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Averaged cluster approach to including chemical short-range order in KKR-CPA
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The single-site Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) ignores short-range
ordering present in disordered metallic systems. In this paper, we establish a technique to fix this shortcoming
by embedding an averaged cluster that displays chemical short-range order (SRO). The degree of SRO can
be tuned by externally defined order parameters. This averaged cluster can be embedded in the single-site
CPA medium or a self-consistently obtained effective medium that contains SRO information. The validity of
this method is demonstrated by applying it to two alloy systems—the CuZn body-centered cubic (BCC) solid
solution, and AlCrTiV, a four-element BCC high entropy alloy. A comparison between the non-self-consistent
and self-consistent modes is also provided for the two above-mentioned systems. We make the code available on
the internet. Planned extensions to this paper are discussed.
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I. INTRODUCTION

The Korringa-Kohn-Rostoker coherent potential approxi-
mation (KKR-CPA) method [1–3] is heavily used to study
the electronic structure of disordered systems. It is based
on obtaining an effective medium, calculated using a single-
site approximation that mimics the ensemble average of the
different possible configurations. CPA succesfully predicts the
total energy, the density of states, and other system proper-
ties of random alloys [4–7]. One major shortcoming of the
single-site approximation is that it is unable to reproduce
chemical ordering that may be present in the system. Short-
range ordering (SRO) can significantly impact the chemical
and mechanical properties of a solid. For example, in the
Ti-6Al alloy, experiments confirm that SRO increases the
nominal yield stress [8]. In the CoCrNi medium entropy
alloy, SRO increases the yield strength by approximately 25%,
increases the nanoindentation hardness, and significantly af-
fects the onset of plasticity [9]. In α-brass, SRO can cause a
change in the resistivity [10] and increase the stacking fault
energy [11].

We wish to study the effects of SRO within the CPA
framework. Modifications to the conventional CPA method
are required to model chemical ordering. Early efforts include
the molecular CPA (MCPA) [12] method, where the crystal
is divided into cells and each cell is treated like a molecule.
The vibrational spectra of a one-dimensional isotopically
disordered chain was successfully calculated using MCPA.
For more complex systems, this method is difficult to imple-
ment. Gonis et al. developed the embedded cluster method
(ECM-CPA) [13,14], which embeds differently configured
clusters of real atoms within a single-site CPA medium. The
site-diagonal element of the Green’s function (corresponding
to the central atom of the cluster) is used for calculating
system properties. This method was used to calculate the

density of states (DOS) for AgcPd1−c binary by embedding
multiple 13-atom clusters with various configurations (central
atom plus 12 nearest neighbors). While this is an extremely
powerful approach, it does not scale well with the number of
configurations.

The locally self-consistent Green’s function [15,16]
(LSGF) method also accounts for local behavior. This is a
supercell approach where the Green’s function for each atom
is calculated using a cluster consisting of the atom and its
neighbors, embedded in an effective medium. This cluster is
referred to as the local interaction zone, which is a crucial con-
cept, originally introduced by the locally self-consistent mul-
tiple scattering method [17], in the Green’s-function-based,
linear scaling supercell approach to the ab initio electronic
structure calculations. Even though the LSGF calculation
can be done efficiently, a supercell is more computationally
demanding than a CPA calculation where a single atom unit
cell is sufficient.

More recent methods include the nonlocal coherent po-
tential approximation (NL-CPA) [18], which is based on the
dynamical cluster approximation [19] and involves finding an
effective medium, effective structure constant, and a cluster-
renormalized interactor that includes nonlocal effects. This is
achieved by a self-consistent process where, for a fixed cluster
size, all possible clusters are embedded and the impurity
path operator is averaged to obtain the path operator for the
NL-CPA medium. Unlike the embedded cluster approach,
NL-CPA is fully self-consistent. This approach was used
successfully to obtain the DOS of the CuZn binary using
two atom clusters [20,21]. Marmodoro et al. [21] improved
NL-CPA, making it applicable to multiple sublattices and
complex geometries. Further improvements to the approach
were proposed and applied to iron-based superconductor FeSe
[22]. While NL-CPA has several desirable features, it is
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difficult to apply to systems that have a very large configu-
ration space.

In the present paper, we introduce the cluster averaged
coherent potential approximation (CA-CPA), which embeds
a single “averaged” cluster containing SRO within the single-
site CPA medium. SRO is modeled by a set of predetermined
order parameters. Like ECM-CPA, our theory uses the diag-
onal element of the Green’s function, corresponding to the
central atom of the cluster to calculate system properties. This
approach does not require an ensemble of specific cluster
configurations. It can easily be extended to high entropy alloy
[23,24] systems consisting of four or more chemical species.
Unlike ECM-CPA, our method can be made self-consistent.
By embedding the averaged cluster repeatedly and solving for
the effective medium t matrix, a self-consistent CPA medium
can be calculated. This effective medium can be used instead
of the single-site CPA medium.

The paper is organized as follows. First, we provide a brief
introduction to the KKR method and the equations needed
to embed a cluster in the CPA medium. We then introduce
the formalism behind CA-CPA and compare it to NLCPA.
We derive an iteration scheme that can be used to obtain an
SRO effective medium and the effect of self-consistency is
observed by comparing with the non-self-consistent embed-
ding of the averaged cluster in the single-site CPA medium.
We apply our method to calculate density of states and total
energy of the CuZn binary alloy and the AlCrTiV high entropy
alloy. Both systems show B2 (CsCl)-type ordering at low tem-
peratures and A2 (BCC)-type ordering at higher temperatures.
We compare our results with single-site CPA calculations to
observe the effects of SRO. We will also demonstrate that
there is little difference between the self-consistent and non-
self-consistent cluster embedding. Finally, we conclude with
planned extensions to this paper.

II. FORMALISM

The first-principles electronic density-functional theory
(DFT) approach is based on solving a single-electron
Schrödinger equation, called the Kohn-Sham equation [25,26]
(with h̄ = 1 and me = 1

2 ):

[−∇2 + Veff ([ρ(r)])]ψi(r) = εiψi(r). (1)

The Hamiltonian is a functional of the density, given by

ρ(r) =
∑

i
εi � εF

|ψi(r)|2, (2)

provided the Kohn-Sham orbital wave functions are orthonor-
mal and the Fermi Energy εF is determined by the number of
electrons in the system. The effective potential Veff includes
the Hartree potential, which describes the electronic Coulomb
repulsion, the electron-nucleus interaction, and the exchange-
correlation (XC) potential, a functional of the electron density.
With the exception of approximations applied to the XC func-
tional, DFT is an exact theory. In the computational treatment
of the XC functional, the local density approximation [25]
assumes that the XC functional is only dependent on the local
electron density, while the generalized gradient approximation

(GGA) [27,28] assumes dependence on both local density and
its gradient. In our paper, we choose to apply the GGA.

Solving the Kohn-Sham equation can be done in multiple
ways. Because it is an eigenvalue equation, diagonalizing
the Hamiltonian is a popular method of obtaining the re-
quired energy and wave functions. However, an alternate tech-
nique, called the KKR-Green’s function method [29] can also
be used.

A. KKR-Green’s function method

In the KKR method [30,31], the system is divided into
cells, each of which is centered around an atom. The one-
electron effective potential Veff is a sum of localized poten-
tials, vn, within each cell. Specifically, for a cell n with volume
�n whose center is the atomic site determined by position
vector Rn, the local potential is given by

vn(rn) =
{

Veff (r), if r ∈ �n

0, otherwise, (3)

where rn = r − Rn. Consider each cell as an electron scat-
tering center. The multiple scattering path matrix τ nm [32],
defined as the sum of all scattering processes that start from
cell n and end at cell m, becomes

τ nm(ε) = t n(ε)δnm + t n(ε)
∑
k �=n

gnk (ε)τ km(ε), (4)

where t n(ε) represents the single site scattering t matrix
associated with potential vn and gnk (ε) is the free electron
propagator matrix that describes the propagation of a free
electron with energy ε from site n to site k.

Calculating the multiple scattering path matrix is important
because the Green’s function in cell n, given by G(rn, rn, ε),
can be written as [29,33]

G(rn, rn, ε) =
∑
LL′

Zn
L (rn, ε)τ nn

LL′ (ε)Zn•
L′ (rn, ε)

−
∑

L

Zn
L (rn, ε)Jn•

L (rn, ε), (5)

where L is a combination of orbital angular momentum quan-
tum number l and magnetic quantum number m. Zn

L (rn, ε) and
Jn

L (rn, ε) represent the regular and irregular local solutions
to Schrödinger’s equation in cell n with proper boundary
conditions near rn = 0 and at the bounding sphere of cell
n, respectively. The bullet symbol • in Eq. (5) represents
the complex conjugate applied to the spherical harmonics
contained in Zn

L (rn, ε) and Jn
L (rn, ε). The electron density

associated with the valence states in cell n can be calculated
from the Green’s function by taking the imaginary part of the
trace integrated in the valence energy band, from the bottom
of the band εB to the Fermi energy εF :

ρn(rn) = − 1

π
Im Tr

∫ εF

εB

G(rn, rn, ε) dε. (6)

This means that calculation of the Kohn-Sham orbital
wave functions is unnecessary in the KKR-Green’s function
method. This is advantageous, as time-consuming operations
like orthogonalizing and normalizing the wave functions can
be avoided.
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B. Cluster impurity equations

In certain cases, the calculation of the multiple scattering
path matrix [Eq. (4)] can be simplified. For a single-site CPA
medium, all the cells have the same t matrix, given by tCPA(ε).
In such a system, the multiple scattering path matrix τCPA(ε)
at a particular site n can be written as

τ nn
CPA(ε) = 1

�BZ

∫
�BZ

d3k
[
t−1

CPA(ε) − g(k, ε)
]−1

, (7)

where tCPA(ε) represents the single-scattering t matrix for the
CPA medium and g(k, ε) is the lattice Fourier transform of
free electron propagator gnk (ε).

Another special case is a crystal with substitutional impu-
rities. Consider a crystal made of the CPA medium at every
site except for an impurity at site n. If the t matrix at the
impurity site is given by t I (ε), it can be shown that the
multiple scattering path matrix τ nn

I (ε) at the impurity site is
given by

τ nn
I (ε) = [

1 + τ nn
CPA(ε)

(
t−1

I (ε) − t−1
CPA(ε)

)]−1
τ nn

CPA(ε). (8)

This idea can be extended to a cluster impurity in the CPA
medium. We embed a cluster of size Nc, τ nn

I (ε) at impurity
site n, given by

τ nn
I (ε) = ([

1 + τ
CPA

(ε)(T −1
I

(ε) − T −1
CPA

(ε))
]−1

τ
CPA

(ε)
)nn

.

(9)

Here the double underlined terms represent block matrices of
size Nc × Nc. The (n, m) block of τ

CPA
(ε) is given by [14]

τ nm
CPA(ε) = 1

�BZ

∫
d3k

[
t−1

CPA(ε) − g(k, ε)
]−1

eik·(Rn−Rm ),

(10)

and T −1
I

(ε) and T −1
CPA

(ε) are block diagonal matrices
defined as [

T −1
I

(ε)
]nm = t−1

In
(ε)δnm, (11)

[
T −1

CPA
(ε)

]nm = t−1
CPA(ε)δnm. (12)

In refers to the impurity present at site n, and t In
(ε) is the

corresponding single-scattering t matrix.

C. Averaged cluster embedding

The ECM-CPA method discussed in the Introduction uses
the equations defined in the above subsection to embed a
cluster of real atoms in single site CPA medium. Using this
approach to study SRO would require embedding many real
atom clusters, drawn from an ensemble of configurations
weighted by the desired SRO. For large cluster sizes, and
for systems that have more than two chemical species, this
approach is highly inconvenient. Our idea is to embed clusters
consisting of central atoms surrounded by averaged neighbor
atoms. These neighbor atoms are an average of the chemical
species present in the system, weighted by the chemical short-
ranged order with single-scattering t-matrix

t̄ a(ε) =
∑

b

wab tb(ε) (13)

for a, b in the set of chemical species present. The SRO
weights wab are the fraction of neighbors of species a that

are species b. For a system that shows strong SRO, i.e., unlike
neighbors are preferred, wab approaches 1 − δab (taking δab

small). For the opposite case of short-range clustering, where
like neighbors are preferred, wab approaches δab. In the limit
of complete disorder, wab = 1

Ns
, where Ns is the number of

chemical species present.
For an equiatomic binary system with species a and b, we

can transform wab to the well-known Warren-Cowley SRO
parameter [34]:

αab = 1 − 2wab. (14)

For wab > 1/2, αab becomes negative and approaches −1 as
wab approaches 1, corresponding to SRO. For wab < 1/2,
αab is positive and approaches 1 as wab approaches 0 cor-
responding to short-range clustering. At wab = 1/2, α = 0
corresponding to complete disorder.

To obtain the multiple scattering path matrix for an average
cluster embedded in the CPA medium, we use the cluster
impurity equations defined in Sec. II B. Consider a lattice for
which a particular atom (the central atom) of species a has γ

nearest neighbors. Then for n, m ∈ {1, 2, · · · , γ }, we define
the block-matrix T

a
(ε) as

[T
a
(ε)]nm =

{
t a(ε)δnm, if n = 1
t̄ a(ε)δnm, otherwise.

(15)

Here n = 1 is the central atom and the remaining values of
n denote the neighbor atoms. Using the definition of T

CPA
(ε)

from Eq. (12) and the block τ
CPA

(ε) from Eq. (10), we write
the block τ

a
(ε) for our averaged cluster embedded medium as

τ
a
(ε) = [

1 + τ
CPA

(ε)(T −1
a

(ε) − T −1
CPA

(ε))
]−1

τ
CPA

(ε). (16)

The Eq. (11) block [τ
α

(ε)]11 corresponding to the central
atom is used to calculate the Green’s function Eq. (5), similar
to the ECM-CPA approach. This method can be thought of as
a modified ECM-CPA, where instead of embedding a cluster
consisting of real atoms, a carefully constructed averaged
cluster is embedded. The computationally intensive steps in
CA-CPA are Eq. (10), which is the Brillouin zone integration,
and Eq. (16), which is an O(N3) operation as it involves the
inverse of a large block matrix.

D. Extension to next-nearest neighbors

In the above description, the cluster size is limited to
nearest neighbors, but the method can easily be extended
to include longer ranged ordering. To include next-nearest
neighbors, an “averaged” atom has to be defined using a new
set of SRO parameters. For a central atom a, the next-nearest
neighbor average atom t̃a(ε) can be defined as

t̃ a(ε) =
∑

β

w′
abtb(ε). (17)

Here w′
ab represent the next-nearest-neighbor SRO parame-

ters. The block T
a
(ε) is now defined as

[T
α

(ε)]nm =
⎧⎨
⎩

t a(ε)δnm, if n = 1
t̄ a(ε)δnm, n ∈ nearest neighbors
t̃ a(ε)δnm, n ∈ next-nearest neighbors.

(18)

054207-3



RAGHURAMAN, WANG, AND WIDOM PHYSICAL REVIEW B 102, 054207 (2020)

The τ
a
(ε) matrix can then be obtained from Eq. (16).

If the neighbor atoms are chosen to be single-site CPA i.e.,
if the block T

a
(ε) is written as

[T
a
(ε)]nm =

{
t a(ε)δnm, if n = 1
tCPA(ε)δnm, otherwise,

(19)

it is easy to verify that Eq. (16) which represents the cluster
τ

a
(ε) reduces to the single-site τ a(ε), represented by Eq. (8).

This is expected, because embedding a cluster with neighbor
atoms as single-site CPA is equivalent to embedding a single
atom in the CPA medium. An extension to include multipoint
correlation functions is conceivable.

E. Self-consistency

It is possible to extend the CA-CPA method self-
consistently. The single-site approximation for the CPA can
be expressed in terms of multiple scattering matrices as

τCPA(ε) =
∑

a

caτ a(ε), (20)

where τ a(ε) is calculated by embedding an atom of species a
in the medium and employing Eq. (8). If an averaged cluster
with central atom a at site n is embedded (instead of a single

atom), Eq. (20) can be simply modified to

τ nn
CPA(ε) =

∑
a

caτ
nn
a (ε), (21)

where τ nn
a (ε) is now calculated from Eq. (9). Averaging as in

Eq. (21), we obtain an iteration scheme for τ nn
a (ε). Inserting

Eq. (9) in Eq. (21) and defining �
a
(ε) = T −1

a
(ε) − T −1

CPA
(ε)

yields

τ nn
CPA(ε) =

∑
a

ca
([

1 + τ
CPA

(ε)�
a
(ε)

]−1
τ

CPA
(ε)

)nn
. (22)

Defining γ
a
(ε) = [1 + τ

CPA
(ε)�

a
(ε)]−1, it can be shown that

γa(ε) = 1 − τ
CPA

(ε)�
a
(ε)γ

a
(ε). (23)

Inserting Eq. (23) and using Eqs. (9) and (22) simplifies to

τ nn
CPA = τ nn

CPA(ε) −
∑

a

ca
(
τ

CPA
(ε)�

a
(ε)τ

a
(ε)

)nn
. (24)

Hence, ∑
a

ca(τ
CPA

(ε)�
a
(ε)τ

a
(ε))nn = 0 (25)

holds at self-consistency. However, for the initial guess and
the first few iterations, this will not be satisfied. Suppose at the
ith and (i + 1)th iteration, the t matrix for the medium is given
by [tCPA(ε)]i and [tCPA(ε)]i+1 respectively. With significant
algebraic manipulation, we rephrase Eq. (25) as

[
t−1

CPA(ε)
]i+1 = [

t−1
CPA(ε)

]i + [
τ nn

CPA(ε)
]−1 ∑

a

ca(τ
CPA

(ε)�
a
(ε)τ

a
(ε))nn

[
τ nn

CPA(ε)
]−1

. (26)

At self-consistency, Eq. (26) reduces to Eq. (25). This iteration
scheme produces an effective medium containing local be-
havior. The scheme has an approximately linear form, which
helps convergence.

F. Comparison with NL-CPA

Other methods to include SRO in CPA were briefly dis-
cussed in the Introduction of this paper. The most promising
of these methods is the nonlocal NL-CPA. This section aims
to highlight the difference between our cluster averaged CA-
CPA and NL-CPA.

1. Effective medium

While both NL-CPA and CA-CPA are self-consistent, NL-
CPA also involves calculating a structure constant which
contains nonlocal behavior. This is not present in CA-CPA.
In CA-CPA, there is a choice of calculating a self-consistent
medium or simply using the single-site CPA medium. The
advantage of using the single-site CPA medium is simplicity
and computational efficiency.

2. Cluster embedding

In each NL-CPA iteration, the effective medium is obtained
by embedding and averaging over multiple real atom clusters:〈

τ nm
I (ε)

〉 = τ nm
NL−CPA(ε). (27)

In contrast, CA-CPA only requires embedding a single cluster
that is parametrized by the degree of SRO that we obtain from
model or experiment. In self-consistent CA-CPA, only one
cluster needs to be embedded per iteration. This is a signifi-
cantly simpler approach, as it is independent of the number of
configurations and can be easily applied to multispecies high
entropy alloys which may have a large configuration space.

III. RESULTS

To demonstrate CA-CPA, we apply it to alloy systems with
SRO at low temperatures. First we apply it to the Cu-Zn
binary, a system whose SRO has been studied using both
experimental and numerical techniques, including NL-CPA
[20,35–37]. We also apply it to AlCrTiV, to demonstrate that
CA-CPA can easily deal with complex systems like high
entropy alloys.

A. Cu-Zn

The CuZn BCC solid solution is a well-known example
of a system that has an ordered BCC (B2) structure at low
temperatures and transitions to a disordered BCC (A2) struc-
ture at approximately 750 K [35,36]. This is a suitable system
to test the CA-CPA because the inclusion of SRO will have
a noticeable effect on the total energy and electronic density
of states.
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FIG. 1. Variation of the energy of CuZn with respect to the
short-range order parameter w = wCuCu = wZnZn (using single-
site CPA energy as the reference level), calculated using fully
self-consistent and non-self-consistent CA-CPA. w = 0 corre-
sponds to complete short-range ordering up to nearest neighbors
while w = 1 corresponds to short-range clustering up to nearest
neighbors.

1. Energy analysis

As a first test, we compare the energy obtained from
single-site CPA with the energy obtained from CA-CPA using
different possible SRO parameters. Two different versions of
CA-CPA have been used—a fully self-consistent CA-CPA
(black dashed line) and the non-self-consistent version, where
the averaged cluster is embedded in single-site CPA medium
(red line). Although there are four possible parameters for
a binary, forcing the constraints wab = wba and

∑
b wab = 1

results in only a single independent SRO parameter w =
wCuCu = wZnZn. Figure 1 shows the variation of energy with
w. The energy is lowest when w = 0, i.e., unlike neighbors are
preferred, corresponding to a B2-type ordering as expected.
At w = 0.5, the averaged neighbor atoms are an equal mix
of like and unlike atoms. This is similar to a completely
disordered state and this explains why the energy at w =
0.5 closely matches the single-site CPA energy (denoted by
the blue dotted line). Finally, as w −→ 1, corresponding to
the unphysical case of short-range clustering, the system
becomes increasingly unstable. The difference between the
self-consistent and non-self-consistent versions is of the order
of 1 meV, which is an order of magnitude smaller than the
energy change caused by SRO. Self-consistency does not
have a significant impact on the SRO calculation. Hence, the
DOS calculation for CuZn has been done using the non-self-
consistent CA-CPA to save computational time.

2. Density of states

As a second test, we study the effect of SRO on the
electronic DOS. As shown in Fig. 2, when w = 0 the CA-
CPA DOS better approximates the B2 DOS as compared
to the single-site CPA. The cluster embedding reduces the
broadening of the single-site CPA DOS. This is expected
because the broadening is associated with disorder [38] and
the CA-CPA reduces the disorder in the system.

FIG. 2. Density of states for four different cases—the solid lines
represent the pure B2 structure calculated using the KKR method,
the dashed lines represent short-range-ordered (w = 0 at nearest-
neighbor shell and w = 1 at next-nearest neighbor) and short-
range-clustered (w = 1) up to next-nearest neighbors using CA-
CPA and the dotted lines represent the A2 structure obtained from
single-site CPA.

We can compare our results with the DOS calculated using
NL-CPA [20]. The main point of comparison is the size of
the clusters embedded. Pair clusters were used in the NL-CPA
study, and the effect of SRO was demonstrated by calculating
the cluster component DOS. We have not done pair-cluster
calculations, although it can be easily performed using CA-
CPA. Instead, in our work, the DOS has been obtained by
embedding a 15-atom cluster (central atom, eight nearest and
six next-nearest neighbors). Due to the larger cluster size, the
difference in SRO DOS and single-site CPA DOS is more
pronounced in our paper. We can also see the effect of varying
the size of the averaged cluster in Fig. 3. The DOS obtained

FIG. 3. Comparing the DOS obtained using CA-CPA up to
nearest (w = 0) and next nearest neighbors (w = 0 for the near
neighbor shell and w = 1 for the next nearest shell) against the pure
B2 structure obtained using the KKR method, and the completely
disordered structure obtained using single-site CPA.
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TABLE I. SRO parameters for B2 AlCr-type ordering.

w Al Cr Ti V

Al 0 0 0.5 0.5
Cr 0 0 0.5 0.5
Ti 0.5 0.5 0 0
V 0.5 0.5 0 0

using CA-CPA up to next nearest neighbors is closer to the
B2 DOS as compared to the DOS obtained using a nearest
neighbor cluster. This seems to indicate that larger clusters
reduce the randomness, and bring the system closer to an
ordered structure.

B. AlCrTiV

The four-element AlCrTiV high entropy alloy displays
B2 type ordering at low temperatures, with (Al, Cr) at one
sublattice and (Ti, V) at the other [39]. As temperature rises
and disorder increases, the energy gap between A2 and B2
structure reduces. We use this test case to show that CA-CPA
scales well with the number of species present in the system
and thus the number of possible configurations. For a none-
atom cluster (central atom plus 8 neighbors) in a 4 element
random alloy, there are 49 = 262144 configurations. Many
of these configurations will not be unique. By considering
space group symmetry, identical structures can be removed.
The set of unique configurations will be smaller, but it still
remains impractical to use any real atom cluster approach
to study short range order in such a system. Using CA-CPA
opens the door to modeling short range order in high entropy
alloys.

1. Energy analysis

For afour-element high entropy alloy, there are six inde-
pendent SRO parameters,= and hence it is difficult to study
how the energy varies with all six of these parameters. Instead,
we focus on three possible orderings: (a) AlCr-type ordering,
where Al and Cr share the same sublattice (and of course,
Ti and V share the other); (b) AlV-type ordering, where Al
and V share the same sublattice; and (c) AlTi-type ordering,
where Al and Ti share the same sublattice. Tables I, II, and
III contain the SRO parameters used for the three orderings.
The two CA-CPA modes have also been compared for all
three orderings. The energies of these three structures are
presented in Fig. 4. Here it can be seen that AlCr-type ordering
has the lowest energy, which is the expected result [39].
Self-consistency lowers the energy of AlCr and AlV-type

TABLE II. SRO parameters for B2 AlV-type ordering.

w Al Cr Ti V

Al 0 0.5 0.5 0
Cr 0.5 0 0 0.5
Ti 0.5 0 0 0.5
V 0 0.5 0.5 0

TABLE III. SRO parameters for B2 AlTi-type ordering

w Al Cr Ti V

Al 0 0.5 0 0.5
Cr 0.5 0 0.5 0
Ti 0 0.5 0 0.5
V 0.5 0 0.5 0

ordering, and raises the energy of AlTi-type ordering. While
the difference between self-consistent and non-self-consistent
CA-CPA is larger for AlCrTiV as compared to CuZn, it is
still small in comparison to the SRO energy change. As a
result, the DOS calculation has been done using the non-self-
consistent CA-CPA.

2. Density of states

The individual stability of the three configurations studied
can also be discerned from the density of states.

(a) AlCr-type ordering. Figure 5 shows the DOS for the
disordered and the B2 ordered structure up to next-nearest
neighbors with Al and Cr on one sublattice. It can be seen
that on the addition of SRO the DOS moves to the left,
toward lower energies. Furthermore, the Fermi energy has
moved into the pseudogap. These observations indicate that
this type of ordering has increased the stability of the sys-
tem, which is the same conclusion derived from the energy
analysis.

(b) AlTi-type ordering. Figure 6 shows the DOS for the
disordered and the B2 ordered structure with Al and Ti on one
sublattice. In this case, the opposite effect can be observed.
The addition of SRO has shifted the DOS toward higher
energies and the Fermi Energy has moved away from the
pseudogap. This type of ordering is unstable relative to the
disordered structure.

(c) AlV-type ordering. Figure 7 shows the DOS for the
disordered and the B2 ordered structure with Al and V at one
sublattice. In this case, there is no appreciable movement of
the DOS on the addition of SRO and no clear conclusion on

FIG. 4. Energy of three possible B2 type orderings up to nearest
neighbors (with single-site CPA energy as the reference level).
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FIG. 5. Density of states for [(Al, Cr), (Ti, V)] ordered structure
and disordered BCC structure.

stability can be obtained from this plot. The implication is that
this type of ordering is not as stable as the AlCr-type (clear
shift toward lower energies) and not as unstable as AlTi-type
ordering (clear shift toward higher energies), which matches
the energy analysis plot.

IV. CONCLUSION

We have introduced the CA-CPA to include chemical short
range order in the framework of KKR-CPA. This approach
involves embedding a cluster consisting of averaged neighbor
atoms constructed according to the SRO present in the system.
The approach is independent of the number of configurations.
It is simple to implement and computationally efficient as
only a single cluster per species needs to be embedded. The
approach has been applied to a binary and a high entropy
alloy, and the observations have been compared to existing
results. A self-consistent extension to the CA-CPA has also

FIG. 6. Density of states for [(Al, Ti), (Cr, V)] ordered structure
and disordered BCC structure.

FIG. 7. Density of states for [(Al, V), (Cr, V)] ordered structure
and disordered BCC structure.

been explored and an iteration scheme to obtain an effective
medium has been derived. Results obtained using the self-
consistent formalism have been compared with the non-self-
consistent embedding. The code is part of the MUST package
available on GitHub [40].

The order parameters can be obtained in multiple ways.
For binaries, there is only one independent SRO parameter.
In such a case, it is not impractical to use a trial-and-error
approach to find the SRO parameter that corresponds to the
energy minimum. For more complex systems, this is less
convenient, and experimental knowledge of SRO may be
necessary to determine the order parameters. A third ap-
proach involves combining CA-CPA with a statistical physical
method. Computer simulation [41] can provide temperature-
dependent predictions of short-range order parameters. The
cluster variation method [42] can combine order parameter-
dependent energies from CA-CPA with a cluster expan-
sion of the entropy to obtain the SRO parameters corre-
sponding to the free-energy minima across a temperature
range. It would then be possible to calculate the transi-
tion temperature for systems that undergo an order-disorder
transition.
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