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Supplemental Material 
 
Theoretical Method 
Computations are performed in a periodically repeated vacuum-graphene-vacuum system, with 
at least 1 nm vacuum separating the graphene slabs. Assuming an incoming electron beam at 
normal incidence, we need only consider states in the graphene having wavevector k  with 
components 0== yx kk  and 0≠zk  (with z  labeling the direction perpendicular to the 
graphene planes and 0=z  being the center of the graphene slab). Two wavefunctions with 
energy zkE ,ν  are obtained, ),,(, zyxzkνψ  and ),,(, zyxzk−νψ , where ν  is a band index. We work 

in terms of Fourier components of the wavefunction with reciprocal lattice ),,( zyx GGG≡G , 
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where G,νC  is a plane-wave expansion coefficient (obtained from the electronic structure 
computation), V is the volume of a unit cell (included for normalization purposes), and  with 
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Our evaluations are performed for ),0,0( zk=k , so we need only consider )(, rzkνψ  in 

comparison to )(,
, zyx

z

GG
kνφ . Far out in the vacuum, the wavefunctions )(, rzkνψ  have a specific, 

separable form: they consist of travelling waves )exp( zi gκ  where gκ  labels the z-component of 
the wavevector in the vacuum, multiplied by a sum of lateral waves of the form 
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)](exp[ ygxgiA yx +g  where the lateral wavevector is denoted by ),( yx gg=g  and gA  is an 

amplitude.  We have 222
, /)(2 yxVk ggEEm −−−= νκg  where VE  is the vacuum energy 

(corresponding to the potential energy at a z-value sufficiently far from the graphene slab so that 
the potential is essentially constant; we find that a distance of about 0.5 nm is sufficient for this 
purpose). The lateral wavevector will correspond to one of the ),( yx GG  values; )0,0(),( =yx gg  

for the nondiffracted beam and )0,0(),( ≠yx gg  for a diffracted beam, the latter existing only for 

mggEE yxVk 2/)( 222
, +≥−ν . Of course, evanescent states will exist for lower energies, but we 

are considering distances far enough out in the vacuum so that we do not need to consider those. 
We note that the values of gκ  are quite different than those of zk . For electron energies of 0 – 

10 eV the former range over -1nm  160 << gκ  with )0,0(),( =yx gg . The latter are determined 

by the simulation size in the z-direction; with SS zzz ≤<−  we have SzS zkz 2/2/ ππ ≤<− ,  

which for a typical value nm52 ≈Sz  gives -1nm  63.0<zk . 
 
Thus, far out in the vacuum, each eigenstate will consist of a possibly nonzero )(0,0

, z
zkνφ  

component, together with some number of nonzero )(,
, zyx

z

GG
kνφ  components (one for single 

diffraction or a few for multiple diffraction, along with equivalent components obtained by 
symmetry operations), where again, the maximum value of ),( yx GG  is determined by 

222
, /)(2 yxVk GGEEm +≥−ν . In the following discussion we will assume energies low enough 

so that no diffracted beams occur, which for graphene corresponds to eV0.33<E  with a 
primitive hexagonal lattice constant of nm2464.0=a . In this case, any wavefunction that has a 
significant amplitude far out in the vacuum corresponds to a (0,0) nondiffracted beam. The 
precise criterion we use to distinguish between a (0,0) beam and other states will be specified 
shortly. Give this discrimination, we then proceed with the analysis needed to compute the 
reflectivity. 
  
From the electronic structure computation we obtain )(0,0

, z
zkνφ , employing Eq. (2). For our 

analysis we also require )(0,0
, z

zk−νφ , which for the case of a potential that has a mirror plane at 

0=z  can be easily obtained from )()( 0,0
,

0,0
, zz

zz kk −=− νν φφ . For a nonsymmetric potential we must 

use Eq. (2) to obtain )(0,0
, z

zk−νφ , but in this case we also must ensure that a definite phase 

relationship exists between )(0,0
, z

zkνφ  and )(0,0
, z

zk−νφ  (i.e. between 
zk,νψ  and zk−,νψ ). This is 

achieved by taking the phase of )(0,0
, z

zkνφ  to be zero at Szz −=  and the phase of )(0,0
, z

zk−νφ to be 

zero at Szz += . We then form the linear combinations 
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2/)]()([)( 0,0
,

0,0
,

0,0
, zzz

zz kk −+ += ννν φφφ     3(a) 

2/)]()([)( 0,0
,

0,0
,

0,0
, zzz

zz kk −− −= ννν φφφ  .    3(b) 

 
In addition to having a nonzero value for zk , we also perform the evaluations only for zk  not at 

the edge of the Brillouin zone (i.e. of the simulation cell), thus ensuring that both 0,0
,+νφ  and 0,0

,−νφ  
are nonzero.  
 
The functions 0,0

,+νφ  and 0,0
,−νφ  form standing-wave type states, i.e. any complex phase that they 

might have is a constant, independent of z  [similarly for the linear combinations of the full 
states 2/)( ,,, zz kk −+ += ννν ψψψ  and 2/)( ,,, zz kk −− −= ννν ψψψ ]. For a symmetric potential 
these two functions are even and odd, respectively, although our analysis method works even for 
asymmetric potentials. Now, consider a range of z-values sufficiently far from the graphene slab 
so that the potential is essentially constant (and equal to the vacuum level); let us label these 
vacuum regions of LS zzz −≤≤−  on the left-hand side of the slab and SR zzz ≤≤  on the right. 
In these vacuum regions, the standing waves defined by Eqs. (3a) and (3b) can be expressed 
simply as cosine or sine functions, with some respective phase shifts +δ , +′δ , −δ , and −′δ , 
according to 
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where /)(20,00 VEEm −=≡ κκ  is the free-electron wavevector. For a symmetric potential 
we have, of course, ++ ′= δδ  and −− ′= δδ . The phase shifts are determined by searching over the 

range LS zzz −≤≤−  and SR zzz ≤≤  for zeroes of 0,0
,−νφ  and zeroes in the derivative of 0,0

,+νφ . 
  
To obtain the reflectivity, we form appropriate linear combinations of 0,0

,+νφ  and 0,0
,−νφ  

corresponding to only a transmitted wave (traveling in the z+  direction) for SR zzz ≤≤  and 
with both incident and reflected waves (traveling in the z+  and z−  directions, respectively) for 

LS zzz −≤≤− .1 To achieve this, we first form the two combinations 0,0
,

0,0
, −+ ± νν φφ i  , which equal 

)sin()cos( 00 −−++ ′−±′− δκδκ ziAzA  far on the right-hand side. We then separate these into 

their )exp( 0 ziκ+  and )exp( 0 ziκ−  components and form a further linear combination 

)()( 0,0
,

0,0
,2

0,0
,

0,0
,1 −+−+ −++ νννν φφφφ iAiA  such that the prefactor of the )exp( 0 ziκ−  term is zero. This 

is achieved by taking 2/)(1 −+ ′
−

′
+ += δδ ii eAeAA  and 2/)(2 −+ ′

−
′

+ −−= δδ ii eAeAA . Forming 
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the same set of linear combinations on the far left-hand side yields a reflectivity (ratio of 
reflected to incident electron current) of 
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and a transmission of 
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For a symmetric potential these formulas simplify to )(sin2

−+ −= δδR  and )(cos2
−+ −= δδT  

so that, obviously, 1=+TR . From the forms of Eqs. (5a) and (5b) it is not so obvious that 
1=+TR  for the general case, but we find that this relationship is always satisfied so long as the 

phase normalization mentioned preceding Eqs. (3a) and (3b) is performed.  
 
The above analysis method is illustrated in Fig. S1. Figure S1(a) shows )(0,0

, z
zkνφ  for a typical 

electronic state (this state is the same one discussed in Figs. 1 – 3 of Ref. [2]), and the 
corresponding )(0,0

, z
zk−νφ  is pictured in Fig. S1(b). Figures S1(c) and S1(d), respectively, show 

the resultant 0,0
,+νφ  and 0,0

,−νφ . Figures S1(e) and S1(f) show the linear combinations 
0,0

,
0,0

,1
~~

−+ +≡ νν φφφ i  and 0,0
,

0,0
,2

~~
−+ ±≡ νν φφφ i , respectively, with 0,0

,
~

±νφ  being equal to 0,0
,±νφ  multiplied 

by a phase factor such that the product is purely real. Finally, Fig. S1(g) shows the linear 
combination 2211 φφ AA + , where it clear that only an outgoing state is formed on the right-hand 
side of the slab since the magnitude of the wavefunction is seen to be constant there. Note that 
this wavefunction at Sz+  differs from that at Sz− , which is a consequence of that fact that 

)(0,0
, z

zkνφ  contains a part that is not periodic over the simulation interval SS zzz ≤<−  [i.e. a 

)exp( zikz  term]. 
 
Returning to the procedure used to test if 0,0

,+νφ  and 0,0
,−νφ  have significant amplitude, we integrate 

these functions over LS zzz −≤≤−  forming  
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2/122
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⎤

⎢⎣
⎡ +≡ −+ σσσ      (6b) 
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where A  is the area of the unit cell in the ),( yx  plane. The )exp( 0 ziκ  term occurs in the 

integrand here since we are considering the inner product of 0,0
,+νφ  and 0,0

,−νφ  with a plane wave 

propagating in the z+  direction. The values for σ thus obtained have magnitude near unity for 

the propagating (0,0) states of interest and are negligible (≲10-6, due to numerical resolution of 

the computation) for most other states. We can thus set a discriminator for the σ-values of, say,  
310− , to include only the states with substantial )(0,0

, zkνφ  amplitude. 

 
An exception to this sorting of the states is found to occur, when, in certain cases, a state of 
“mixed” ),( yx gg  character forms, e.g. a mixed (0,0), (1,0), and )1,0( −  state. Such states contain 

)(0,1
, z

zkνφ  and )(0,1
, z

zk
−

νφ  terms that dominate the wavefunction within the graphene slab, but they 

also contains a small, nonzero )(0,0
, z

zkνφ  term that constitutes the only contribution to the 

wavefunction far out in the vacuum. Such states appear to be precursors to diffracted states, i.e. 
at higher energy the )(0,1

, z
zkνφ  and )(0,1

, z
zk

−
νφ  terms would have nonzero amplitude in that vacuum 

and they could be combined to form diffracted beams. For these mixed states, the measure of σ 
produces values intermediate between 10-6 and 1, with values in the 10-2 or 10-1 range 
specifically found to occur. Again, it is necessary to reject these mixed states from the analysis, 
and for this reason we typically use a discriminator for the σ-values that is close to 1; a value of 
0.8 is used for all results reported in this work and this value works for the present computations 
to reject all mixed states. 
 
Even though our analysis method for the (0,0) beam relies on the use )(0,0

, zkνφ , i.e. the (0,0) 

Fourier component of the wavefunction, it should be emphasized that the method does indeed 
fully include all multiple scattering within the slab. The electronic structure solutions do, of 
course, contain all of that multiple scattering, and we fully employ those solutions in our 
analysis. Our use of the (0,0) Fourier component is made, in essence, in order to match the full 
wavefunction to a plane wave far out in the vacuum.  
  



6 

 
 
FIG S1.  Wavefunctions for various states of 4-layer graphene, plotted over the entire simulation 
interval SS zzz ≤<−  and illustrating the process used to deduce the reflectivity: (a) a typical 

state, having wavevector -1nm39.0=zk  and energy 3.24 eV above the vacuum level, (b) the 
corresponding state with negative wavevector, (c) and (d) linear combinations of these two zk+  
and zk−  states. (e) and (f) Further linear combinations, which ultimately yield the state shown in 
(g) that has only an outgoing plane wave on the right-hand side of the graphene slab (see text). 
The real-part of the wavefunctions are shown by a solid blue line and the imaginary parts by a 
dashed red line, with the magnitude shown by a solid green line. 
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