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We investigate the atomic structure of model decagonal quasicrystals. Periodic crystalline structures which share the local 
structure of the decagonal phase model may represent equilibrium phases to which the quasicrystal transforms at low 
temperatures. Rearrangements of atoms within the unit cells constitute a 'phason flip' and result in only modest alterations 
of the local structure. Reconstructed electron densities reveal double peaks which appear to correspond to these phason 
displacements. 

1. Introduction 

Electron densities reconstructed from five- and 
six-dimensional Patterson analysis of electron 
diffraction data [1,2] suggest plausible models for 
atomic positions in icosahedral and decagonal 
quasicrystal phases. These models, which repre- 
sent the structure in terms of 'atomic surfaces', 
have the virtue of explicitly placing atoms in an 
exactly quasiperiodic pattern over arbitrarily large 
distances. It is of interest to ask how well these 
models behave over short lengths. Do they corre- 
spond to reasonable atomic locations? How are 
we to interpret unphysically short interatomic dis- 
tances and fractional occupation probabilities? 

In an effort to answer these questions we wish 
to study the simplest crystalline structures which 
share the local atomic structure of the quasicrys- 
tal models. We can ask whether the model is 
mechanically stable for reasonable interatomic 
potentials and we can ask what alterations would 
lower the energy. Ultimately one hopes to find a 
set of atomic environments compatible with 
decagonal symmetry, and a set of potentials for 
which these structures are at least close to the 
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ground state. Given such a model, one interesting 
problem is to understand the atomic displace- 
ments involved in phason excitations and the 
corresponding energetics. In particular we look 
for evidence of Penrose-like matching rules which 
could force a quasiperiodic ground state, or else 
for a near degeneracy so that entropy could ex- 
plain the quasiperiodicity. 

2. Structural models and phasons 

Models compatible with experimental diffrac- 
tion data are available for both icosahedral and 
decagonal phases [3,4]. Decagonal phases possess 
an average periodicity along the z axis, which we 
can exploit for simplifying our analysis of struc- 
tures and for simply drawing pictures. The most 
specific and detailed decagonal phase model 
available is that of Burkov [4,5], who presents 
atomic surfaces as well as an attractive analysis of 
the resulting structure in terms of atomic clusters. 
Figure 1 shows the large (50 atom) and small 
( l l -a tom) clusters. These clusters lie at the ver- 
tices of 36 ° and 72 ° rhombi as shown. Then space 
is filled by tiling the plane with rhombi obeying 
the 'binary tiling' condition, which simply re- 
quires that where tiles share a vertex consistency 
must be maintained in cluster type. 

White atoms are claimed to represent alu- 
minum, and black ones transition metals. Copper 
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is treated as a transition metal in this model. The 
evidence for choice of atomic species comes from 
the intensity of electron density peaks [2], cou- 
pled with a requirement that atomic surfaces 
contain only single species [4]. Thus the assign- 
ment of atomic species is rather uncertain. But 
we stick with Burkov's assignments for the pur- 
poses of this paper. 

Within each decagonal layer the Burkov model 
reproduces a two-dimensional two species atomic 
model [6] which was the first hypothetical model 
to display a quasicrystal equilibrium state. The 
large and small Burkov clusters replace the large 
and small atoms of the two-dimensional model. 
We hypothesize that, at least for Lennard-Jones  
interactions the ground state of this two-dimen- 
sional model phase separates into two small unit 
cell crystals which are quasicrystal approximants. 
In fig. 2 we illustrate these crystalline states lay- 
ered with the Burkov atomic decoration of the 
clusters. In both cases the crystal space group is 
centered orthorhombic (Cc2m). It proves conve- 
nient to select rhombic prisms with horizontal 
edge length 20 ,~ and height 4 A as the unit ceils. 
The first (fig. 2(a)) has a 36 ° acute angle, and 
stoichiometry Al40(Co, Cu)28. The other (fig. 2(b)) 
has a 72 ° acute angle and stoichiometry A166(Co , 
Cu)4 4. The decagonal quasicrystal mixes these 

two unit cells for overall stoichiometry A10.597(Co, 

Cu)0.403. 
These postulated structures might actually oc- 

cur in nature. Low temperature Monte Carlo 
annealing, as well as dynamical growth studies, of 
the two-dimensional Lennard-Jones  alloy result 
in microstructures resembling random mixtures 
of the two crystal phases, each single phase do- 
main containing just a few unit cells [7]. Thus we 
examine H R E M  studies of the low temperature 
transformation products which result when 
decagonal quasicrystals are annealed below about 
600°C. The idea is to look for repeated patterns 
and match cell size and shape. H REM pictures of 
the low temperature annealed state of decagonal 
quasicrystals reveal 'ring contrasts' of about the 
right size to correspond to large clusters. Cells 
reminiscent of our 72 ° crystal (fig. 2(b)) appear in 
AICuCo [9]. Motifs similar to both our 36 ° and 
72 ° crystals appear in A1MnPd [8] with edge 
lengths r × 20 A implying larger fundamental 
clusters for this material. We expect our model 
crystal phases should describe these real crys- 
talline structures to the same degree as Burkov's 
model describes the real decagonal phase. 

Depending on precise details of stoichiometry 
and sample preparation other microstructures 
may be found instead [10]. To our knowledge the 

) 

Fig. 1. (a) Thin (36 °) and (b) fat (72 °) binary tiling rhombi decorated with large and small Burkov clusters. 
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crystalline structures shown here are the smallest mental building units. However, we note that 
found in quasicrystal transformation products, known decagonal phase approximants mll3CO 4 
suggesting that the Burkov clusters may be funda- and A15Co 2, which share some structural charac- 
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Fig. 2. Hypothetical crystal structure with (a) 68 atoms per unit cell and (b) 110 atoms per cell. Heavy lines denote primitive cell, 
while thin lines reproduce binary tiles which comprise a unit cell. 
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teristics with Burkov, lack complete, undistorted, 
large clusters. So there may be some smaller, 
more fundamental, structural units than Burkov's 
clusters. In this case agreement between our pro- 
posed crystalline states and H R E M  may be just a 
lucky coincidence. In fact, if Burkov clusters are 
indeed fundamental structural units then their 
numbers should be conserved in the low tempera- 
ture annealing. One would expect to find both 
crystal types (figs. 2(a) and (b)) in coexistence at 
low temperatures. 

Accepting Burkov's model for the remainder 
of this paper we may investigate the atomic mo- 
tions corresponding to phasons. The simplest 
phason flip in a binary tiling model is the octagon 
flip [11]. A complete octagon is shown in fig. 3(a). 
The flip is a reflection through the shortest diag- 
onal. Note that the atomic structure around the 
outer edge is symmetric under this reflection. 
Now consider the energy cost of introducing a 
phason flip into a structure containing an octagon 

(note that the crystal in fig. 2(b) contains almost a 
complete octagon). We have a choice of flipping 
an entire column of octagons simultaneously, 
maintaining translational invariance along the z 
axis, or only a partial column, so that a reflected 
layer sits on top of an unreflected layer (see fig. 
3(b)). 

By flipping an entire column of octagons we 
maintain all vertical bonds intact. Thus, to com- 
pute the energy cost of such a flip we must look 
within a layer across the boundary of the octagon. 
But, because of the symmetry of the octagon edge 
under the phason flip, the affected bonds must 
reach from the interior of one cell into the inte- 
rior of a neighboring cell - a distance of at least 6 
A. When realistic interatomic potentials are con- 
sidered [12], it is seen that there can be no 
significant energy cost associated with such a flip 
because the potentials essentially vanish by about 
6~. 

If the entropy of the phasons is to contribute 

Fig. 3. (a) Octagon with 1.77 ,~ bonds relaxed (see ref. [11]) and binary tiling rhombi superimposed. Note that the interior of the 
octagon (i.e. omitting the outer two thin rhombi) reproduces the unit cell of the 72 ° crystal (fig. 2(b)). (B) Octagon with top layer 

flipped. Line segments denote atomic displacements or interchanges from unflipped state (a). 
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to quasicrystal stability it must be extensive - 
proportional to the product of sample dimen- 
sions. Flipping an entire column provides an en- 
tropy proportional to the area of the decagonal 
layers (i.e. the number of octagonal columns). 
Thus we investigate the effects of flipping a par- 
tial column of unit cells in order to pick up a 
three-dimensional entropy [13]. Figure 3(b) illus- 
trates the result of flipping the upper layer of the 
octagon while leaving the lower layer in place. 
Structural changes fall into two simple categories. 
First, there are small displacements of six alu- 
minum atoms to nearby sites illustrated by short 
line segments drawn from initial to final loca- 
tions. In addition there are four interchanges of 
aluminum atoms with a transition metal located 
about 5.3 A awaY, oPreceded or followed by a 
small (about 0.93 A) displacement of the alu- 
minum. In all cases, the aluminum atoms in- 
volved in the phasons motion belong to the outer 
rings of large clusters, and hence are in any case 
subject to displacement by relaxation [12]. 

We may ask about the energy cost of each 
component of the phason flip. First consider the 
six displacements of aluminum atoms. Counting 
the number of nearest neighbor bonds of each 
type, we find that three atoms acquire an extra 
A1-A1 bond, while the other three drop one. 
Thus there is no net energy cost or benefit from 
this portion of the phason, at least at the level of 
nearest neighbor bonding and neglecting relax- 
ation from the 'ideal'  positions shown. Now con- 
sider the atoms which switch atomic identity. 
Counting the numbers of nearest neighbor bonds 
reveals a net conversion of one AI-AI bond and 
one C u-C u  bond into two A1-Cu bonds. From 
the interatomic potentials shown in ref. [12], we 
estimate a net decrease in energy of about - 0 . 3  
eV following the phason flip. However, each in- 
terchange separately raises or lowers the energy 
by amounts of up to 0.4 eV. Our ultimate conclu- 
sion is that our starting configuration (i.e. the 
Burkov model) is not optimal and therefore the 
phason energy is not reliable. 

We may still extract more general conclusions. 
First, the phason flip may take place through 
modest displacements of a small number of atoms. 
In fact, the principal mechanism appears to be 

displacement of an atom in one lancer by a dis- 
tance of about 0.93 .~ across a 2.44 A bond in the 
adjoining layer. This generally agrees with other 
suggestions for the phason [12]. Remarkably, the 
electron density [2] reveals split peaks across such 
bonds corresponding to initial and final atomic 
locations. Thus, the electron density appears to 
confirm our interpretation of the phason motion. 
Given the uncertainty in assignment of chemical 
identity in the Burkov model, and the fact that it 
is a pseudo-binary model, the role of chemical 
interchange in real phason motion remains un- 
certain. 

3. Conclusion 

In conclusion, we use the Burkov model 
decagonal phase to address two questions: What 
are the structures into which quasicrystals trans- 
form at low temperatures, and what are the 
atomic motions involved in a phason? We pro- 
pose two simple crystal structures consistent with 
the Burkov model and point out agreement of 
unit cell parameters with experimentally observed 
microstructures. Experimental determination of 
the actual structures of these crystalline phases 
would be of great importance in constructing 
improved models of the quasicrystal phase. Then 
we show the phason flip consists of only modest 
atomic rearrangements, and modest energy cost. 
Double peaks in the electron densities support 
our picture of the atomic displacements involved 
in phason rearrangements. 
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