of species grows, so too
does the number of potential competing phases, further
reducing the chances of stabilizing a single phase.6
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As seen from Eq. (2), to predict the stability of a given
alloy system requires calculating both the enthalpy (i.e.,
the energy at fixed pressure) and the entropy. Accurate
calculation of the enthalpy depends on precise under-
standing of interatomic interactions. While this can be
achieved in particular cases using empirical potentials,
fitting such potentials becomes increasingly difficult as
the number of species grows. Hence a parameter-free
first-principles approach is advantageous, and this will be
the primary focus of this review. The entropy, also,
presents significant challenges. First of all, the total
entropy has many contributions,

S ¼ Svib þ Schem þ Selec þ Smag þ � � � ; ð3Þ

where each term represents a different physical process
and must either be calculated or its neglect must be
justified. Expression (1) for Schem is itself only a simpli-
fied approximation, based on the assumption of a totally
random distribution. In reality, chemical interactions
correlate the occupation probabilities of different chem-
ical species on nearby lattice sites. These correlations
reduce Schem below the ideal value.

In the following, we first review the basic thermody-
namic laws that govern phase stability and phase dia-
grams. Then, we turn to methods to calculate the energy
and enthalpy. Here, our main focus is on the quantum
mechanics-based first-principles total energy calculation
within the approximation of electronic density functional
theory (DFT). However, we do address the use of fitted
interaction potentials and also the empirical Miedema
energy model. Given an energy calculation method, we
still need to provide a structure model to which it will be
applied. For disordered solid solutions, we will discuss
the coherent potential approximation (CPA), and super-
cell methods including special quasirandom structures
(SQS7).

Methods of statistical mechanics are required to in-
corporate entropy into the free energy. We will discuss
each contribution to Eq. (3) separately and explain in
detail how it may be calculated. Then, we will concen-
trate on the problem of Schem and how to account for
nonideal mixing. Here, we will describe the use of cluster
expansion approximations to total energy and an alterna-
tive method based on direct simulation through a hybrid
application of Monte Carlo and molecular dynamics. We
discuss, as an aside, the revisions needed in the event of
sublattice ordering.

Calculation of Phase Diagrams (CALPHAD8) provides
an alternative approach to thermodynamic prediction.
Based on the interpolation of empirical thermodynamic
functions fitted to existing experimental or first
principles-derived data, it is a powerful tool for phase
diagram prediction. However, its applicability to HEAs
and more general CSSAs depends on the availability of

thermodynamic databases that are often incomplete, or
the combination of existing databases that are mutually
inconsistent. We survey the existing databases for HEAs
and address the strategy for augmenting them with first-
principles-derived data.

Finally, we give concrete examples of these methods in
action, taken from the existing literature. Specifically, we
examine applications of the CPA, supercells, database
mining, and cluster expansions. Owing to the great
interest in HEAs and related compounds, many other
books9,10 and review articles3,11–16 exist that cover
similar topics to this one. This interest is motivated both
by their intrinsic fundamental scientific interest and also
by their potential applications that exploit their promising
mechanical17–20 and other properties.21–27

II. THERMODYNAMICS

The centerpiece of alloy thermodynamics is the Gibbs
free energy, G(N, P, T; x), which depends on the total
number of atoms N, the pressure P, and the temperature
T. When more than a single chemical species is present,
we must specify the number of atoms of each type,
Na 5 xaN, hence defining the mole fractions xa subject to
the constraint

P
xa 5 1. We collect the full set of mole

fractions {xa} into a single vector x. The space of
compositions x is a simplex in N � 1 dimensions:
the single point x 5 1 for N 5 1 the line 0 # x # 1
for N 5 2, a triangle for N 5 3, etc. As expressed
previously in Eq. (2), G can be separated into the
enthalpy H 5 E 1 PV, with E the energy and V the
volume, and an entropic contribution �TS, with
S the entropy. For solid materials at atmospheric pressure,
the product PV is generally negligible and we may
consider the enthalpy as simply the energy of the
structure under the condition P 5 0. G has a special
numerical value related to the chemical potentials la,

G ¼
X
a

laNa : ð4Þ

Under certain circumstances, multiple phases i may
be present, each containing the number of atoms N(i)

at composition x(i), resulting in free energy
G N;P; T ; xð Þ ¼P

i
GðiÞ with GðiÞ NðiÞ;P;T ; xðiÞ

� � ¼P
a
lax

ðiÞ
a NðiÞ.

In thermal equilibrium, the pressure P, the temperature
T, and the individual chemical potentials la are shared in
common among all phases because the equilibrium state
minimizes the total free energy, G. Indeed, the total free
energy G is obtained as the convex hull of the set of all
functions G(i)(N(i), P, T; x(i)) defined over the composition
space. Within a single phase, G(i) varies smoothly, and
the slope with respect to composition variables xðiÞa yields
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the chemical potential la. When phases coexist, G varies
linearly along the tie-line or tie-plane of common
tangency. If all phases had definite stoichiometry, i.e.,
they exist only at unique compositions x(i), the convex
hull G may be easily obtained through the optimization
method known as linear programming; the more general
case of continuously varying G(i) becomes a nonlinear
optimization problem that is more difficult to solve.

From the differential

dG ¼ VdP� SdT þ
X
a

ladNa ; ð5Þ

we see there are N 1 2 free variables. If the system has p
phases in equilibrium, p independent Gibbs–Duhem
relations of the formX

a

NðiÞ
a dla ¼ VdP� SdT ; ð6Þ

must be obeyed. Hence F 5 N 1 2 � p thermodynamic
degrees of freedom may be varied while remaining under
the condition of phase coexistence. Equivalently at most
N 1 2 phases may coexist in equilibrium. However,
metallurgical experiments are frequently performed at
atmospheric pressure, removing one degree of freedom.
Hence at any particular chosen temperature (thus re-
moving a second degree of freedom), at most N phases
may coexist. At an arbitrarily chosen composition x,
concentrated intermetallic systems typically exhibit the
maximum number of possible coexisting phases. It is
quite rare for an equiatomic multicomponent alloy to
exist as a single phase in equilibrium.

When elements combine to form a compound, we
define the changes, ΔG, ΔH, and ΔS, as the free energy,
enthalpy, and entropy of formation. For example, the free
energy of formation is the free energy of the compound
minus the composition-weighted average of the pure
element free energies. Negative free energy of formation
means that it is thermodynamically favorable for the
elements to combine and form the compound. Since ΔG
differs from G by a linear function of composition, they
share the same set of states on their convex hulls, namely
the set of thermodynamically stable states.

III. FIRST-PRINCIPLES TOTAL ENERGY

A. DFT

The total energy of a crystal structure is a function of
atomic positions and their chemical species. While an
explicit form for that function is not known exactly,
a variety of computational methods exist to approximate
it that we survey here. A suitable starting point, and the
most accurate method that is practical to apply, is known
as electronic DFT28. This approach treats the atomic

positions as classical variables, describing the structure
through a set of positions {Ri} and their atomic numbers
Zi. The electrons, in contrast, are treated quantum mechan-
ically, capturing the nature of interatomic bonding and its
variation with respect to the individual chemical nature of
different atomic species. That is, we apply the Born–
Oppenheimer approximation to separate classical (atomic)
degrees of freedom from quantum (electronic).

In principle, the electrons are described by a many-
body wavefunction obeying antisymmetry under ex-
change of electron pairs. Each electron is subject to
a potential energy of interaction with every other electron
and also with every ionic core. In practice that problem
cannot be solved for more than a small number of
electrons. Instead we replace the exact many-body
Schrodinger equation with a set of approximate single-
electron Schrodinger equations known as the Kohn–
Sham equations.29

� �h2

2m
=2 þ Veff rð Þ

� �
wi ¼ Eiwi : ð7Þ

Here, each electron is subject to an effective potential Veff

that includes the Coulomb interaction with the ionic
cores, a Hartree potential due to the interaction with the
average density of all electrons, and an additional term
known as the exchange-correlation potential VXC[q(r)]
that is a functional of the global electron density q(r),
whose form must be approximated. Popular choices for
VXC include the local density approximation,30 in which
the potential at position r depends only on the values of
the electron density q at that point, and the generalized
gradient approximation,31 in which the potential at
r depends both on the value of q and on its gradient.

Because Veff depends on the electron density
q rð Þ ¼P

i
wi rð Þj j2, with the sum over all occupied

electron states, the equations must be solved self-
consistently. Even within the density functional
approximation, solutions can be difficult owing to rapid
variation of wi near the ionic cores. A further approxi-
mation based on pseudopotentials or the projector aug-
mented wave method32,33 alleviates this difficulty by
special treatment of the core region and treating only
outer shell valence electrons.

A number of computer programs that are widely avail-
able or even public domain solve the Kohn–Sham equa-
tions to yield total energies that can be accurate to within
a few meV/atom (a few tenths of a Joule/mole). This is
sufficient in most cases to identify favorable low energy
structures of alloys, with the convex hull of enthalpy versus
composition reproducing the experimentally known low
temperature stable phases.34,35 A wealth of additional
information comes as a side benefit, including the elec-
tronic wavefunctions and density of states D(E), which
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govern the electrical conductivity, optical spectra, and the
electronic free energy Felec; the ground state charge density
q(r), which reveals the nature of chemical bonding; forces
acting on individual atoms, which can be used to relax the
atoms to their stable positions, to calculate phonon
vibrational density of states g(x), or to perform ab initio
molecular dynamics36; the mechanical stress tensor of the
complete structure, which can be used to optimize the
volume and to calculate elastic constants.

B. Supercell and SQS

Since DFT calculation requires the positions and
chemical identities of every atom as input, special
consideration is required to calculate the entropy of
a random solid solution. We can exploit the large volume
and large number of atoms in bulk matter to address this
problem through averaging in the thermodynamic limit.
Think of the bulk system as consisting of many over-
lapping subregions; we could calculate the energy of
many such subregions (invoking the “nearsightedness” of
the electronic structure37), then approximate the bulk as
an average over local regions, weighted by their fre-
quency in the bulk.

Bravais lattice structures such as FCC and BCC
contain only a single atom in their primitive cell, which
is then repeated infinitely to fill space. To explicitly form
a structure of N chemical species requires at least N atoms
(and even more if their concentrations xa are not equal),
hence motivating the concept of a supercell containing
several contiguous primitive cells, that itself can be
repeated infinitely to fill space. The chemically decorated
supercell is thus a unit cell of a more complex non-
Bravais lattice structure. Given a supercell of S atomic
sites, and N1, N2, . . ., Ns atoms of species 1, 2, . . ., s to
occupy them, the number of possible decorations of the
supercell, S!/N1!N2!. . .Ns! grows very rapidly with the
size S of the supercell. Fortunately, owing to the law of
large numbers, sampling a subset of possible supercell
decorations is sufficient to obtain an excellent average.

An alternative to sampling many decorations of
a supercell is to design a special structure that represents
a typical decoration. In a maximally random (uncorre-
lated) solid solution, the probability for a given inter-
atomic bond to connect species a and b is yab 5 xaxb,
similarly any triplet has probability wabc 5 xaxbxc and
any quadruplet has probability zabcd 5 xaxbxcxd. How-
ever, in a supercell of modest size (see Fig. 1) there can
be large deviations from these frequencies. SQS7 are
specially designed to match selected correlation func-
tions, typically including the first few neighbor pairwise
bonds but rarely including a triplet or a quadruplet. There
is a danger that optimizing certain correlation functions
may strongly skew others, resulting in a highly un-
representative structure. An example of the unreliability

of SQS is provided in Fig. 2, which shows the variation
in energy with respect to differing assignments of
chemical species to the 4 site classes in a 4-component
64-atom equiatomic SQS.38 Since there are 24 ways to
assign 4 species to 4 site classes, there are a total of 24
inequivalent configurations. If the SQS were truly repre-
sentative, the energy should not depend on which
element is assigned to a given site class.

Sensitivity to chemical species distribution should
diminish with increasing supercell size S, and these can
be efficiently generated through Monte Carlo methods.39

The supercell should be chosen large enough to allow
variation of local environments, but not so large that the
O(S3) scaling of DFT calculation time renders the
calculations prohibitively expensive. If phonon calcula-
tions are to be performed, the calculation time grows as
O(S4) because of the requirement to displace each atom
independently. An alternative to the SQS approach is to
sample a variety of specific ordered structures utilizing
the “small set of ordered structures” approach.40

C. CPA

The CPA41 sidesteps the need to explicitly assign
chemical species to sites. The electronic structure problem
is solved by a Green function method based on the
multiple scattering of electrons off atomic potentials. Each
atom of species a is assumed to be surrounded by effective
atoms placed on the remaining lattice sites, whose
scattering potential is given by the composition-weighted
average of all atomic species. The set of species-dependent
scattering potentials is then solved self-consistently. Every
atom feels an identical environment, avoiding the arbitrar-
iness implicit in supercell methods. Furthermore, the
composition can be varied continuously. However, there
are disadvantages as well. First, the effective atom is
a fiction, and the resulting uniformity of environment is
not correct. Second, because all surrounding lattice sites
are identically occupied, each atom sits in a position of
high symmetry and experiences no force displacing it from
its own lattice site so that lattice distortion is absent.

D. FP-tuned pair potentials and EAM

Because of the computational requirements of DFT, it
can be useful to trade chemical accuracy for speed and
simplicity through the use of empirical potentials. The
simplest of these are pair potentials, in which atoms
interact pairwise, resulting in a simple expression for the
total potential energy

V ¼
X
a# b

X
i, j

Vab rij
� �

; ð8Þ

where the pair potential Vab(rij) is the interaction of the
ith atom of species a with the jth atom of species b. The
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inequalities ensure that each bond is counted exactly once.
The pair potential can be defined in terms of simple
functions such as Lennard-Jones (“6–12”), Morse, Johnson,
or they can be derived from perturbation theory.42–44 The
Friedel oscillations caused by insertion of metal ions into
the electron gas can often be captured using a simple
oscillatory function.45 One peculiarity of pair potentials is
that they exert only central forces, and hence the Cauchy
relation among elastic constants (e.g., C12 5 C44 for
centrosymmetric cubic crystals) is automatically obeyed.
The Cauchy relation does not hold in real materials.

An important generalization of the pair potential adds
a nonlinear function of pairwise functions. The
embedded-atom class of interactions46,47 (this also
includes Finnis–Sinclair48 and Johnson49 potentials) is
defined by

V ¼
X
a# b

X
i, j

Vab rij
� �þX

a

X
i

Ea

X
b

X
j

qab rij
� � !

:

ð9Þ

Here, the “embedding function” E represents a contribu-
tion to the energy of atom i of type a embedded in the

electron density created by neighboring atoms of type b
at distance rij. Embedded atom potentials exert noncentral
many-body forces and thus are able to violate the Cauchy
violate (i.e., exhibit proper elastic behavior). They also
capture certain surface reconstructions such as contracted
bond lengths near metallic surfaces.46

Pair potentials and embedded atom-type potentials
based on analytic functions contain parameters that must
be defined separately for each pair of species ab. These
parameters can be fit to reproduce properties such as
lattice constants (atomic size) and binding strength or
elastic constants. In practice, the number of parameters is
too low to allow fitting of all physical quantities that may
be of interest, resulting in potentials that are satisfactory
for certain applications but must be used with caution
outside of purposes for which they were designed. Even
potentials created in tabulated form or though
splines,50,51 which are far more general than simple
analytic functions, will not accurately reproduce proper-
ties for which they were not specifically designed because
the particular functional forms (8) and (9) are too
restrictive and unable to capture the full range of many-
body interactions.

Equations (8) and (9) can be evaluated in a time of
order S2, where S is the size of the system (i.e., number of
atoms). Note that this is better scaling than obtained by
DFT. For sufficiently large systems, the majority of atom
pairs lie outside the range of the interaction Vab(r) or the
electron density qab(r). In this case, the scaling can be
reduced to order S1, provided that a list is obtained of
which atoms lie with the interaction ranges of each other.
However, the fitting of interaction parameters presents
a scaling difficulty. If there are N chemical species, of
order N2 parameters must be fit. If changes in composi-
tion or density are made, they must be refit. This contrasts
with DFT which requires only order N pseudopotentials
(or none at all for all-electron methods). Pseudopotentials
are widely available in advance and are highly
transferable.

E. Miedema model

Finally, the Miedema model52 provides the simplest
approach to calculation of enthalpy. Based on notions of

FIG. 1. Four-component SQS structures for (a) FCC, (b) BCC, and (c) HCP alloys (reprinted with permission from Ref. 38). Each color represents
a different SQS site class.

FIG. 2. Energy variation for different assignments of elements to SQS
site classes (reprinted with permission from Ref. 38). CoCrFeNi is
FCC, CoOsReRu is HCP, and MoNbTaW is BCC, and the SQS
structures are illustrated in Fig. 1.
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atomic volume and solvation energy, and originally
intended for application to liquids, it defines pairwise
interactions of atomic species without regard to the actual
crystal structure, resulting in

DHab ¼ f xa; xb
� �

xaDH
sol
a in b þ xbDH

sol
b in a

� �
; ð10Þ

with

f xa; xb
� � ¼ xaxb 1þ dxaxb

� �
; ð11Þ

representing the surface contact area of species a and b.
Tabulated values of parameters are available for many
elements. As applied to solid alloys, the Miedema model
formation enthalpy contains two additional terms,53

Helastic for elastic strain of solid solutions, and Hstruct that
discriminates between FCC, HCP, and BCC structures of
transition metals and depends on their valence electron
counts. Although Miedema defined the model for binary
compounds, proposed generalizations to ternaries and
beyond exist.6,54,55 This has been used to screen large
numbers of compounds to predict formation of high-
entropy metallic glass56–58 and to investigate formation
rules for multicomponent alloys.59–61

IV. COMBINING FIRST-PRINCIPLES TOTAL
ENERGY WITH STATISTICAL MECHANICS

Section III addressed methods to calculate the energy
of a structure, while thermodynamics combines energy
and entropy to form the free energy. Statistical mechanics
provides the formal bridge between energy and free
energy. Several physical excitations (atomic vibrations,
chemical substitution, and electronic and magnetic exci-
tations) contribute to the entropy and can be directly
computed based on first-principles total energy calcula-
tions. Here, we begin by describing direct methods, then
address certain convenient approximations.

A. Direct methods

Statistical mechanics defines the free energy as F5 �kBT
ln Q, with the partition function Q obtained from an integral
over all degrees of freedom,

Q ¼ 1
h3NN!

Z
dr dp ds e�E=kBT : ð12Þ

Here r and p represent the set of all positions and
momenta and s is a collection of other degrees of freedom
should they exist (e.g., electronic or magnetic states). We
assume that we can calculate E based on either first-
principles DFT or else based on interatomic potentials.
Frequently, the energy can be decomposed into a sum
of independent terms. For example, we can separate
the kinetic energy of the atoms K ¼P

i
pij j2=2mi from

the potential energy V(r, s) to obtain Q 5 Z/K3N, with the

thermal de Broglie wave length K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�h2=mkBT

q
, and

Z ¼
Z

dr ds e�V r;sð Þ=kBT : ð13Þ

Notice that we assume here a fixed volume V, so the
free energy is a Helmholtz free energy F(NVT). We will
later discuss the transformation to the Gibbs free energy
G(NPT).

For crystalline solids, configuration space separates into
basins that relax to distinct structures, and we can label the
basin by its relaxed structure C. For example, C might
specify a particular arrangement of chemical species in
a random solid solution. Within a basin at sufficiently low
temperatures, the system executes small oscillations around
C. We define a vibrational free energy Fvib(C) by in-
tegrating e�V=kBT over the basin containing C. Assuming
that the small vibrations have little impact on the electronic
states, we may also define an electronic free energy Felec(C)
from the occupation probabilities of single electron states,
fT ;l Eð Þ ¼ 1= e� E�lð Þ=kBT þ 1

� �
. In this case, the electronic

free energy Felec(C) 5 Uelec � TSelec with

U ¼
Z

dE ED Eð Þ fT ;l Eð Þ � f0;EF
Eð Þ� �

; ð14Þ

and

D(E) is the electronic density of states, and the chemical
potential l is determined by

Nelectrons ¼
Z

dE D Eð ÞfT ;l Eð Þ : ð16Þ

S ¼ �kB

Z
dED Eð Þ fT ;l Eð Þ ln fT ;l Eð Þ þ 1� fT ;l Eð Þ� �

ln 1� fT ;l Eð Þ� �	 

; ð15Þ
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At low temperature, l approaches the Fermi energy EF,
while at high temperatures it may be necessary to
compute it exactly from Eq. (16).

The vibrational free energy can be evaluated in the
harmonic approximation as

Fvib ¼ kBT

Z
dx g xð Þ ln 2 sinh �hx=2kBTð Þ½ � ; ð17Þ

with g(x) the vibrational density of states. This Fvib

incorporates both the positional and momentum degrees
of freedom, canceling the 1/K3N factor relating Q to Z. At
high temperatures, the quasiharmonic approximation may
be applied to account for thermal expansion by calculating
the volume-dependence of vibrational frequencies. Includ-
ing thermal expansion V(T) converts the Helmholtz free
energy F(N, V, T) into the Gibbs free energy G(N, P, T).

Since we have separated (approximately) the electronic
and vibrational degrees of freedom, we may define a basin
free energy

F Cð Þ ¼ V Cð Þ þ Felec Cð Þ þ FvibðCÞ ; ð18Þ

with V(C) the relaxed energy in basin C. Then our partition
function becomes Z ¼P

C
e�F Cð Þ=kBT . It may be permissible

to make a further approximation, taking Fvib and Felec
independent of C. In this case, the full free energy F5 Fvib
1 Felec 1 Fconfig with Fconfig 5 �kT ln Zconfig and

Zconfig ¼
X
C

e�V=kBT : ð19Þ

The sum runs over distinct configurations of chemical
species on lattice sites. If there is only a single relevant
structure, for example, a well-ordered crystalline solid,
then no summation is needed and the calculation is
complete. For a random solid solution, there can be
many terms. Within a sufficiently small supercell, it may
be possible to explicitly sum over configurations and
obtain a reasonable estimate of the free energy.62–64

However, the number of configurations grows exponen-
tially with the number of sites, so usually some other
method will be required to explore the thermodynamics.

An especially simple approximation is to take the
enthalpy, and vibrational and electronic free energies of
just a single representative structure (e.g., an SQS), then
assign the ideal configurational entropy as in Eq. (1). In
the event of chemical ordering onto sublattices65,66 such as
B2 order,67–69 one sums the sublattice entropies weighted
by the fractions of atoms {fi} on each sublattice i,

S ¼ �kB
X
i

fi
X
a

xðiÞa ln xðiÞa : ð20Þ

More generally, one can apply a mean field theory to
represent both the energy and the entropy in terms of
unknown short-range order parameters, then determine the

order parameters that minimize the free energy.70

The approximations of Eqs. (1) and (20) are known as
the Bragg–Williams approximation.71 Including pair corre-
lation functions (see below) results in the quasichemical or
Bethe approximation,72,73 while extension to multipoint
correlations leads to Kikuchi’s cluster variation method.74,75

Inclusion of magnetism is also feasible but the magnetic
entropy16 presents difficulties. The magnetic contribution to
the enthalpy can be easily obtained through spin-polarized
DFT. Many of the popular FCC HEAs based on CoCrFeNi
exhibit complex magnetic structure with the Cr atoms
tending to order antiferromagnetically relative to the others,
leading to the possibility of magnetic frustration. Indeed,
multiple self-consistent solutions of the Kohn–Sham equa-
tions can be found corresponding to different patterns of
positive and negative moments. At low temperatures in the
ferromagnetic state, magnetic excitations known as spin
waves reduce the magnetization. A rigorous calculation of
the magnetic entropy similar to the vibrational entropy can
be performed if the spin wave density of states can be
calculated. At elevated temperatures in the paramagnetic
state, localized moments may persist on the individual
atoms but long-range ferromagnetic order is destroyed. In
this limit, an effective spin S can be defined for each atom,
and the entropy approximated as kB ln(2S 1 1). Although
rigorous calculation of magnetic entropy is not yet available
for HEAs, experimental information is available76–78 owing
to the possible application of HEAs in magnetic
refridgeration.21

B. Cluster expansion

The initial distribution of chemical species among the
sites of a lattice determines the final relaxed configuration
C and its relaxed energy V(C). The initial distribution can
be represented by stating the chemical species ri occu-
pying the lattice position i, which can be considered as
a vector of species, ~r. Under the assumption that the
energy is determined primarily by short-range interac-
tions, it is natural to seek a representation of the energy as
a sum of interactions whose strength diminishes with
increasing range. This sum, which may include single-
atom and pair as well as many-body interactions, can be
justified through a perturbative expansion of the total
energy.42–44 Each term depends on the atomic species
and their relative positions through

V ~rð Þ ¼
X
i

E rið Þ þ
X
ij

Jij ri;rj

� �
þ
X
ijk

Kijk ri; rj; rk

� �þ � � � :

ð21Þ
The functions E, J, K, . . . can be fit to a database of

total energies for a variety of differently decorated
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supercells of a basic lattice. The alloy theoretic automated
toolkit (ATAT79) systematized a data generation and
fitting procedure and provided tools to utilize the cluster
expansion as an effective Hamiltonian for use in Monte
Carlo simulation. By combining Monte Carlo with
thermodynamic integration, ATAT allows the user to
calculate free energies of many distinct phases, and thus
to predict phase diagrams exhibiting order–disorder
transitions and phase separation.80 Later enhancements81

include the possibility to incorporate vibrational end
electronic free energy so that instead of expanding the
relaxed total energy V, instead it can expand the basin
free energy F(C) [Eq. (19)].

In Fig. 3, we illustrate a cluster expansion for the binary
refractory alloy systemMo–Ta. Elemental Mo and Ta both
take the BCC structure, and many decorations of the BCC
lattice with Mo and Ta atoms exhibit negative enthalpies
of formation. The comparison of DFT energies with the
best fit cluster expansion shows a typical fit, achieving
a cross-validation error of 3 meV/atom with a set of 17
pair interactions Jij and 13 triplets Kijl. The convex hull
contains 9 predicted ground states at a discrete set of
compositions, separated by regions of phase coexistence.
Ground state structures are labeled by their Pearson
symbols. These ground states are not readily experimen-
tally accessible because the dense set of structures lying
close in energy above the convex hull allows for a large
configurational entropy that stabilizes the experimentally
observed continuous solid solution at elevated temper-
atures. Cluster expansions are a natural starting point for
application of mean field theories to predict order–disorder
of segregation phase transitions.69,70

C. First-principles hybrid Monte Carlo/molecular
dynamics

Monte Carlo simulation is a popular method for
generating structures representative of the equilibrium

ensemble. By attempting to swap the positions of
different chemical species and weighting the acceptance
probability of the swap by the Boltzmann factor e�DE=kBT ,
suitable short- or long-ranged chemical order will de-
velop. Molecular dynamics is an alternative method to
explore configuration space. By integrating the equations
of motion, it generates physically appropriate trajectories
through the configuration space. Combining the two
exploits the strengths of each to overcome inherent
weaknesses of the other. While in principle molecular
dynamics can access the full configuration space, in
practice for solids, the atomic diffusion rates are too
low to efficiently sample different chemical ordering in
distinct basins C. This is where Monte Carlo excels.
Meanwhile, Monte Carlo swaps of chemical species do
not generate small atomic displacements typical of atomic
vibrations within a given basin C. This is where molec-
ular dynamics excels. This hybrid method proves highly
efficient for simulation of HEAs.82

To further enhance equilibration, MC/MD can be
supplemented with replica exchange,83 in which inde-
pendent runs at neighboring temperatures are swapped
with a Boltzmann-like probability eD(1/T)DE. In this
manner, the proper weighting of the equilibrium ensem-
ble is maintained at every temperature, while ensemble
diversity is enhanced by swapping in independent con-
figurations. An important variant of this method utilizes
replicas with differing compositions and swaps atomic
species between cells.84

Hybrid MC/MD has been extensively applied to re-
fractory alloys.4,65,75,85,86 Figure 4(a) shows the structure
of Al1.33CoCrFeNi at T 5 300 K simulated using hybrid
MC/MD with replica exchange. The basic structure is
BCC, but lattice distortion is evident in the displacement
of atoms from their ideal positions. The lattice distortion
arises from a combination of a static atomic size effect
and a dynamic contribution from thermal atomic vibra-
tions.75,86 In terms of the mean square deviation from
ideal sites hjDRj2i, the lattice distortion reduces the
diffraction peak intensity at the reciprocal lattice vector
G by the Debye–Waller factor e�2W with
2W ¼ 1

3 DRj j2
D E

Gj j2 and also creates diffuse scattering
in the vicinity of the Bragg peaks.75 Local atomic
species-resolved lattice distortion can also be experimen-
tally probed through XAFS.87 Chemical ordering is
evident in the alternation of Al-rich and transition
metal-rich columns (see near the upper right-hand corner
of the cell). The equilibrium phase at this composition
contains domains of B2-like order and also tends to
segregate Cr atoms from the other species68 (see near the
lower right-hand corner). This is perhaps clearer to
visualize in the radial distribution functions shown in
Fig. 4(b). First examine the distribution of atoms sur-
rounding Al. The transition metal atoms, especially Co
and Ni, primarily lie at the near-neighbor distance from

FIG. 3. Cluster expansion enthalpies for the BCC Mo–Ta binary alloy
(see also Ref. 69). The data set of DFT-calculated enthalpies is shown with
black squares and the fitted cluster expansion is shown with red crosses.
Additional predicted structures with up to 9 atoms per cell are shown as
green plus signs. Vertices of the convex hull (blue circles) identify stable
structures labeled with their Pearson symbols.
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Al, while the Al atoms lie at the second neighbor distance
from each other. Meanwhile, notice the strong nearest
and second neighbor peaks of Cr with itself.

D. Correlation functions and mutual information

Given a set of configurations selected from the equilib-
rium ensemble by Monte Carlo simulation of using either
a cluster expansion or hybrid MC/MD, a variety of
statistical and geometrical properties of the ensemble can
be computed. Of particular interest are correlation func-
tions,88 notably the near neighbor pair frequencies yab. The
ratio between these frequencies and their uncorrelated
expectations, e.g., yab/xaxb, reveals the preference for
certain chemical species to associate. Figure 4 illustrates
the nearest neighbor (NN) pair correlation functions from
MC/MD replica exchange simulations of Al1.33CoCrFeNi.
Notice how the deviations of yab/xaxb from 1 grow as the
temperature drops, with increasing frequency of Co and Ni
as neighbors of Al (and corresponding loss of these species
as their own neighbors), and similarly the increasing
frequency of Cr as its own neighbor.

Short-range chemical order necessarily reduces the
configurational entropy relative to the ideal mixing value
of Eq. (1). The correlation function yab provides in-
formation about the likely chemical species b occupying
a site adjacent to any given atom of species a. This can be
quantified through the notion of mutual information

I yab; xa
	 
 ¼X

ab

yab ln yab=xaxb
� �

: ð22Þ

In view of the equivalence of entropy and information,
the mutual information can be subtracted from the ideal

entropy to derive an improved estimate of the true
entropy,89,90

S � Sideal � 4kBI yab; xa
	 


; ð23Þ

where the factor of 4 arises because there are 4 NN bonds
per site. This expression can also be derived as a special
case of Kikuchi’s cluster variation method,75,91,92 and it
can be generalized to liquids.90 Applying Eq. (1) to the
composition Al1.33CoCrFeNi results in Sideal 5 1.602kB
or eS=kB ¼ 4:96. This value is shown in Fig. 5(a) and

FIG. 4. (a) Simulated structure of Al1.33CoCrFeNi at T 5 300 K viewed along the [001] direction. Colors indicate atomic species while sizes
indicate vertical height. The simulation cell is outlined in dashed lines and extends periodically outside. The inset shows the vertical density profile.
(b) and (c) Partial radial distribution functions gab(r) showing the atomic distributions around Al and Cr atoms. Purple curve at top is radial
distribution function of elemental Cr.

FIG. 5. Entropy and pair correlations yab/xaxb of Al1.33CoCrFeNi
obtained from MC/MD simulation with replica exchange. In (a), the
single point (ideal mixing) entropy is reduced by the information
content of the NN pair correlations [see Eq. (23)]. In (b), species pairs
ab that deviate strongly from independence are labeled.
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labeled as “Point” because each single site contributes
independently. Notice that the value of S is slightly less
than ln(5) 5 1.609 because the composition deviates
slightly from equiatomic. The entropy loss due to the
mutual information of “NN” pairs is small at high
temperatures close to melting but grows substantially as
temperature drops.

E. CALPHAD

CALPHAD is the last major technique we shall
introduce. Standing for Calculation of Phase Diagrams,
CALPHAD is based on interpolation techniques for
thermodynamic functions, utilizing experimental or
first-principles computed data for elements, and known
binary and ternary alloy systems, to approximate the free
energies of phases at compositions where data are
lacking.8 Interpolation on this data set yields approximate
free energies G(i)(T; x(i)) for multiple phases i at specified
compositions or composition ranges. Finally, the convex
hull is computed over a desired range of compositions
and temperatures. Several companies offer databases and
associated software tools, notably PANDAT and
Thermo-Calc,93 each of which have developed databases
geared toward the study of HEAs. There is also an open
source effort.94

The validity of CALPHAD rests on the accuracy and
completeness of its underlying database. Traditional
databases were structured around one or a few base
elements such as aluminum, iron, or nickel, with addi-
tional alloying elements intended to be present in low
concentrations. Thermodynamic data for intermetallic
compounds at intermediate compositions are sparse, and
existing phases are often absent from the databases,
requiring careful adjustment and optimization when
a new alloy system is to be explored. Nonetheless,
CALPHAD is an invaluable tool for obtaining a qualita-
tive global view of the phase diagram, including many of
the potential phases that may occur and how phase
selection is affected by variation of temperature and
composition. It can motivate critical experiments that in
turn can be used to revise and improve the database.
Several example applications of CALPHAD to HEAs
and MPEAs are given below.

V. EXAMPLE APPLICATIONS

Many pioneering studies in HEAs exemplify the above
techniques and shed light on their structures and phase
stability. In the following, a few examples of the
application of CPA, supercells, cluster expansion, and
finally CALPHAD are described.

A. CPA

We begin with example applications of the CPA. One
of the first papers on HEA mentioned the BCC to FCC

transition in Aly(CoCrFeNi)1�y as the Al content y
increases.2,95 Note that this composition can also be
written as AlxCrCoFeNi, with y 5 x/(4 1 x). Figure 6
plots the CPA-calculated free energies96 of the BCC
phase (black) and the FCC phase (red) as functions of y.
The enthalpies are taken from the CPA, while the
entropies are assumed to be ideal mixing, i.e., Eq. (1)
with xAl 5 y and xa 5 (1 � y)/4 for CoCrFeNi. The two
curves cross near y 5 2, indicating an exchange of
stability, with greater Al content to the right favoring
BCC and lower Al content to the left favoring FCC.
However, the crossing region itself is thermodynamically
unstable, as the pure phase free energies lie above the
convex hull, defined by the common tangent construction
and indicated in green. For Al content in this region from
y 5 0.13 to y 5 0.24, a two phase mixture of FCC and
BCC is predicted.

This prediction is in excellent agreement with experi-
ments on the HEA Aly(CrCoFeNi)1�y,

95,97 which exhibit
single phase FCC at low Al content and single phase
BCC at high Al content, with mixed FCC and BCC in
between. We can understand this progression qualita-
tively from the perspective of valance electron count
(VEC). Scanning across the periodic table, we see that
BCC structures are prevalent at low valence and FCC
structures are prevalent at high valence. Moving to alloys
(both simple binaries98 and HEAs4,99,100), it appears that
BCC extends up to VEC about 6.5 or 6.87, and FCC
beyond 7.8 or 8, with complex structures, mixed behavior
or phase coexistence expected in between.

CPA is also capable of modeling chemical ordering.
The Strukturbericht L12 (Pearson cP4, prototype AuCu3)
structure singles out the cube corner site in the FCC unit
cell relative to the three face center sites. A study by Niu
et al.101 addresses the chemical ordering of CrCoFeNi on
the FCC lattice by preferentially occupying the cube
corner site with one of the four species. They showed that
separating the Cr atom significantly lowers the energy
and that this energy drop is related to the antiferromag-
netic spin orientation of Cr relative to the remaining

FIG. 6. Gibbs free energy G 5 H � TS of Aly(CrCoFeNi)1�y

as a function of aluminum content y. Calculated at T 5 300 K
(adapted with permission from Ref. 96). VEC is the valence electron
count.
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elements. A more general CPA-based study of chemical
ordering in AlxCrCoFeNi utilized calculated the linear
response of the energy to general spatial variation in
composition.100 In the equiatomic compound x 5 1, they
predict depletion of Fe at the cube corner for FCC
structures, and creation of Strukturebericht B2 (Pearson
cP2, prototype CsCl) order between Al and Co at cube
corner and body center, respectively, in the BCC phase.
The magnetically driven phase transformation may
mechanically strengthen the HEA.102

B. Supercell with first-principles entropies

Beyond the CPA, Feng et al.65 calculated the free
energy of a previously unknown quaternary, CrMoNbV,
through explicit inclusion of configurational, vibrational,
and electronic free energies (see Fig. 7). This quaternary
was chosen because expected competition from precipi-
tation of a CrNbV Laves phase made it an interesting test
of the concept of entropic stabilization. Hybrid Monte
Carlo/molecular dynamics simulations were used to
generate supercells with suitable chemical short-ranged
order, resulting in approximately 10% enhancements of
near-neighbor frequencies of pairs from different col-
umns of the periodic table (Cr and Mo each prefer to be
neighbors of V and Nb). Chemical short-ranged order
reduces enthalpies by approximately 6 meV/atom; how-
ever, the order is sufficiently weak that the loss of
substitutional entropy as given by Eq. (23) is negligible.
Competing phase free energies were likewise calculated,
including Cr–V substitutional entropy on one of the
sublattices of CrNbV as given by Eq. (20). By calculating

the free energy difference between the two phase mixture
and the original equiatomic HEA, as a function of the
CrNbV fraction precipitated, a transition was predicted at
T 5 1600 K. Subsequent experimental test confirmed
a reversible transition from the two-phase mixture at low
temperatures to the single-phase HEA at high temper-
atures. All terms in the entropy (configurational, vibra-
tional, and electronic) favored the HEA, with the
configurational term being dominant.

A similar approach103 applied to the Mo–Nb–Ta–V–W
quinary refractory HEA and its alloy subsystems calcu-
lated G(x, T) for 178 potentially competing phases, from
pure elements up through the HEA. It determined the full
temperature-dependent phase diagrams of the quinary
and the five constituent quaternary alloy systems.

C. Extrapolation from binaries

Recognizing that binary alloys are frequent and potent
competitors for stability against HEAs, a group from Oak
Ridge National Lab proposed to seek stable single phases
by restricting the formation enthalpies of their constituent
binary subsystems to a narrow range from modestly
negative (compound-forming) to weakly positive (segre-
gating).104 Lower (i.e., most negative) enthalpy limits
were set by the value of �TAnnealingDSMixing, while upper
limits were set by a similar requirement against phase
separation. They took data from existing databases of
first-principles formation enthalpy, several of which are
available online (see Fig. 8).105–108 In this manner, it
proved possible to rationalize the successful single-phase
compounds such as FeCoNi alloyed with Cr, Pd, or Mn,

FIG. 7. (a) Free energy change from single phase HEA to a two-phase mixture; (b) Phase fractions as functions of temperature (reprinted with
permission from Ref. 65; made available through the Creative Commons Attribution 4.0 International License [http://creativecommons.org/
licenses/by/4.0/]).

M. Widom: Modeling the structure and thermodynamics of high-entropy alloys

J. Mater. Res., Vol. 33, No. 19, Oct 14, 2018 2891

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

ar
ne

gi
e 

M
el

lo
n 

U
ni

ve
rs

ity
, o

n 
16

 Ja
n 

20
19

 a
t 1

7:
45

:1
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

15
57

/jm
r.

20
18

.2
22

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1557/jmr.2018.222


but not with Mo, Ti, or V due to strong interactions with
Fe and/or Ni.

The same approach implies a rapid fall-off of the
number of potential single-phase compounds containing
N 5 5, 6, or 7 elements because each additional element
is likely to interact unfavorably (either bind or repel too
strongly) with one or more of the other elements in the
compound. A generalization of this claim6 suggests that
in the composition space of an N-component alloy
system, the stable compounds have an increasing prob-
ability to lie within M-component alloy subsystems, with
M , N. The most likely values of M are 2 or 3. Thus, the
use of binary interactions to screen for stability of
multicomponent alloys is an excellent first approxima-
tion. If they were supplemented with data on ternaries
then nearly all potential competitors would be accounted
for.

D. Cluster expansions

Cluster expansions are effective Hamiltonians that
efficiently describe the ground state energy of a given
distribution of chemical constituents. They have been
applied to several refractory element HEA-forming com-
pounds based on BCC lattices, including the quinary
Mo–Nb–Ta–V–W,88 and three quaternaries, Cr–Mo–Nb–
V,65,75,85 Nb–Ti–V–Zr,75,85 and Mo–Nb–Ta–W.69,85,109

Given an effective Hamiltonian, rapid search can reveal
ground states exhibiting a wide variety of differing
patterns of chemical order in alloy ground states. They
can also be utilized in Monte Carlo simulation to reveal

temperature-driven order–disorder phase transitions.
Figure 9 illustrates the outcome of such a simulation of
Mo–Nb–Ta–V–W, which simultaneously displays
domains of chemical order and phase separation along
with partial substitutional disorder.88 Specifically, Mo
and Ta segregate into a domain that exhibits local B2-like
chemical order, while Nb, and especially V, separate
from each other and from Mo–Ta. Finally, W appears to
mix readily into the other domains.

The prevalence of short-range order is illustrated in
Fig. 10, which plots the diffuse diffraction intensities
related to short-range chemical order in MoNbTaW. In

FIG. 8. Interaction energy matrix of Troparevsky et al. (reprinted with permission from Ref. 104; made available through the Creative
Commons Attribution 3.0 License [https://creativecommons.org/licenses/by/3.0/]) based on data from AFLOW (Ref. 105) and the Alloy
Database (Ref. 107).

FIG. 9. Simulated structure of Mo–Nb–Ta–V–W at T 5 400 K
reveals domains of chemically ordered Mo–Ta, and partially segre-
gated domains of Nb and V (reprinted with permission from Ref. 88).
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a BCC solid solution, Bragg peaks obey BCC extinction
rules, namely the (hkl) peaks are extinct whenever h 1 k
1 l is an odd integer. However, these odd peaks are
present in chemically ordered variants of BCC such as
B2. Short-ranged B2 order, like that seen between Mo
and Ta in Fig. 9, can lead to diffuse peaks at the
forbidden positions, as is shown in Fig. 10(a), which
illustrates the intensity at positions (hkl) 5 (010) for
MoTa, (120) for NbW, (210) for TaW, and (100) for
NbMo.

Fitting a cluster expansion is difficult. The series may
require many terms,109 even for a binary alloy, and the
number of M-body terms grows roughly as NM for N
species. The number also grows rapidly with the diameter
of the cluster. The series coefficients may converge
poorly as additional terms are added. Regularization
methods such as compressive sensing can significantly
aid in fitting the coefficients of the cluster expan-
sion,110,111 but such tools have not been applied to HEAs
to date. An illustration of the need for convergence is
evident in Fig. 10(b), which shows that the strength of the
Mo–Ta peak diminishes substantially as the number of
pairwise interactions in the cluster expansion is increased.

Owing to small fitting errors in the cluster expansion,
the cluster expansion ground states may not properly
identify the true DFT ground states. It is profitable to
carefully relax and converge the DFT energies of all
the predicted ground states as well as the low-lying
states above the convex hull. In this manner, it was
possible to identify quaternary ground state structures85

of MoNbTaW that were not identified by the original
cluster expansion. These Pearson type hR7 ground state
structures are illustrated in Fig. 11. Their crystal struc-
tures are given in Table I.

E. CALPHAD method

CALPHAD has been widely applied to the study of
HEAs and MPEAs because it provides fast screening of
many alloy systems. A notable early effort to identify
MPEAs with solid solution phases evaluated over
130,000 alloy systems.5 In addition to a tentative classi-
fication of alloy systems into categories such as solid

FIG. 10. (a) Diffuse diffraction peaks indicating short-ranged B2-type chemical order in simulations at T 5 1300 K. (b) Including interactions of
increasing range diminish the strength of the B2 short-range order (reprinted with permission from Ref. 109; made available through the Creative
Commons Attribution License [http://creativecommons.org/licenses/by/4.0/]).

FIG. 11. Predicted (see Ref. 85) stable Pearson type hR7 quaternary
phases Mo2NbTa2W2 and Mo2Nb2TaW2. Atomic species are colored
as shown. The red position can be either Nb or Ta.

TABLE I. Crystallographic structure data of the predicted85 stable
quaternary phases Mo2NbTa2W2 and Mo2Nb2TaW2.

Pearson symbol hR7, space group R3m (#160)

Lattice parameters a 5 4.55 Å, c 5 19.75 Å, a 5 90°, c 5 120°

Atom Wyckoff x y z

Ta1 3a 0 0 0.142
W1 3a 0 0 0.289
Mo1 3a 0 0 0.427
Nb1 3a 0 0 0.569
M 5 (Nb, Ta) 3a 0 0 0.716
Mo2 3a 0 0 0.859
W2 3a 0 0 0.997
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solution-forming, intermetallic phase-forming, and mixed
phase-forming, it provided a key conceptual advance.
Contrary to the notion that increasing the number of
components, N, necessarily favor formation of solid
solutions through the increased configurational entropy,
it turned out that the increased formation enthalpy of
competing phases such as intermetallics grew more
quickly than the ln(N) growth of the entropy. Hence, as
N grows, the fraction of alloy systems exhibiting solid
solution phases actually decreases, as illustrated in
Fig. 12. The reason is that in the high dimensional
composition space with large N, most extrema of the
free energy occur on the surface of the space, correspond-
ing to alloy subsystems containing fewer elements.6

An essential ingredient of the concept of HEAs is that
the configurational entropy aids in stabilizing a single
phase. Since the entropy enters the free energy multiplied
by temperature, as TS, it is reasonable to expect that
the HEA should be stable at high temperature but
transform into an ordered structure or decompose into
a mixture of ordered structures at low temperature.
Indeed, the third law of thermodynamics, requiring that
entropy vanishes in the limit as T ! 0 K, prevents solid–
solid solutions in equilibrium at low temperature. Hence
phase diagrams such as illustrated in Fig. 13112 are
typical of CALPHAD predictions for MPEAs. At high
temperature, the FCC CoCrFeNi solid solution accepts Al
to form AlxCoCrFeNi up to x 5 0.4. As temperature
drops, the single-phase FCC region shrinks toward x5 0,
losing stability first to a B2 phase consisting of chemical
order between Al and transition metal atoms on a BCC
lattice (see, e.g., Fig. 13), and then to a combination of
B2 and a Cr-rich sigma phase.

VI. SUMMARY CONCLUSION

In summary, we reviewed basic principles of thermo-
dynamics and the essential tools of quantum mechanics
and statistical mechanics necessary to calculate thermo-
dynamic stability from first principles. We gave several
examples of their application to HEAs and related
compounds. Specifically, we discussed the application
of the CPA,14,41,96,100,101,113–119 supercell and SQS
methods,38,40,66,120–123 empirical pair- and embedded
atom-potentials,124–131 and the Miedema approxima-
tion.6,56,58–61,132–134 We explained how these may be
combined for direct free energy calculation,65,85,103,135

incorporated into cluster expansions,69,70,85,88,109,136

used as the basis for computer
simulation,84–88,109,120,125,127,130,131,137,138 and exploited
the resulting correlation functions.4,75,85,90,92 Finally, we
related these methods to the CALPHAD approach,5,134,139–148

which historically has been empirical but now can be
augmented with databases of first-principles derived
information.
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