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A simple method is proposed for inclusion of inelastic effects (electron absorption) in computations

of low-energy electron reflectivity (LEER) spectra. The theoretical spectra are formulated by

matching of electron wavefunctions obtained from first-principles computations in a repeated

vacuum–slab–vacuum geometry. Inelastic effects are included by allowing these states to decay in

time in accordance with an imaginary term in the potential of the slab, and by mixing of the slab

states in accordance with the same type of distribution as occurs in a free-electron model. LEER

spectra are computed for various two-dimensional materials, including free-standing multilayer

graphene, graphene on copper substrates, and hexagonal boron nitride on cobalt substrates. VC 2014
American Vacuum Society. [http://dx.doi.org/10.1116/1.4903361]

I. INTRODUCTION

For decades, low-energy electrons (0–300 eV) have been

employed as a probe of the geometric and electronic struc-

ture of surfaces. Since these electrons interact very strongly

with atoms, any electrons that are elastically scattered

from the surface necessarily originate from only the top few

surface layers, hence providing a sensitive probe of the near-

surface region. In particular, the technique of low-energy

electron diffraction (LEED) has been developed by many

workers, both experimentally and theoretically.1,2 In a con-

ventional LEED instrument, a monoenergetic electron beam

is directed toward a surface, and the pattern of diffracted

beams is recorded. Each diffracted beam can be labeled by

one (or more) reciprocal lattice vector(s), g ¼ ðgx; gyÞ. These

diffraction vectors are often denoted by two integer or frac-

tional values (p,q) such that g ¼ pb1 þ qb2, where b1 and b2

are the basis vectors of the reciprocal lattice of the projected

bulk structure.3 The intensity of the diffracted beams as a

function of incident energy, IgðEÞ, can be measured. Such

IgðEÞ curves contain valuable information on the geometric

structure of the surface, in particular, for cases when the sur-

face is reconstructed giving rise to fractional p and q values.

However, in most cases, the actual atomic positions are very

difficult to directly deduce from simple inspection of the

IgðEÞ curves, so that it is necessary to perform a detailed

comparison between experimentally measured and theoreti-

cally predicted curves in order to determine the structure.1–3

The development of a theory by which LEED IgðEÞ curves

could be computed is a problem that was intensively studied

during the 1970s and 1980s.1,2 A method for addressing the

problem was eventually developed in which multiple scatter-

ing of the incident electrons was included. This procedure

entailed first considering scattering by individual atoms, then

by a collection of atoms forming a layer, and finally by a

collection of layers to form the solid. By about 1990, the the-

oretical procedures (and computer implementation) existed,

whereby the IgðEÞ curves could be computed with a fair

degree of confidence, although the theory was not reliable for

energies< 50 eV. One reason for this inaccuracy at ener-

gies< 50 eV is that the detailed electronic structure of the

solid (e.g., formation of bands) is, in fact, largely untreated in

the theory. Since that time, two important developments in

low-energy electron research have occurred: First, the devel-

opment of the low-energy electron microscope (LEEM) has

enabled measurement of IgðEÞ curves over energies of typi-

cally 0–50 eV, particularly for the (0,0) nondiffracted beam,

I0ðEÞ.4 Such measurements were performed even prior to the

LEEM,5 but they greatly gained in popularity with the advent

of the LEEM.6–12 Second, computational methods for obtain-

ing the electronic band structure of solids have greatly

advanced (i.e., not specifically for LEED), with the eventual

establishment for public-domain computer codes such as the

Vienna ab initio simulation package (VASP),13–15 which have

large numbers of experienced users and for which the pack-

ages experience continual improvements (e.g., with new

pseudopotentials and new density functionals).

With these developments, we undertook a project two years

ago in which a theoretical description of low-energy electron

reflectivity (LEER) spectra at very low energies of 0–20 eV

was formulated, employing first-principles wavefunctions

obtained from VASP.12,16,17 Linear combinations of the VASP

pseudowavefunctions were formed, such that they matched

incoming or outgoing waves in the vacuum (or the substrate).

At the very low energies, good results for LEER spectra were

obtained for the case of multilayer graphene films, both free-

standing or on a metal substrate such as copper. However,

despite this success, several limitations in the theory remained:

(1) it did not incorporate inelastic effects (electron absorption);

(2) for a film on a substrate, only simple metals having free-

electronlike states at the relevant energies could be dealt with;

and (3) the theory for diffracted beams was not developed.

In this work, we present a model for addressing the first

of these limitations regarding electron absorption. In the

model, an imaginary component to the potential in the slab

is introduced, as in past LEED theory. Then, considering

wavepackets centered about each of the VASP wavefunctions,

a phase-shift analysis on the reflected wave is employed ina)Electronic mail: feenstra@cmu.edu
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order to evaluate the time spent in the slab by the wave-

packet. From that time, and using the imaginary component

of the potential, an attenuation factor for each of the VASP

states is obtained. Then, considering the spatial exponential

decay of the actual electron wavefunctions in the near-

surface region, a distribution of the VASP states is formed to

permit that decay (with the form of the distribution taken

from a free-electron model for the states in the slab). With

this distribution, the final values for the electron reflectivity

including absorption are evaluated by summing over the

states, weighting each term by its known attenuation factor.

It is important to note that a rigorous theoretical method

for incorporating inelastic effects in very low-energy LEER

spectra already exists, from the work of Krasovskii and co-

workers.18–20 Their methodology goes well beyond the ear-

lier LEED analysis procedures in that it addresses the

detailed band structure of the solid. It also includes electron

attenuation (dealt with, again, by using an imaginary compo-

nent of the potential) as well as electron states that decay

spatially into the material, i.e., evanescent states with imagi-

nary wavevector values. The theory of Krasovskii et al. dif-

fers from our own simulation procedure for LEER spectra in

that it more exactly incorporates these evanescent (imagi-

nary wavevector) and inelastic (imaginary potential) terms

in a complete “inverse band-structure” formulation of the

problem. Their results provide a benchmark against which

we can compare our approximate results.

We emphasize that we have not in any way incorporated

the imaginary term of the potential directly into the VASP

code. Such an approach would lead to non-Hermitian matri-

ces within VASP, which would require very significant modifi-

cation of the code to handle. Rather, our approach is purely

based on postprocessing of the VASP eigenstates. We treat

these states first by neglecting any inelastic effects and form-

ing the electron reflectivity as described in our prior

works.12,16,17 We then incorporate the imaginary part of the

potential in a two-step procedure, considering both the time-

decay of individual eigenstates as well as the mixing of

eigenstates with ones nearby in energy.

This paper is organized as follows. In Sec. II, we provide

a detailed description of the model that we use for incorpo-

rating inelastic effects. In Sec. III, we provide computational

results for multilayer graphene, both free-standing and on

copper. Absorption effects are found to be small in those

cases. We also consider the case of hexagonal boron nitride

(h-BN) on cobalt substrates, for which electron absorption

effects are found to be large (due to the band structure of the

h-BN films). In general, our computed results compare well

with published experimental LEER spectra for the various

materials, and with our computational results we are able to

provide improved understanding of those spectra. Finally,

our work is summarized in Sec. IV.

II. THEORETICAL METHODOLOGY

A. Reflectivity computations without inelastic effects

Our method for obtaining the reflectivity, I0ðEÞ normal-

ized to the incident beam current, has been previously

described.12,16,17 Briefly, we first consider a periodically

repeated vacuum–slab–vacuum system, with the slab con-

sisting typically of several graphene layers (for computing

reflectivity of free-standing multilayer graphene), or several

layers of a substrate material covered on one or both sides

by layer(s) of some overlayer material (for computing reflec-

tivity of the overlayer on the substrate). In both cases, VASP

computations are performed to obtain the eigenvalues and

eigenstates of the system, usually performing computations

for a few different widths of the vacuum layer. For the case

of free-standing graphene, linear combinations of these VASP

wavefunctions are formed such that there is only an outgoing

wave on the right-hand side of the slab. On the left-hand

side, there then exist both incoming and reflected waves, and

by taking the ratio of their respective amplitudes the reflec-

tivity is obtained. For the case of an overlayer on a substrate,

the methodology also requires a VASP computation of the

bulk band structure of the periodically repeated substrate

material. For the simple-metal substrates considered to date,

they are found to have nearly free-electron (NFE) states

located above the vacuum energy, and linear combinations

of the slab states are formed to match these NFE states prop-

agating into the substrate. Then, by examination of the inci-

dent and reflected waves on the left-hand side of the slab, the

reflectivity is deduced. Our method used in the present work

is identical to that of our previous work, except for one tech-

nical detail having to do with the manner in which we reject

states of “mixed” character (which act to couple slabs in

adjoining simulation cells) from the analysis; Appendix A

describes an improved method for dealing with such states.

B. Model for inelastic effects

We now consider the inclusion of inelastic effects in the

reflectivity computation, something that was not considered

in our prior work. Consider a wavepacket centered about

some energy E, incident on a surface. In LEER measure-

ments, we are concerned with the wavepacket that is

reflected from the surface. To include inelastic effects in the

reflectivity, we employ a model consisting of two parts. In

the first part, we perform a rigorous computation of the scat-

tering phase shift of the reflected wave, and from that we can

deduce both the travel time for the reflected wavepacket and

its dwell time in the slab. This underlying basis for this anal-

ysis is well described by Merzbacher.21 Using our previous

notation,12 we consider a simulation cell extending over

�zS � z � zS, with our slab of material in the center of this

cell. We evaluate the ratio of the reflected to incident wave-

function amplitudes at the far left-hand of the cell, z ¼ �zS.

The magnitude squared of that complex quantity gives us the

reflectivity, as described previously.12,17 We then employ

the phase / of this ratio, corresponding to the phase shift

between incident and reflected waves. As discussed by

Merzbacher, the round trip time of a wavepacket from

z ¼ �zS, to (and within) the slab, and back to z ¼ �zS, is

given simply by �hðd/=dEÞ. In principle, the phase obtained

at each energy is known only modulo 2p (and an additional

uncertainty of p arises since the reflected wave has a 6p=2
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phase shift as detailed in Ref. 21). However, by carefully

examining the results as a function of energy, the requisite

factors of p can be inserted such that a smooth /ðEÞ curve is

obtained.

To obtain a dwell time for the wavepacket within the

slab, we must subtract the time spent traveling in the vac-

uum. For this purpose, we must define an edge of the slab,

which we denote by z ¼ �zE. For example, we can take the

left-most atomic layer of the slab and define �zE to be at one

atomic radius farther to the left of that plane. In order to min-

imize any influence of this choice of �zE on our resulting

dwell time, we subtract the travel time in the vacuum includ-

ing the presence of the potential (averaged over the x and y
directions) in the vacuum. We denote that potential by VðzÞ
with VðzÞ ! 0 for z� 0 and VðzÞ < 0 everywhere. For a

state with energy E, a semiclassical velocity is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E� VðzÞ�=m

p
, and the travel time is obtained by integrat-

ing the inverse of this quantity over the range z ¼ �zS to

�zE. Thus, our final expression for the dwell time in the slab

for a state a with energy Ea is given by

Dta ¼ �h
d/
dE

� �
Ea

� 2

ð�zE

�zS

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Ea � V Zð Þ½ �=m

p ; (1)

with the derivative evaluated at E ¼ Ea and where the factor

of 2 before the integral sign arises since we require the round

trip travel time in the vacuum. With this definition, we find

that resultant values for Dta are only weakly dependent on

our choice of �zE, as demonstrated in Sec. III.

As discussed by Merzbacher, the dwell time is large when

the energy of the incident wave corresponds to the energy of

a state in the slab. Such states are all resonances, of course,

since they are degenerate with the continuum of propagating

states in the vacuum. When a particular resonant state has a

narrow energy spread, it can produce a long dwell time, i.e.,

the incident electron spends considerable time “bouncing to

and fro” in the slab before being reflected.21 Given the dwell

time, we then assume some imaginary component of the

potential in the slab, �iVi with Vi > 0, and we thus arrive at

an attenuation factor expð�Dta=sÞ, where a characteristic

decay time is given by s ¼ �h=2Vi (the factor of 2 in the

denominator arising since we are considering the magnitude

squared of the wavefunction).22

Having obtained this attenuation factor as a function of

energy, we could in principle use that to compute a reflectiv-

ity spectrum. We would simply correct the elastically com-

puted reflectivity at each energy by its respective attenuation

factors. However, comparing such results to experiment, we

find poor agreement in certain cases. In particular, when a

sharp resonance with its concomitant long dwell time pro-

duces strong attenuation, it is found experimentally that this

attenuation extends out to neighboring energies, over a range

of >1 eV. Such effects are clearly apparent in the rigorous

computations of Krasovskii et al., e.g., Fig. 2 of Ref. 18, in

which the strong attenuation associated with narrow elasti-

cally computed reflectivity minima is seen to broaden out to

neighboring energies.

The reason for this broadening or smearing of the attenua-

tion is clear if we reconsider the inelastic (electron–electron)

interactions. The incident wavepacket, centered at an energy

E, will be spatially attenuated as it propagates into the

solid.22 This exponentially decaying wave in the solid will in

general be described by a linear combination of the single-

particle states. Hence, we can view the incident states as

mixing with other states; this mixing is the second part of

our methodology, and for this we employ a free-electron

model to describe the distribution of mixed states. That is,

we assume that this distribution is the same in the real

system as it is for a free-electron model with the slab charac-

terized simply by a constant inner potential, �V0, where

V0> 0. By combining these two parts of the model, first mix-

ing the incident wavepackets into a distribution of states

in the slab, and then attenuating each component of that

mixture in accordance with its dwell time in the slab, we

arrive at a complete (albeit phenomenological) model for the

inelastic effects.

The relevant exponential decay length in the solid can be

obtained by multiplying some velocity times the decay time

�h=Vi ¼ 2s. This velocity should, in principle, be the group

velocity of our wavepacket. However, for the narrow

resonances discussed above that group velocity is relatively

small, corresponding to rather short (perhaps unphysical)

decay lengths. Moreover, to decompose that spatially expo-

nentially decaying state into single-particle (nondecaying)

states of the slab would be a complex procedure. Therefore,

at this point we employ a model based on a free-electron

description of the states in the slab. In that case, the velocity

is given simply by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E� V0�=m

p
corresponding to a decay

length of ka ¼ 2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Ea � V0�=m

p
for energy Ea. We con-

sider a state in the slab with exponentially decaying

form given by expðikazÞ expð�z=kaÞ for z > 0, where ka ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEa þ V0Þ=h2

p
is the wavevector in the z-direction. This

form is Fourier analyzed to obtain the distribution of single-

particle states labeled by b that compose it, yielding a distri-

bution with terms proportional to 1=½ðka � kbÞ2 þ ð1=kaÞ2�,
where kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEb þ V0Þ=h2

p
. We take the square of these

terms, i.e., as applicable to the wavefunction squared, yield-

ing the distribution

Fab �
ca

ka � kbð Þ2 þ 1=kað Þ2
h i2

; (2)

where the normalization factor ca is set by the condition thatP
bFab ¼ 1. With this distribution, inelastic effects are then

computed by the following procedure: (1) for a given spec-

trum computed without inelastic effects, we have the reflec-

tivities RðEÞ and phases /ðEÞ from which we obtain the

dwell times, Dta, and the attenuation factors, expð�Dta =sÞ,
for a state a; (2) for each state we compute the distribution

Fab; and (3) the resultant reflectivity for the state is given byP
bFab RðEaÞ expð�Dtb =sÞ.
The above free-electron picture involves modeling the

states of the semi-infinite solid by assuming a constant

potential �V0 in the solid, where V0> 0 is known as the
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inner potential. Inner potentials are commonly employed in

approximate treatments of electron interactions with solids;

they are deduced by a variety of means, yielding different

results depending on the method and the energy range of the

states of interest.23,24 In our case, we are interested in very

low-energy electron states, typically 0–15 eV above the vac-

uum level or, equivalently, 5–20 eV above the Fermi level.

To deduce an inner potential applicable to that energy range,

we examine the band structure of the material, matching that

to a free-electron model with bands of the form

En ¼ �V0 þ
�h2

2m
jkþGnj2; (3)

where k is the electron wavevector with components

kx; ky; kz all ranging from �1 to þ1, and Gn are reciprocal

lattice vectors (n being a band index) chosen such that kþ
Gn falls within the first Brillouin zone (BZ).25 We focus on

the wavevector direction that is perpendicular to the surface

we are considering; as part of our standard reflectivity analy-

sis (i.e., even without inelastic effects) we have already com-

puted, by first principles, band structures in that direction.

For example, consider the band structure for Cu in the

(111) direction shown in Fig. 6 of Ref. 17. A dispersive band

intersects the edge of the BZ for an energy of 16.7 eV. We

can match the bands near that energy with free-electron

bands from Eq. (3), employing an inner potential of 7.4 eV

relative to the Fermi energy and with reciprocal lattice

vectors of 2 and �3 times that of the first reciprocal lattice

vector for periodically repeated ABC-stacked Cu. (Other

bands of the first-principles results are also approximately

matched by the free-electron model, though less precisely.)

Then, to deduce an inner potential relative to the vacuum
energy, we match the computed potential for the bulk Cu

with one consisting of a free-standing three-layer copper

slab. From that, we deduce a work-function for the Cu(111)

surface of 4.7 eV, and thus, the inner potential is 12.1 eV

relative to the vacuum level. Of course, this work function

might well change for different overlayers on Cu (or for dif-

ferent surface orientations), but as demonstrated in Sec. III,

the results of our model for inelastic effects are very insensi-

tive to the actual value of inner potential that we use.

As another example, consider the bulk bands of graphite

in the (0001) direction, shown by Hibino et al. in Fig. 3 of

Ref. 8 [we obtain nearly identical bands in our own compu-

tations using VASP, as pictured in Fig. 1(b)]. There is a disper-

sive band intersecting the edge of the BZ at an energy of

7.0 eV above the Fermi energy. Again, modeling this band

by free-electron states, we use Eq. (3) with an inner potential

of 13.9 eV and reciprocal lattice vectors of 2 and �3 times

that of the first reciprocal lattice vector for periodically

repeated AB-stacked graphite. Then, comparing computed

potentials of bulk graphite with a two-layer graphite slab, we

deduce a work-function of 4.2 eV and hence an inner poten-

tial of 18.1 eV relative to the vacuum level. These results,

12.1 eV for Cu and 18.1 eV for graphite, are comparable to

previously deduced inner potentials of 13.4 and 17 eV,

respectively, for the two materials.23,24 For situations in

which we have one or a few layers of some material on a

substrate, we then employ in our model simply the average
inner potential of the overlayer and the substrate.

III. RESULTS

A. Free-standing graphene

In Fig. 1(a), we show the computed reflectivity for a free-

standing four-layer slab of multilayer graphene, showing

results both with and without inelastic effects. Oscillations

are seen in the spectra in the energy ranges of 0–6 and 14–22

eV. As argued by Hibino et al.,8 these oscillations are associ-

ated with electronic states that derive from dispersive bands

of graphite occurring over the same energy ranges, as shown

by the broad bands in Fig. 1(b) (the narrow bands there are

also graphite-derived bands, but they do not have the appro-

priate character to couple to incident plane-wave states and

so do not play any role in determining the reflectivity).

Fundamentally, the reflectivity minima can be understood in

terms of interlayer states between the graphene planes,26 as

explained in our prior work.12 The results of Fig. 1(a) are

compiled from computations using three different vacuum

widths; some small gaps remain between the groups of

reflectivity points, but all important features of the spectrum

are clearly evident. The inner potential for the inelastic com-

putations of Fig. 1 is taken to be 18.1 eV, and the edge of the

slab is placed at one atomic radius of carbon, 0.7 Å, to the

left of the left-most graphene plane.

FIG. 1. (Color online) Theoretical results for reflectivity of a free-standing

slab of four-layer graphene. (a) Reflectivity without (red circles) and with

(blue x-marks) inelastic effects. (b) Band structure of graphite, in (0001)

direction. (c) Dwell time for a reflected wavepacket in the slab, correspond-

ing to the time difference between a quantum-mechanical particle compared

to a classical particle reflecting off of the slab. Maxima in the dwell time

correspond to resonant interlayer states of the slab, which in turn give rise to

minima in the reflectivity.
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For the imaginary part of the potential we assume a linear

energy dependence, Vi ¼ 0:4 eVþ 0:06 E. This dependence

is comparable to what is used in the prior work of Krasovskii

et al.18–20 As demonstrated by those authors, Vi will in gen-

eral increase monotonically, although sometimes in a

stepwise manner as new channels for inelastic electron inter-

actions appear as the energy increases. As a first approxima-

tion, we employ this linear dependence of Vi with energy;

the same dependence was used by Flege et al. in Ref. 20. For

multilayer graphene, we have chosen the parameter values in

this linear dependence such that the amplitudes of the reflec-

tivity oscillations in the energy ranges of 0–6 and 14–22 eV

approximately match experiment.9 We use the same parame-

ters in our treatments of graphene on copper and h-BN on

cobalt as described in Secs. III B and III C.

The lower energy range is displayed in more detail in Fig.

2, showing a comparison of theory with experimental results

from various numbers of graphene layers on SiC (these

results qualitatively resemble the situation for free-standing

graphene, as explained in Ref. 12).8,9,11 The inelastic effects

are seen to significantly diminish the peak-to-valley ampli-

tude of the observed oscillations in the 0–6 eV range, to a

peak-to-valley reflectivity variation of �0.05 for the 6 mono-

layer (ML) case. We note that the theoretical prediction in

Fig. 2 for this peak-to-valley variation is somewhat too large

for the 2–4 ML cases. A likely reason for this discrepancy is

that, theoretically, we are modeling only free-standing gra-

phene whereas, experimentally, the graphene is on a SiC

substrate and so electron absorption can occur within the

substrate itself. The inelastic effects are even larger for the

oscillations in the 14–22 eV range; these just barely visible

in Fig. 1(a), in agreement with experimental results of

Hibino et al.9 Overall, the inclusion of inelastic effects

greatly improves the agreement between theory and experi-

ment for the LEER spectrum.

To further illustrate the inelastic effects, we display in

Fig. 1(c) the computed dwell time for the electron wave-

packets in the slab. The dwell times show marked increases

at energies corresponding to the minima in the reflectivity.

These energies correspond to the interlayer states; as dis-

cussed both by Merzbacher and in Sec. II, at these energies,

the electrons spend more time “bouncing to and fro” in the

slab, producing attenuation in the reflectivity.21 This attenua-

tion extends out to neighboring energies through the mixing

of the states in the slab, as expressed by Eq. (2). We note

that the peak values of dwell time in Fig. 1(c), about 3 fs, are

moderate in size compared to other systems discussed below.

For graphene on Cu(111), we find much smaller dwell times,

whereas for h-BN on various metals we find much larger

ones. In all cases, the magnitudes of the dwell times are

correlated with the widths of the relevant resonant states.

Figure 3 shows the relative insensitivity of our model to

variations in the parameters. First in Fig. 3(a), we vary the

inner potential, using values of V0 ¼ 1 eV or 50 eV rather

than the nominal 18.1 eV. We find that the results are

extremely insensitive to the V0 value; even using V0 ¼ 0 eV

produces nearly the same result except at energies< 1 eV

where a noticeable drop in reflectivity occurs. In practice, an

inner potential value of �10 eV can be used in our model,

for all materials, with negligible error in the results. In

Fig. 3(b), we illustrate the effect of varying the position of

FIG. 2. (Color online) Theoretical (left) and experimental (right) results for

reflectivity of free-standing slab of multilayer graphene of various thick-

nesses in monolayers (ML) as indicated. The absolute reflectivity scale for

the 2 ML case is shown on the left, with subsequent curves shifted upwards

by 0.3 units each.

FIG. 3. (Color online) Theoretical results for reflectivity of a free-standing

slab of four-layer graphene, illustrating the dependence on parameters in the

computation: (a) variation of inner potential V0, (b) variation in the location

of the edge of the slab relative to the left-most plane of carbon atoms, DzE,

and (c) variation in the imaginary portion of the potential.
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the edge of the slab, using values of 0.35 and 1.4 Å to the

left of the graphene plane rather than the nominal 0.7 Å. A

fairly small influence on the final result is found (use of the

0.35 Å values causes the dwell times to shift �0.02 fs down-

wards, whereas the 1.4 Å value shifts them �0.05 fs

upwards). Finally, in Fig. 3(c), we illustrate the influence of

changing the magnitude of the imaginary part of the poten-

tial. Significant changes do now occur in the spectrum, as

expected. All LEED theories to date use the imaginary part

of the potential as a fitting parameter, chosen to match

experiment. The value employed here of Vi ¼ 0:4 eV

þ0:06 E, based in part on the work of Krasovskii et al.,18–20

is found to provide at least a semiquantitative description of

spectra for many different materials. Fine-tuning of these

values can be done in specific cases to produce improved

agreement if necessary.

B. Graphene on copper

Figures 4(a)–4(d) display computational results for a sin-

gle layer of graphene on Cu(111), with separation of 3.58 Å

between the graphene and the Cu. The red dashed line of

Fig. 4(a) shows the computed reflectivity in the absence of

inelastic effects, as in Ref. 17. For reference, the band struc-

tures in the (0001) direction of graphite and in the (111)

direction for fcc Cu are shown above that. Just as for the

reflectivity of free-standing graphene (Fig. 1), interlayer

states can form in accordance with the dispersive graphite

band between about 0 and 6 eV in Fig. 4(b). The state in the

present case will exist between the graphene and the Cu

substrate, with energy that varies inversely with the separa-

tion between the graphene and the Cu.17 For separation of

3.58 Å this interlayer state produces the minimum near 4.5

eV in Fig. 4(a). The computation of reflectivity is similar to

that for a free-standing slab, except that the reflectivity in

this case is obtained by matching wavefunctions in the center

of the slab with those obtained from a bulk computation for

Cu rather than by matching to vacuum states on either side

of the slab.17 There is a NFE band of Cu located in the rele-

vant energy range, as displayed in Fig. 4(c), with the bottom

of this band being below the vacuum level for the (111)

direction in Cu. A phase angle / is obtained from the reflec-

tivity, leading to the dwell time for a wavepacket in the slab

and concomitant inelastic effects, using the method

described in Sec. II B.

The dwell time for graphene on the Cu(111) substrate is

shown in Fig. 4(d). In this case, there is very little effect of

the interlayer state, since this state is actually quite broad

and therefore does not induce any significant increase in

dwell time. Values in Fig. 4(d) are all close to zero, with

some being slightly below zero. In the latter case, negative
dwell times would in principle lead to an increase in reflec-

tivity according to expð�Dt=sÞ from Sec. II B. However,

such an increase does not make physical sense; rather, a neg-

ative dwell time simply indicates that the wavepacket is

reflected from the slab at some location that is farther out

from the surface then where we placed our �zE location. We

therefore truncate all of the dwell times at zero before apply-

ing the attenuation formula expð�Dt=sÞ. With the dwell

times in Fig. 4(d) being all near zero, the inelastic effects on

the reflectivity spectrum are small, as seen by the resultant

solid blue line in Fig. 4(a).

Figures 4(e)–4(h) show results for single layer graphene

on Cu(001). The situation is different than for Cu(111), since

in the (001) direction the onset of the NFE band occurs

above the vacuum level, at 2.5 eV as seen in Fig. 4(g).

Below this value there is an energy gap within which there

are no propagating states in the Cu substrate and hence the

reflectivity is simply R ¼ 1. However, to incorporate inelas-

tic effects, we still require values for the phase angle / at

these energies, and these must be obtained by some new

method. Our technique for handling this situation is

described in Appendix B. Essentially, we perform a compu-

tation for the graphene–Cu–graphene slab system, treating it

as a free-standing slab although with the phase angle

obtained in a slightly modified manner. With those values

of phase in the bandgap region, we can then construct a

complete /ðEÞ curve and obtain dwell times as described in

Sec. II B. The results for graphene on Cu(001) are shown in

Fig. 4(h). As for the case of graphene on Cu(111), the dwell

times are again quite small, <1 fs, with positive times

obtained for energies just below on the onset of the NFE

band and negative times just above the onset of the NFE

band. The resulting reflectivity including inelastic effects

forms a smooth curve through this energy region, as seen by

the solid blue line in Fig. 4(e).

Experimental results are displayed in Ref. 17 for gra-

phene on Cu(111) and (001). For the former, the observed

FIG. 4. (Color online) Theoretical results for reflectivity of monolayer gra-

phene on Cu(111) (left) and Cu(100) (right), with separation of 3.58 Å

between the graphene and the Cu. (a) and (e) Reflectivity without (red

dashed lines) and with (blue solid lines) inelastic effects. (b) and (f) Band

structure of graphite, in (0001) direction. (c) and (g) Band structure of Cu,

in (111) (left) or (100) (right) directions.(d) and (h) Dwell time for a

reflected wavepacket in the graphene–substrate slab.
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reflectivity minimum is quite broad, in agreement with our

theoretical result including inelastic effects. For the latter

case, the smooth variation in reflectivity through the onset of

the NFE band is also in general agreement with experiment,

although the absolute magnitude of the reflectivity in the

experiment is somewhat smaller than obtained in the theory.

However, those experiments were obtained from samples

that had been exposed to air for times ranging from several

days to several weeks, and the reflectivity in the bandgap

region showed a significant decrease with the exposure

time.17 Oxidation of the Cu surface is thus seen to modify

the spectrum. Future acquisition of a spectrum from a

non–air-exposed surface is needed in order to achieve a

more detailed comparison between experiment and theory.

C. Hexagonal boron nitride on cobalt

For the situations discussed above, the inelastic effects

have been moderate or small, with dwell times of a few

femtoseconds or less. We now turn to the case of h-BN on

metal substrates such as Co or Ni, for which the inelastic

effects are found to be quite large, with dwell times of 10’s

of femtoseconds or more. Reflectivities that are near unity

in the absence of inelastic effects can thus be attenuated to

<0.1 when nearby bands with long dwell times are present.

Thus, inclusion of the inelastic effects becomes quite impor-

tant in the interpretation of the spectra. Experimental LEER

spectra for h-BN on Co have been previously presented by

Orofeo et al.,27 and these were qualitatively compared with

a computed h-BN band structure. We present here theoreti-

cally obtained LEER spectra, from which a more detailed

interpretation of all the various spectral features can be

made.

Separately, we have performed detailed experimental and

theoretical LEER studies for h-BN on Ni.28 One important

result of those studies is that oxidation of the Ni surface (due

to air exposure for at least several days between sample

growth and introduction into the LEEM chamber) plays an

important role in the experimental LEER spectra. LEED

measurements have directly revealed the presence of this ox-

ide.28 The oxide produces a dipole at the interface, thus

increasing the work function of the surface and shifting the

onset of the Ni NFE bands from a location about 3 eV above

the vacuum level to a location slightly below the vacuum

level; this shift, in turn, significantly impacts the predicted

LEER spectra. For our theoretical results of h-BN on Co, we

similarly employ an oxide at the interface.

Figure 5 displays computed LEER spectra for h-BN on

the oxidized Co(0001) surface. The computations employ a

five-layer hcp Co slab, together with oxygen and h-BN

layers on either side. The O-Co separation is chosen to be

1.1 Å, obtained from a first-principles relaxation of a bare O

layer on the Co surface. The BN-O separation is taken to be

1.68 Å, chosen in order to approximately match the theory

with the experimental results of Orofeo et al.27 For this value

of BN-O separation the reflectivity minimum for a single

h-BN layer occurs at about 7.5 eV, compared to 6.5 eV in

the experiment. With a subsequent h-BN layer, a minimum

appears near 2 eV, comparable to the experiment. In the

theoretical spectra of Fig. 5, we show results for both the

majority and minority spin, with onsets of the Co NFE bands

being at 1.0 and 2.0 eV above the vacuum level, respec-

tively. The average of the spin-resolved reflectivity curves,

for each thickness of h-BN, can be compared to the experi-

mental spectra (which are not spin resolved).27

Good agreement is obtained between the theoretical spec-

tra and the experimental results of Orofeo et al.27 Just as for

the case of graphene, interlayer states form between the h-

BN layers, with n� 1 of these states forming for n layers of

h-BN.12,27 There are three relevant bands of the h-BN that

occur over the energy range shown in Fig. 5, and for each of

these bands there will, in principle, be n� 1 reflectivity min-

ima. These n� 1 bands are seen for the elastic results for the

highest h-BN band in Fig. 5, although for the middle band

they are not well resolved due to the energy-resolution of the

computations. For the lowest band some of the minima are

FIG. 5. (Color online) (a)–(d) Theoretical results for reflectivity of 1–4 layer

h-BN on oxidized Co (0001) surface, with separation of 1.1 Å between the

O and Co, 1.68 Å between BN and O, and 3.3 Å between BN layers.

Reflectivity without (dashed lines) and with (solid lines) inelastic effects.

Black and gray (red) are for majority and minority spins, respectively. (e)

Dwell time for four-layer h-BN on oxidized Co as in (d), majority spin. (f)

h-BN band structure. (g) Co band structure. Black is majority spin, and red

is minority spin.
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cut off in the elastic results due to the fact that the onsets of

the NFE band lie above the vacuum level, but they are none-

theless clearly seen in the inelastic results. For the case of a

single layer of h-BN, the relatively small BN-O separation

precludes the presence of a well-defined interlayer state

between those layers, with the resulting elastic spectrum

displaying a broad minimum near 9 eV and a maximum

near 7 eV.

Importantly, inclusion of inelastic effects has a pro-

found influence on the spectra for all the h-BN thicknesses.

In panel (e) of Fig. 6, we display dwell times for the case

of four h-BN monolayers. Relatively large dwell times are

found, particularly for the band centered at 6.8 eV. These

dwell times produce low reflectivity for that band, and

importantly, due to the mixing between nearby eigenstates

that we employ in our model, this attenuation is then

spread out to neighboring eigenstates that have high reflec-

tivity in the absence of inelastic effects. Whereas a maxi-

mum occur in the elastic spectra at about 7 eV (for 1 ML

h-BN) or 8 eV (for 2–4 ML h-BN), the inelastic effects

produce sufficiently strong attenuation such that a mini-
mum (for 1 ML) or very weak local maxima (for 2–4 ML)

are produced in the spectra at these energies. Our interpre-

tation of the spectra is in agreement with that presented

previously by Orofeo et al.,27 with our predicted reflectiv-

ity curves enabling a much more detailed understanding of

the various spectral features. Again, proper treatment of

inelastic effects is essential in producing spectra that can

be compared to experiment.

IV. SUMMARY

In summary, we have presented a model for including

inelastic effects into our computational methodology for

low-energy electron reflectivity from surfaces. The model

contains two components, one of which is rigorous (the

dwell time for an electron in a slab) and the other approxi-

mate (the mixing between single-particle states in the slab).

Our model is therefore not rigorously defined, both because

of its approximate component and due to the way in which

we have split the problem into two separable parts.

However, we find from applying the model to a range of sit-

uations that we obtain results which are in reasonably good

agreement with experiment. Additionally, the model can be

easily incorporated into our reflectivity analysis method (i.e.,

using many of the same numerical quantities that are avail-

able in that procedure), so in this way it represents a useful

advancement in the methodology. As illustrated in this work,

inclusion of the inelastic effects permits detailed comparison

between experimental and theoretical LEER spectra, from

which structural parameters for the surface under study can

be deduced.
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APPENDIX A

Here, we provide details of an improved method for

dealing with the “mixed” states discussed in Ref. 12 that

act to couple slabs in adjoining simulation cells. To intro-

duce this topic, we first review the basic properties of

reflected or diffracted waves as described in Ref. 12.

We initially consider a slab of material with a semi-

infinite expanse of vacuum on either side. In that case,

denoting the direction perpendicular to the slab surface

by z, then the wavefunction in the vacuum for a propagat-

ing state with energy E will consist of a traveling

wave expðijgzÞ multiplied by a sum of lateral waves

of the form Ag exp½i ðgxxþ gyyÞ�. Here, the lateral

wavevector is g ¼ ðgx; gyÞ, Ag is an amplitude, jg ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE� EVÞ=�h2 � g2

x � g2
y

q
is the z-component of the

wavevector in the vacuum, EV is the vacuum energy, and m
is the free-electron mass. Diffracted beams have ðgx; gyÞ
6¼ ð0; 0Þ; these exist only for E� EV � �h2ðg2

x þ g2
yÞ=2m. Of

course, at lower energies, evanescent states with substantial

ðgx; gyÞ 6¼ ð0; 0Þ character exist; they extend out from the

slab surface. These states decay to zero as the distance into

the vacuum approaches infinity, so the amplitude of their

ðgx; gyÞ ¼ ð0; 0Þ component far into the vacuum is zero.

Now let us turn to the periodically repeating vacuum–-

slab–vacuum geometry of our VASP computation. With the

finite vacuum width, the evanescent states cannot possibly

decay exactly to zero, and as a consequence, all such states

FIG. 6. (Color online) Computed energy bands for four layers of graphene,

with simulation cell widths of (a) 4.0266 nm, (b) 5.3688 nm, and (c)

6.711 nm. Energy bands of bulk graphite are shown in (d). The wavevector

(kz) ranges in (a)–(c) are given by p divided by the cell width, whereas in

(d) the wavevector varies from the C-point to the A-point. Energies in

(a)–(c) are plotted relative to the vacuum level of each slab, whereas in (d)

the bulk band is positioned by aligning the potential of the bulk with the

potential of the four-layer slab in (a). The colors of the bands in (a)–(c) is

chosen to coincide with those of Fig. 7.
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acquire a small, nonzero ðgx; gyÞ ¼ ð0; 0Þ component in

the vacuum. In practice, the magnitude of this nonzero

ðgx; gyÞ ¼ ð0; 0Þ component can be much greater than what

would arise, e.g., simply from extrapolating the exponen-

tially decaying part of the wavefunction out to the edge of

the vacuum region. Such states are said to have “mixed”

character; they exist at energies less than �h2ðg2
x þ g2

yÞ=2m
and have primarily ðgx; gyÞ 6¼ ð0; 0Þ character, but they do

not decay to zero in the vacuum. Examples of such states are

shown in Figs. 3(a) and 3(b) of Ref. 16. For these mixed
states, we find that the magnitude of their ðgx; gyÞ ¼ ð0; 0Þ
component in the vacuum varies with the vacuum width

used in the simulation. In this sense, the states are spurious;

their ðgx; gyÞ ¼ ð0; 0Þ component is an artifact of the finite

cell size used in the simulation. Importantly, the nonzero

ðgx; gyÞ ¼ ð0; 0Þ character of these states will, if used in our

reflectivity analysis, lead to some reflectivity associated with

these states. Those reflectivity values are themselves arti-

facts, and hence, these mixed evanescent states must some-

how be rejected from the analysis.

In order to identify the mixed states, we have in our prior

work employed the quantity r defined in the supplementary

material of Ref. 12, which is the overlap in the vacuum

between the wavefunction of a state and a simple oscillatory

wavefunction expected for a free electron states. Values of r
are generally small (�10�2) for spurious mixed states and

large (�1) for bona fide propagating states. Importantly,

since our definition of r includes a scale factor relating to

the width of the vacuum region, then for the bona fide propa-

gating states, their r values necessarily approach unity for

sufficiently large vacuum width (this point is further dis-

cussed at the end of this Appendix). However, for certain

mixed states we occasionally find r values of 0.1 or greater,

so separating them from the bona fide states can become

problematic. In our previous work we employed a discrimi-

nator value of r ¼ 0:8, rejecting all states with smaller r
values.12 Although that value worked reasonably well for the

multilayer graphene case, we find in other cases that this dis-

criminator value can sometimes lead to rejection of bona
fide propagating states, something that is important to avoid

especially when inelastic effects are included. We have

therefore employed in the present analysis a smaller discrim-

inator value, r ¼ 0:1, but we supplement that by detailed

inspection of the results, including their dependence on the

vacuum width of the simulation. In this way, we can further

reject the occasional state that is identified as having mixed

character but which nevertheless has a r value of 0.1 or

greater.

To illustrate this procedure, we display in Fig. 6 a small

energy window for a simulation involving a free-standing

slab of four graphene layers, with three different vacuum

widths corresponding to total simulation cell widths of

4.0266, 5.3688, and 6.711 nm (the vacuum width is given by

these values minus the width of the four-layer graphene slab,

1.0 nm). We choose the energy window to correspond to the

location of the narrow bulk graphite band centered at about

7.25 eV as seen in the band structures of Figs. 1 and 4. We

plot the energy of eigenstates in the respective slab

computations in Figs. 6(a)–6(c), with the narrow bulk

band shown for reference in Fig. 6(d). The eigenstates in

Figs. 6(a)–6(c) are separated into bands, labeled 1–5 in each

panel. It is clear that there is one dispersive band, e.g.,

labeled 1 in Fig. 6(a), and four nearly flat bands. The disper-

sive band is associated with a propagating states in the

vacuum; it moves up in energy as the simulation width

increases, simply reflecting the location of the allowed

energy window for propagating states of our periodic vac-

uum–slab–vacuum system. In each of Figs. 6(b) and 6(c),

the dispersive band crosses a flat band, resulting in band

anticrossing behavior.

The states associated with the flat bands (or flat portions

of bands) in Fig. 6 are all of the “mixed” type defined above,

that is, they have large, in-plane oscillatory nature in the gra-

phene planes, with very small (but constant, as a function

of z) ðgx; gyÞ ¼ ð0; 0Þ component far out in the vacuum. In

particular, for Fig. 6(a), the wavefunctions of bands 2 and 3

at the midpoint of the wavevector range are identical to those

shown in Figs. 3(a) and 3(b) of Ref. 16 (the energies in the

present computation have been updated slightly compared to

those of Ref. 16, but nevertheless the wavefunctions shown

in Ref. 16 are identical to those of the present computa-

tion).29 In contrast, the wavefunction associated with the dis-

persive band in Fig. 6(a) has character more like Fig. 3(c) of

Ref. 16, i.e., with substantial ðgx; gyÞ ¼ ð0; 0Þ component

both in the vacuum and in the slab.

In Fig. 7, we plot the r values for all the slab states asso-

ciated with the computations of Fig. 6, using a wide energy

range of 0–20 eV but with expanded view of the 6.9–7.4 eV

range of Fig. 6. Clearly, two ranges of r values are domi-

nant: near unity (which are the bona fide propagating states),

and �10�2 (which are all spurious mixed states). However, a

few intermediate values also occur, and furthermore, and

these intermediate r values are not associated with a state at

a fixed energy as we vary the simulation cell width. By com-

parison of Figs. 6 and 7, the intermediate r values lying

between 0.1 and about 0.8 can be seen to occur when the

FIG. 7. (Color online) Plot of the magnitude of the oscillatory component of

the wavefunction in the vacuum, r, as a function of the energy of the states,

for the same simulation cells (a)–(c) used in Fig. 6. Different colors are used

to represent different bands. Dashed lines are drawn in each panel at r val-

ues of 0.1 and 0.8. Note the expanded energy scale over 6.9–7.4 eV.
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energy of the dispersive band is near, or crossing, the energy

of a flat band. At such band crossings (anticrossings), inter-

action between the states in the bands leads to larger r val-

ues for the mixed states. Similar band crossings account for

the intermediate r values at all other energies in Fig. 7.

We therefore reject states that have intermediate r values

resulting from this interaction between the mixed and propa-

gating states. For example, band 2 in Figs. 6(a) and 7(a)

acquires some increased r value due to its proximity to band

1. Hence, all states in band 2 are rejected (even though one

state in that band has a r value of >0.1). The situation for

the band anticrossings in Figs. 6(b) and 7(b) and in Figs. 6(c)

and 7(c) is slightly more complicated. We could simply

reject all of the states in bands 1 and 2 for the former case

and bands 2 and 3 for the latter, which would certainly elimi-

nate all spurious states, but we would then end up eliminat-

ing a few bona fide states as well (i.e., on the dispersing ends

of the respective bands). Thus, we choose to reject only

those portions of the bands with states having r values of

<0:1, along with a few nearby states in each band that have

r values between 0.1 and about 0.8.

The situation just described for multilayer graphene slabs

is actually a relatively easy one, since the r-separation

between propagating and evanescent states is straightforward

to discern and the mixed states can be readily dealt with. In

general, the ease with which this analysis can be conducted

depends on both the nature of the states in the slab and the

width of the vacuum region in the simulation. If we were to

display in Fig. 7 results for the multilayer graphene for

smaller simulation cell width (e.g., �2.5 nm), then the sepa-

ration of the bona fide and mixed states would be much less

clear; in particular, many of the bona fide states would have

r values significantly less than unity. Again, since our defini-

tion of r includes a scale factor relating to the width of the

vacuum region, then for bona fide states, their r values

always approach unity for sufficiently large vacuum width.

For example, consider a state that has much of its wavefunc-

tion concentrated in the slab, but that nevertheless has a

small (nonspurious) tail with ðgx; gyÞ ¼ ð0; 0Þ character

extending out into the vacuum. Such states do not occur for

multilayer graphene because of the nature of its states (i.e.,

the narrow bands of graphite shown in Figs. 1 and 4 all have

in-plane oscillatory nature with essentially zero ðgx; gyÞ ¼
ð0; 0Þ character), but for h-BN, with its inequivalent B and N

atoms, such states do occur (and they do contribute to the

reflectivity) since some of its narrow bands acquire some

nonzero ðgx; gyÞ ¼ ð0; 0Þ character. How then do we distin-

guish between spurious and bona fide states in this case? The

answer, as just stated, is that even these bona fide states with

relatively small ðgx; gyÞ ¼ ð0; 0Þ character in the vacuum

have r values that approach unity for sufficiently large vac-

uum width. A unity value of r, as a function of increasing

vacuum width, implies that the ratio of the wavefunction

magnitude in the vacuum compared to that within the slab is

constant, i.e., as expected when the propagating part of the

wavefunction in the vacuum is a true, invariant feature.

Conversely, if a state maintains a low r value, e.g., <0.1, as

a function of increasing vacuum width, then that implies that

its wavefunction magnitude in the vacuum is actually

decreasing relative to that within the slab. This varying ratio

of wavefunction magnitude in the vacuum compared to

within the slab (i.e., an overall decrease as a function of

increasing vacuum width, together with fluctuations due to

the presence of nearby propagating states) is the hallmark of

a spurious, mixed state.

APPENDIX B

Here, we provide details of the method used to deduce

scattering phase shifts for an overlayer on a substrate for the

situation when the energy of the incident electron falls

within a bandgap for the electronic states of the substrate.

An important distinction should be made between the

approximate method that we employ for our reflectivity anal-

ysis compared to the more rigorous computation of

Krasovskii et al.18,19 Those authors use a semi-infinite model

for the substrate, computing its states for both real and imag-

inary values of the wavevector kz. Within a bandgap region,

no eigenstates exist for purely real values of kz, but evanes-
cent states corresponding to imaginary kz values do naturally

occur. It is these evanescent states that will couple to an inci-

dent electron wave that has propagated through the over-

layer, and the phase shift in the reflected wave relative to the

incident one is determined by the evanescent states. In our

approximate model, we do not compute these evanescent

states for the bulk substrate. Rather, we first perform a super-

cell computation for a vacuum–overlayer–substrate–over-

layer–vacuum system with a substrate of limited thickness

(typically only a few atomic layers), and then we match

states of that system to states of a periodic (infinite) bulk

substrate with only real kz values. Thus, we do not obtain

evanescent states of our bulk substrate and hence these are

not available for the purpose of determining the phase of the

reflected wave.

However, since we compute the spectrum of states for the

vacuum-overlayer-substrate-overlayer-vacuum supercell, we

do obtain some information on evanescent states of the bulk

substrate. That is, even with purely real kz values, that slab

computation will include states that exist for energies within

the bandgap of the bulk substrate. These states will vary

exponentially with distance (decaying or growing) within

the substrate portion of the slab, for energies in the bandgap.

From these states, we wish to construct a linear combination

that has purely decaying exponential behavior in the sub-

strate portion of the slab.

In our general methodology for reflectivity analysis of a

free-standing slab,12 we construct linear combinations of

states that are even or odd relative to the center of the slab

(assuming, for ease of discussion, a potential that is symmet-

ric about this central point). In the vacuum region on the far

left-hand side of the simulation cell these functions vary like

Ae cosðkzþ deÞ and Ao sinðkzþ doÞ, respectively, thus defin-

ing de and do. On the far right-hand side of the simulation

cell, they vary like Ae cosðkz� d0eÞ and Ao sinðkz� d0oÞ,
thus defining d0e and d0o, and with de ¼ d0e and do ¼ d0o for

a symmetric potential. In our standard method, we form
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further linear combinations such that on the right-hand side

of the slab there is only an outgoing wave, whereas on the

left-hand side there are both incoming and outgoing waves.

In that way, the transmission coefficient is found to be (see

supplementary material of Ref. 12)

T ¼ 2 cos d0e � d0oð Þ
ei d0eþdoð Þ þ ei deþd0oð Þ

����
����
2

: (B1)

Examining this result, we see that in order to achieve T ¼ 0

(i.e., reflectivity of R ¼ 1), then we must have d0e � d0o
¼ p=2 or 3p=2, modulo 2p. If this situation occurs for an

energy lying within a bandgap in the bulk electronic spec-

trum, then we would have achieved our goal of constructing

a purely exponentially decaying state within the substrate

portion of the slab (since its amplitude is clearly going to

zero on the right-hand side of the slab).

However, for energies within a bandgap we will not in

general find R ¼ 1 in our analysis of the free-standing slab.

In these cases, we still desire to minimize the amplitude of

the wavefunction on the right-hand side of the slab. For this

purpose, we form a slightly different linear combination than

that which was employed for obtaining Eq. (B1). Rather

than demanding that the incoming wave on the right-hand

side of the slab be zero, we instead desire to minimize the

amplitude of both the incoming and outgoing waves on the

right-hand side of the slab. Consider forming in the vacuum

region on the right-hand side of the slab the combination

AoAe cosðkz� d0eÞ6AeAo sinðkz� d0oÞ: (B2)

When d0e � d0o ¼ p=2 or 3p=2 then this combination is zero

when using the lower or upper sign, respectively. However,

even when d0e � d0o deviates slightly away from p=2 or

3p=2 then the combination is still small. The reason that it is

small is that, within the substrate portion of the slab, the lin-

ear combination [Eq. (B2)] approximately takes a form pro-

portional to AoAecoshðkzÞ � AeAosinhðkzÞ,30 leading to a

purely exponentially decaying dependence for z > 0. Given

this linear combination [Eq. (B2)], then the ratio of reflected

to incident waves on the left-hand side of the slab is easily

found to be ðe�ide 6 e�idoÞ=ðeide 7 eidoÞ. The phase / of this

complex quantity then gives us the phase angle to use in our

dwell time analysis, for energies within a bulk bandgap.

As a test of the applicability of the linear combination

[Eq. (B2)] for forming states on the right-hand side of the

slab that have small amplitude, we consider the amount by

which d0e � d0o deviates away from p=2 or 3p=2. For the

cases considered in the body of this work with substrate

thicknesses of three or five atomic layers, we generally

obtained deviations of less than 0.1, for which we consider

the resulting / values to be sufficiently accurate since they

do not significantly change even if a thicker substrate portion

of the slab is employed. In situations where the deviation is

larger, then we redo the analysis using a thicker substrate

portion of the slab, in order to decrease the deviation in

d0e � d0o away from p=2 or 3p=2.
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