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Abstract 

We use methods of statistical mechanics to study the Julia set of the mapping 
f(z) = z2+ p. For most values of p these methods allow extremely accurate deter­
mination of the fractal dimension and escape rate. At special values of p the 
Julia set undergoes a change in topology. ~Ie study the value p = 1/4 in detail 
and find singularities which we interpret as a phase transition. 

1. Introduction 

Julia sets are unstable invariant sets of complex analytic maQpings. They possess 
chaotic dynamical behavior, a fractal dimension, and sometimes sensitive depen­
dence on parameters. Despite these remarkable properties, which are shared by 
strange attractors, the theory of Julia sets is well established in an elegant 
and extensive mathematical literature. 

In this article we consider the fractal dimension and escape rate of Julia sets. 
We utilize theorems of RUELLE [1] and BOWEN [2] in numerical measurements of these 
quantities. In this respect this article is a refinement of an earlier paper [3] 
which discussed the Julia set of 

2 f(z)=z+p (1.1 ) 

in the limits of large and small p. The statistical mechanical description of 
Julia sets [4,5] allows extremely accurate measurements of the fractal dimension 
and escape rate when p is small. 

The present article is also an extension of [3] because we explore a new range 
of values of the parameter p. In particular, we study phenomena on and near the 
boundary of the tlandelbrot set [6]. The Mandelbrot set, M, is the set of all 
values of p for which JUlia set of (1.1) is connected. This is the set of para­
meters for which the critical point does not iterate to infinity [7]. 

Consider a subset of M consistinQ of the set of parameter values for which 
f has a stable fixed point. The Julia set in this case is the boundary of the 
basin of attraction and is a Jordan curve. The critical point lies in the basin 
of attraction. In order to determine the parameter values which constitute this 
subset we compute the derivatives of the mapping at the fixed points 
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A = - 11-4p 

]l = + 11-4p 

(1.2) 

(1. 3) 
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Figure 1. The Julia set of the mapping (1.1) with (a) p = 0.20, and (b) p = 0.26 

The mapping (1.1) has a stable fixed point for any parameter value inside the car­
dioid 

C = {p: IA(p)1 < l} (1.4) 

Imagine varying the parameter p in such a way that 

e = arg (A) (1.5) 

is held fixed while IAI increases. In this article we concentrate on the value 
e = O. As p increases from 0 to 1/4, A increases from 0 to 1. The value 
p = 1/4 lies on the boundary of C. For p> 1/4 the critical point iterates to 
infinity, and the Julia set is completely disconnected. Thus the value p= 1/4 
lies on the boundary of M and as the parameter crosses this bound~ry the Julia 
set undergoes a transition of its topology (see Figure 1). 

2. Small p 

Many authors have noted an analogy between a statistical mechanical system on a one­
dimensional lattice and a mapping [5,8-11]. In this analogy a bond on the lattice 
corresponds to an iteration of f, the state space at each lattice site corresponds 
to the domain and range of f, and the interaction between lattice sites can be 
represented by a transfer operator with kernel 

where 6(2) is the two-dimensional delta function, and D is a parameter which 
will play the role of inverse temperature. 
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The partition function on a lattice with N sites and periodic boundary con­
ditions is 

(2.2) 

We choose to restrict the integration in (2.2) so that the sum includes only unstable 
cycles. RUELLE [4] has shown that the spectrum of T is discrete and has a real 
nondegenerate largest eigenvalue, provided that p is not on the boundary of M. 
Thus 

(2.3) 

where Ao>O and Ao> IA11 ~ IA21 ~ In addition RUELLE [1] showed that the 
Am are real analytic functions of 0 and p. 

This theorem possesses enormous utility in numerical computations of the fractal 
dimension and escape rate for small p. The fractal dimension is defined by [1,2] 

Ao(OF) = 1 (2.4) 

and the 0-dimensiona1 escape rate, R, is defined by [3] 

(2.5) 

Our numerical approach is to compute the partition function ZN for several values 
of N and fit this to a truncated sum of exponentials as in (2.3). Remarkably we 
find that the eigenvalues Am are all real for 0 ~ p < 1/4. Thus we can fit L 
eigenvalues exactly to L values of ZN. ~Ie have carried out this procedure for 
lattices of up to N= 12 sites. In Table 1 we show the value of 0 for which 
Ao(O) = 1 ± 10-13 as. computed in an L = 1,2,3,4 eigenvalue fit. 

Table 1. Convergence of OF when p = 0.025 

1 1. 00021 
2 1.00023457 
3 1.0002345919 
4 1.00023459189 

3. Phase Transition 

Notice that the derivative at the unstable fixed point, ll, equals 1 when p= 1/4. 
This means that while thermodynamic averages may still exist, the partition func-
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tion ZN becomes infinite. By choosing a more complicated transfer operator than 
(2.1) we can define a new partition function 

(3.1 ) 

When p is not on the boundary of M the cycles are all unstable and the sum in 
(3.1) equals the sum in (2.2) except for corrections which are exponentially small 
in relation to the partition function. RUELLE [4] has shown that when p is not 
on the boundary of M 

(3.2) 

" where Ao = Ao' l~e propose to employ equations (3.1) and (3.2) when p = 1/4. 

We can compute Am(D,p) in some special cases. Consider first D=O, 0 ~ P ~ 1/4. 

There are 2N - 1 cycles of length tl, so that 

" N ZN(D,p) = 2 -1 (3.3) 

Now consider the limit of large D. Only cycles with small I dfN/dz I will con­
tribute to the sum (3.1). The fixed point has the smallest derivative, thus 

(3.4) 

so that ~o F::l (l + 1l_4p)D for large D. Asi de from these special cases the com­
putation must be done numerically. 

We will now report the results of our numerical work. The convergence of some 
of our results is far worse than that shown in Table 1. We will discuss the reli­
ability of our results and the possible cause of poor convergence. Two principal 
results of which we are quite confidant are 

OF (p) = D* - x/1-4p + 0 (l-4p) 

where D* = 1.083 and Xo = 0.15, and 

" D Ao = (l +/1-4p)- +0(l-4p) 

when D ~ D*. A third result, valid for D < D*, is 

~ = 1+A(D*-OY'+O(ll-4p) o 

(3.5) 

(3.6) 

(3.7) 

where A=-0.434 and y=l. Equations (3.6) and (3.7) show that ~o is a singu­
lar function of D at D*. By analogy with statistical mechanics we will analyze 
this singularity as if it were a singluarity in sowe thermodynamic quantity as a 
function of inverse temperature. Thus, assume 

(3.8) 
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Equation (3.6) requires ljJ{x) ~ x-a for x+ _00 and ab = 1/2. Equation (3.7) 
requires ljJ{x) ~ A for x++ oo and a = y. Assume that Xo is a zero of ljJ{x). 
By equations (2.4) and (3.8) we have 

DF{P) = 0*- xo(l-4p)1/2y (3.9) 

which is consistent with (3.5) if y = 1. 

4. Numerical Difficulties 

Our numerical procedure is similar to that used to study small p. The essential 
difference is~that we must allow subtraction as well as addition of eigenvalues 
in fitting ZN. Pade analysis on the zeta function [1,4J leads us to conclude 
that the spectrum is still discrete, real, and positive, and that the partition 
function takes the form 

(4.1 ) 

Eauation (4.1) suggests that the measurement of 0* should improve exponentially 
with L as we saw in Section 2. In Table 2 we see that instead we have liN 
type corrections. Our~preliminary evidence based on fits to (4.1)Ashows that when 
o < OF the value of Ao converges exponentially while all other Am approach 
with liN corrections. When 0 > OF all eigenvalues approach 1 with liN 
corrections. 

Table 2. Convergence of OF when p = 1/4. The fit is to (4.1) and N is the 
largest size lattice used in the fit. The third column includes corrections up to 
(l IN) 3 

N DF OF corrected 

14 1.073217 1.095506 
15 1.073734 1.089383 
16 1.074229 1.086428 
17 1.074688 1.084867 
18 1.075107 1.083814 
19 1.075487 1.083152 

These numerical difficulties lead us to speculatf' tha.t the spectrum may actually 
be continuous between 0 and 1 with an isolated ~o > 1 w~en ° < 0*. The Pade 
analysis could easily miss this fact. It is interesting to note that liN decays 
have been observed in other dynamical systems which are hyperbolic except at iso­
lated points [12]. 
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