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ABSTRACT 
Five elastic constants define the stiffness of coupled phonons and phasons in 

icosahedral quasicrystals. Requirements of elastic stability impose constraints 
(inequalities) on combinations of these elastic constants. This paper derives two sets 
of inequalities, one against the onset of spatially uniform strains, and a weaker set 
against the onset of spatially varying strains. When the elastic constants approach a 
violation of this weaker set of inequalities, Bragg peak intensities vanish 
continuously, while diffuse scattering intensities grow. Depending on which 
combination of elastic constants violates its stability condition, the diffuse 
scattering patterns peak in directions corresponding to icosahedron vertices, faces, 
or edges. Qualitative examination of diffuse scattering patterns therefore may yield 
an insight into the mechanism driving quasicrystal-to-crystal phase transitions, 
while quantitative studies may yield numerical values of the elastic constants. 

9 1. INTRODUCTION 
Recently discovered icosahedral quasicrystals (Tsai, Inoue and Masumoto 1987), 

displaying long-range translational order (Guryan et al. 1989, Bancel 1989) appear to 
have solved sample quality problems (Heiney et al. 1987) and may allow the 
experimental study of intrinsic physical properties of quasicrystalline materials. The 
elasticity tensor is influenced by both icosahedral symmetry and quasiperiodic 
translational order, and relates directly to  X-ray and neutron scattering experiments. 
Elasticity is especially interesting because two leading quasicrystal models make 
qualitatively different predictions for the temperature dependence of the elastic 
constants. And one model, the ‘random tiling model’ (Henley 1988, Widom, Deng and 
Henley 1989, Strandburg, Tang and Jaric 1989) predicts a phase transition driven either 
by instability in the phason modes (Henley 1989), or by coupling between phonons and 
phasons (Widom 1990, Hatwalne and Ramaswamy 1990). At low-temperatures the 
quasicrystal transforms into a crystal state which may (Biham, Mukamel and 
Shtrikman 1988, Ishii 1989, 1990a, b) correspond to a phason strained quasicrystal. 
Experiments (Bancel 1989, Audier and Guyot 1990) appear to verify both the phase 
transition and the crystalline nature of the low-temperature phase. 

If one restricts attention to  phonon modes, icosahedral symmetry is sufficiently 
close to  full spatial isotropy that there exist only two independent elastic constants, 
which we take as the Lam& constants 1 and p. In this case the elastic free energy may be 
expressed as: 

P 

Fphonon = dr [$hi + pijuij], J 
0 9 5 0 8 3 9 / 9 1  $3.00 0 1991 Taylor & Francis Ltd. 
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298 M. Widom 

where uij= [ (dui /dr j )+ (duj /dr i ) ] /2  are components of the phonon strain tensor and u(r) 
is the phonon displacement as a function of position. But there also exist 'phason' 
displacements v(r) as a result of the quasiperiodic translational order (Bak and 
Goldman 1988). Associated with the phason modes is an additional component of 
elastic free energy (Lubensky 1988, Jaric 1987, Jaric and Mohanty 1988, Jaric and 
Nelson 1988, Tang 1990, Shaw, Elser and Henley 1991) 

+K,{u&-$uijui j+ [(zu12+ z - ' ~ , ~ ) ~  +cyclic permutations]}]. (2) 

where uij  = duj /dr i  are components of the phason strain tensor. The phason elastic 
constants are defined so that K, and K ,  agree with Shaw (1991) (K, =041 +O-01 and 
K ,  =0.495 kO.01 for a three-dimensional random tiling model). Compared with Jaric 
and Nelson (1988) we have K, = m3/3 and K ,  = m4/2J5. Finally there is a contribution 
to the free energy which couples phonons and phasons 

Fcoupling= dr K3{[u1 l(ul 1 -zu22 + z-1u33)  

+ ~ U ~ ~ ( T - ' V , ~  -zu3,)]  +cyclic permutations}. (3) 
s 

Compared with Jaric and Nelson (1988) we have K3=m,/2 Jl5. Note that Fphason and 
Fcoupling break spatial isotropy in a manner characteristic of icosahedral symmetry. 

For an ordinary isotropic elastic medium without phason excitations the con- 
ditions of thermodynamic stability against a continuous phase transition may be 
expressed simply by requiring the positivity of bulk and shear moduli 

which implies that the free energy Fphonon is positive definite. One result of including the 
phason displacements is that the conditions (4) of elastic stability must be extended to 
include 

K +$ K ,  > 0, p ( K l  -4  K ,) > 3K 5. 
Note that Shaw's (1991) elastic constants obey these conditions. In this paper I ignore 
nonlinear terms in the free energy, so that (4) and (5) guarantee thermodynamic 
stability, and their violation results in a phase transition. Were higher order terms to be 
considered, including cubic terms of small magnitude, the continuous transition arising 
from violating these local stability criteria would be preempted by a weakly first-order 
transition. 

In addition to thermodynamic stability one might enquire what are the effects of 
phonon and phason fluctuations on the structure factor. The Debye-Waller factor 
diminishes Bragg peaks from their values in the absence of fluctuations. The condition of 
a finite Debye-Waller factor imposes constraints on the elastic constants. For an 
ordinary isotropic elastic continuum without phasons these constraints are 
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Elastic stability in icosahedral quasicrystals 299 

Note that (6) is less restrictive than (4). Including phasons we extend (6) by requiring 

(1+2p)(3K,-4K2)> 12K:, 

p[27(K1 + K 2 ) - 3 J 5 ( 3 K 1 + 5 K J ] >  18K$ (7) 

3(1+ 2p)(3K , + 4K2) > 4K $. 
Note that (7) is less restrictive than (5). One might call a violation of these latter 
inequalities a ‘hydrodynamic’ instability. Although one cannot in general reach the 
hydrodynamic instability in thermodynamic equilibrium, precursors such as a 
decline in Bragg peak intensities may be observed (Bancel 1989). Ishii (1991) has 
independently derived thermodynamic and hydrodynamic stability conditions equiva- 
lent to equations (5) and (7). 

Q 2. DERIVATION OF STABILITY CRITERIA 
First consider the criterion of thermodynamic stability, equation (5). The condition 

for stability is that any uniform or fluctuating strain must increase the free energy. 
There are six independent uniform phonon strains uij = uji and 9 independent uniform 
phason strains uii. Jaric and Mohanty (1988) express the elastic free-energy density as 

(8) 
where e is a 15-component vector of all uniform phonon and phason elastic strains and 
M is a 15 x 15 matrix including the phonon elasticity eqn. (l), phason elasticity eqn. (2) 
and coupling eqn. (3). The eigenvalues of M are the nondegenerate eigenvalue 

f,, =$ e * M - e, 

A ,  =31+2p, (9) 

A 4 = K 1 + $ K 2 ,  (10) 

the fourfold degenerate eigenvalue 

and two fivefold degenerate eigenvalues 

where 1,=2p, I ,=  K ,  -$K , ,  and AC=J6K3.  The condition for stability is then the 
positivity of all four distinct eigenvalues, which leads to the four conditions in 
equations (4) and (5). 

Now we examine the effects of phonon and phason fluctuations of hydrodynamic 
stability. Consider the effects of nonlinear spatial variation in w(r) =(u(r), v(r)). Local 
variations in w lead to local phonon and phason strains which affect the local elastic 
free energy density as shown in equation (8). These position-dependent strains affect the 
total free energy through the integrals in eqns. (1-3). Fourier transforming the 
displacement and inserting into eqns. (1-3) we obtain the total free energy 

dP 
2 (243 

F =! 1 ~ w(- p) . C(p). w(p). 

The six-dimensional ‘hydrodynamic’ matrix C(p) is given by Jaric and Nelson (1988). 
The Debye-Waller factor and diffuse scattering will ultimately be expressed in 

terms of eigenvalues and eigenvectors of the matrix C(p). One principal criterion for 
having a Bragg peak with finite amplitude turns out to be that all eigenvalues must be 
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300 M. Widom 

positive. I term the vanishing of a Bragg peak an instability, although it must be 
remembered that true thermodynamic stability is in general a stronger condition. 
When parameters such as the elastic constants are varied, the onset of an instability 
corresponds to a vanishing of the minimum of an eigenvalue. These minima should 
occur in directions of high symmetry. Thus we calculate the determinants of C(p) for p 
in the directions of icosahedron vertices, faces, and edges. Then we deduce stability 
criteria from the zeros of these determinants. 

We only consider instabilities in which phasons play a significant role so that we 
assume I + 2p > 0 and p > 0. Making the further assumption that an instability is driven 
by either a large value of K ,  or else by a large value of K , ,  but not both simultaneously, 
leads to simplifications. The point is that we need not concern ourselves with all zeros of 
the determinants, but only with those which occurjrst as K, or K ,  become non- 
negligible. Consider first the case of small K,. As K, grows from zero to finite positive 
values, the first zero of any of the three determinants occurs in the vertex direction when 

If instead K ,  becomes negative, the first zero occurs in the face direction when 

- 3  1 
K,=-K1+ 

4 3(I+  2p) ’- 
Next consider the case of small K,. As K, becomes large (either positive or negative), 
the first zero occurs in either the vertex direction when 

or in the edge direction when 

K2-’ 3-6(9(K1+K,)--J5(3K1+5K2)). (16) 

Noting the equivalence of equations ( 1  3) and (15) yields the hydrodynamic stability 
conditions of equation (7). 

At the hyperspace reciprocal lattice point Q, the structure factor S(Q)  is diminished 
by the Debye-Waller factor 

f(Q)=.fl(Qilfi(Q~~), 
where fi and fil are given by Jaric and Nelson (1988) 

When the hydrodynamic matrix C(p) loses stability, one or both of the matrices 
[ C - l ( p ) ] l , , l l ~ l ~ ~ )  diverge. But by (18), such a divergence leads to a vanishing of the 
corresponding Bragg peak intensity. This is a signature of a continuous phase 
transition out of the quasicrystal phase. Figure 1 plots the trace of [C-l(p)]i,i close 
(fig. 1 (b) and (c)) to the pure phason instabilities K ,  w & 3K,/4 and close (fig. 1 ( d ) )  to a 
phonon-phason coupling instability. Clearly these traces diverge in directions of high 
symmetry at the points of instability. Divergences in directions of fivefold symmetry 
(vertex directions) arise from positive values of K,, while divergences in directions of 
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Elastic stability in icosahedral quasicrystals 

Fig. 1 

301 

Icosahedron in its standard orientation with twofold axes along the x, y, and z coordinates. 
Integrand tr [C- l(p)]l, of the phason Debye-Waller factor near (b) vertex instability, 
K , = l ,  K , =  + 0 7 ,  K,=O. (c) Face instability, K , = 1 ,  # ,=-0.7,  K,=O. ( d )  Edge 
instability, A = p = K , = l ,  K,=O, K 3 = 0 5 7 .  

threefold symmetry (face directions) arise from negative values of K , .  Divergences in 
directions of twofold symmetry (edge directions) reveal the role of phonon-phason 
coupling in eqn. (16). 

The integral in eqn. (18) is dominated by these divergences. Rather than evaluate the 
Debye-Waller factors in closed form, we study their behaviour approximately in the 
vicinity of the instabilities. When the distance AK from the instability vanishes, 
tr [C- '(p)] 11, II (I, I) diverges like AK - ' for p in the appropriate symmetry direction, but 
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302 M. Widom 

varies quadratically with finite Gaussian curvature r for p slightly off the symmetry 
direction. Evaluating the integral in (18) we find 

ji(~*) - ( A K ) ( ~ T / ~ ~ / * ) Q ~ ,  (19) 

where o! is a geometrical parameter independent of elastic constants. 

Q 3. DIFFUSE SCATTERING 
Contours of constant diffuse scattering intensity in the vicinity of a Bragg peak at 

Qll are located at q=Qll  +p where lplz is proportional to 

C(P)~(QII,Q,).C-'(P).(QII,Q,). (20)  
The interesting case to examine is when the elastic constants come close to violating the 
stability criterion (7). In such a case C- '(p) diverges in vertex, face, or edge directions, as 
can be seen by inspecting fig. 1. But the dot products with Qll and QL in equation (20 )  
remove the perfect icosahedral symmetry which was evident in fig. 1. Thus the precise 
pattern depends not only on the combination of elastic constants responsible for the 
instability, but also on the symmetry of the Bragg peak around which the diffuse 
scattering is observed. 

Figure 2 illustrates diffuse scattering patterns close to a phason instability. This 
figure represents a twofold plane (perpendicular to a twofold axis). Scattering patterns 
are shown around the same four peaks as were studied by Mori, Ishimasa and 
Kashiwase (1991) as well as one peak on a threefold axis. Ishii (1991) has calculated 
equivalent diffuse lineshapes and some in other planes as well. Consider now the likely 
modes of instability. We examine first those which are phason induced and set K, =O. 
In this case we find a vanishing eigenvalue of C(p) in vertex directions (fig. 2 (b)) when 
K, =$ K, and in face directions (fig. 2 ( c ) )  when K, = $ K , .  Diffuse intensity falls off as 
lk(-,, while at fixed k the intensity diverges as l K , - K ~ l - l .  

The situation is slightly different for a phonon-phason coupling driven edge 
instability. In this case, the eigenvector of C(p) associated with the singular eigenvalue is 
orthogonal to (QII,Qi) when k points towards an icosahedron edge. Figure 2 ( d )  
illustrates the diffuse scattering for 1KJ < K :. In this case, the orthogonality is not 
complete. As IK,I+K f the intensity falls off precipitously in the radial direction. The 
reason, of course, is that the singular contribution to the diffuse scattering vanishes in 
the radial direction. A IkI-' fall off remains, but with amplitude far smaller than in the 
transverse direction. In fact Mod, Ishimasa and Kashiwase (1991) report diffuse 
scattering lineshapes in Al-Cu-Fe with contours of constant intensity greatly 
elongated in the transverse direction. But their result appears to conflict with the 
present theoretical analysis in that they report the radial intensity falling off faster than 
Ikl-*. 

Q 4. CONCLUSIONS 
Let us consider the implications of eqns. (18) and (19) on the temperature 

dependence of scattering peak intensities. In random tiling models of quasicrystals the 
phason elastic constants are determined entirely by entropy; thus K , ( T ) =  K,*T and 
K,(T)=rc,*T. In addition, for rigid tiles K,=O.  In this approximation [C-l]L,l is 
inversely proportional to temperature, leading to phason Debye-Waller effects fi(Qi) 
independent of temperature. As the temperature decreases, the random tiling approxim- 
ation should become less appropriate. For instance, there may be temperature- 
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41 Q 41 

independent contributions to K,(T)  and K2(T).  If we hypothesize that these 
temperature-independent contributions violate the stability criteria (7), then the actual 
ground state is not a quasicrystal. The peak intensities thus vanish below a temperature 
To at which C(p) becomes singular. Above this temperature the peak intensities grow as 
a power law (eqn. (19)) then level off until the onset of melting. (But remember that true 
thermodynamic stability sets in at TI 2 To determined by the criteria (5 )  so the complete 
vanishing of peaks may not be observed.) This behaviour stands in contrast to the 
predictions of energetic stabilization mechanisms (Levine and Steinhardt 1984, 1986, 
Soco\ar and Steinhardt 1986) for which the phason contribution to the peak intensity 
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M. Widom 

should diminish with increasing temperature just as does the phonon contribution 
(Levine et al. 1985, Lubensky et  al. 1986). 

The calculations outlined here indicate a means of measuring combinations of 
elastic constants. It is hoped that study of the temperature dependence of the elastic 
constants may discriminate between the energetic and entropic mechanisms of 
quasicrystal stability. More important, perhaps, are the purely qualitative results, 
including the phase transition from a crystal phase to the quasicrystal as temperature 
rises, and a jump in peak intensity to a finite value followed by a further increase as the 
temperature rises. These predictions appear to agree with experiment (Bancel 1989), 
but the experimental evidence so far cannot be regarded as proof of the theory because 
detailed and quantitative comparisons have not been made. This calculation aims to 
correct that problem by showing how important quantitative information may be 
extracted from experiments, and by providing greater qualitative detail than was 
previously available. Experimental measurements of diffuse scattering lineshapes, and 
their dependence on equilibration temperature and Bragg peak symmetry, can test this 
theory and possibly provide a clue to the mechanism driving the quasicrystal 
instability. 
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