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First-principles study of CaFe2As2 under pressure
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We perform first-principles calculations on CaFe2As2 under hydrostatic pressure. Our total-energy calculations
show that though the striped antiferromagnetic (AFM) orthorhombic (OR) phase is favored at P = 0, a
nonmagnetic collapsed tetragonal (cT) phase with diminished c parameter is favored for P > 0.36 GPa, in
agreement with experiments. Rather than a mechanical instability, this is an enthalpically driven transition
from the higher volume OR phase to the lower volume cT phase. A simple thermodynamic model provides an
interpretation of the finite-temperature phase boundaries of the cT phase. Calculations of electronic density of
states reveal pseudogaps in both OR and cT phases. Band-structure analysis provides insight into the origin of
the pseudogaps while revealing the location and nature of hybridized Fe-d and As-p bonding orbitals.
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I. INTRODUCTION

Recent discoveries1 of iron-based pnictides provide a rich
arena to explore the interplay between structural, magnetic,
and superconducting properties, and the consequent emer-
gence of new physics. These materials provide insight into the
competing roles of magnetism and pairing correlations, such as
in the high-temperature cuprate superconductors. Among the
pnictides, the 122 ternary compounds AFe2As2 (A = alkaline-
earth metal Ca, Ba, Sr), belonging to the ThCr2Si2 structure
family, draw particular interest owing to the rich behavior
observed upon chemical substitution or applying pressure,2–5

such as different structural phases and superconductivity.
Applied pressure has the advantage of introducing less disorder
compared to chemical substitution.

CaFe2As2, the smallest-volume member of this family, is of
great current interest as it serves as a readily accessible system
that exemplifies the key features of the AFe2As2 compounds.6,7

At ambient pressure, at Tc1 = 170 K, CaFe2As2 undergoes a
first-order transition from a high-temperature tetragonal (T)
phase to a low-temperature orthorhombic (OR) phase, that
is, striped along the a axis and antiferromagnetically ordered
along the c axis. This may be viewed as a magnetostructural
transition from a high-T phase with fluctuating magnetic
moments8 to one with long-range antiferromagnetic (AFM)
order. An intermediate orthorhombic nematic phase9 does
not occur for A = Ca. The striped magnetic order drives the
orthorhombic symmetry breaking with the antiferromagnetic
bonds in the a direction being slightly longer than the
ferromagnetic bonds in the b direction. The T-OR transition
temperature Tc1 decreases with applied pressure.

At low T , under hydrostatic pressure P ∼ 0.35 GPa,7

the system undergoes a transition from the AFM-OR phase
to a nonmagnetic tetragonal phase, but with a compressed
c-axis value; this has been termed the “collapsed” tetragonal
phase (cT). At high T , and P > 0.35 GPa, another first-order
transition occurs at Tc2, from the tetragonal T to the collapsed
cT phase. Tc2 increases with pressure. Several features are sen-
sitive to pressure conditions; in particular, lack of superconduc-
tivity up to P ∼ 0.65 GPa for the case of hydrostatic pressure,6

compared to observation of superconductivity under condi-

tions creating uniaxial pressure.4,10 Some experiments11 indi-
cate the presence of a low-T tetragonal phase sandwiched be-
tween the OR and the cT phase, suggesting that superconduc-
tivity in a narrow region may be facilitated by the fluctuating
moments present in the T phase. The transition from the OR to
the cT phase occurs at lower pressures in the uniaxial case.4,10

Prior electronic density functional theory (DFT) work12

has considered the pressure and doping dependence of
BaFe2As2. More recently, DFT studies compared nonhydro-
static (i.e., anisotropic) and hydrostatic pressure dependencies
of BaFe2As2 and CaFe2As2,13,14 and proposed15 a Hund’s-rule
coupling model of the phase transitions in these compounds.
Our DFT work provides a different understanding of CaFe2As2

under hydrostatic pressure, and goes beyond previous DFT
work in a number of important ways.

The key results of our work are as follows: Total-energy
considerations, as a function of pressure, lead to findings
that agree well with experimental determination of electronic
structure and magnetic ordering. Though the higher volume
AFM-OR phase is favored at P = 0, the lower volume
nonmagnetic cT phase is favored for P � 0.36 GPa. Hence
we assert that the OR-cT transition is first order and enthalpy
driven. We also incorporate a thermodynamic analysis of
the cT phase boundary at nonzero temperature and pressure,
based on vibrational entropy. Our density of states (DOS)
calculations show pseudogaps in both OR and the cT phases
around the Fermi level (EF ), with the pseudogap being
narrower and deeper in the OR phase. Band structure provides
insight into the nature and origin of the pseudogaps in both
phases, and also allows us to explore the possibility of orbital
order in these systems. A notable outcome is the location and
character of bonding orbitals consisting of hybridized As-p
and Fe-d states, thereby providing an understanding of striped
magnetic order in the OR phase, and of hopping mechanisms.

II. CRYSTAL STRUCTURE AND METHOD

The structures of interest are tetragonal, with Pearson
symbol tI10 denoting body-centered tetragonal with ten atomic
sites per unit cell, and orthorhombic, with Pearson symbol
oF20 denoting face-centered orthorhombic with 20 atomic
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FIG. 1. (Color online) Structures used in calculations; chemical
species are indicated by color, vertical heights are indicated by atomic
size. (a) Left panel shows the c-axis view [z ∈ (0,c/2)], with ab-plane
stripe ordering denoted by +/−; (b) right panel shows the b-axis
view [y ∈ (0,b)], with the a-axis stripe and the c-axis AFM ordering
denoted by +/−. Atomic size indicates vertical height, smaller on top.

sites per unit cell. The oF20 crystal structure is a based on
a

√
2 × √

2 R45 tetragonal supercell of the tI10 structure,
followed by a weak orthorhombic distortion. To improve
consistency of our calculated property differences, we employ
this tetragonal supercell for studies of the tetragonal structure,
so we include 20 atoms in all our reported calculations.
Calculations of the orthorhombic structure utilize spin polar-
ization, with initial moments in the striped antiferromagnetic
arrangement. Specifically, spins are ordered antiferromagnet-
ically in the a direction, ferromagnetically in the b direction
(i.e., “striped” in the ab plane), and antiferromagnetically
in the c direction; see Fig. 1. The symmetry group of the
atomic positions is I4/mmm (no. 139) for tI10, and Fmmm

(no. 69) for oF20. This differs from a previous work,14 where
the ambient pressure OR calculations have been done for a
nonmagnetic structure. This enables us to better contrast the
band structures of the OR (striped AFM) and cT (nonmagnetic)
phases, trace their origin and content, and discuss the resulting
DOS and pseudogaps.

We utilize VASP16,17 to carry out first-principles total-
energy calculations, adopting projector augmented wave
potentials.18,19 For a density functional we choose the PBE20

generalized gradient approximation (GGA), as calculations
utilizing LDA21 fail to stabilize the striped antiferromagnetic
orthorhombic phase, and the PW91 GGA22 predicts the
orthorhombic phase to be energetically unfavorable at low
temperature and pressure. We relax all atomic positions and
lattice parameters, and increase our k-point densities and
plane-wave energy cutoff (to 340 eV) until energy differences
have converged to 0.1 meV/atom. Unusual care in selection of
density functional and convergence is required because of the
extremely small energy differences of order 1 meV/atom that
must be resolved. As in other DFT calculations, our values of
the Fe moment are large (mFe ≈ 1.78μB at P = 0) compared
to the experimental results (0.8μB ).

III. “COLLAPSE” UNDER PRESSURE

A. T = 0 Total-energy considerations

Figure 2 shows the results of our calculation of total energy
vs volume for the nonmagnetic cT and the AFM-OR phases, as
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FIG. 2. (Color online) Calculated total energies (E) of the
collapsed tetragonal (cT) and orthorhombic (OR) structures plotted
against volume (V ). The solid lines are cubic polynomial fits (see
text; Table I); the dashed line of double tangency gives the critical
pressure beyond which cT is stable despite its higher energy.

described above. For each structure α we fit Eα(V ) to a cubic
polynomial of the form Eα = Eα

0 + (1/2Vα)Bα(V − Vα)2 +
(1/6Vα

2)Cα(V − Vα)3, where Vα and Eα
0 are the volume and

energy at P = −dE/dV = 0, Bα is the bulk modulus, and Cα

is the nonlinear bulk modulus. Fitted values of these quantities
are listed in Table I. The line of double tangency is Et =
E0 − P 0

c V , where P 0
c = 0.022 eV/Å3 (0.36 GPa) is the critical

pressure.
Figure 2 implies that though the high volume OR phase

is energetically favorable at low pressure, the enthalpies
(H = E + PV ) of the phases cross at P 0

c , beyond which the
high-energy cT phase, with diminished c parameter, has lower
enthalpy relative to that of the OR phase. This is more clearly
seen in Fig. 3 where we plot, for the OR and cT phases,
the enthalpy difference (�H = HcT − HOR), and the lattice
parameters (a,b,c), versus pressure: While both the OR and
the cT structures are stable across the pressure range studied,
�H vanishes at P 0

c = 0.36 GPa, causing the c-axis lattice
parameter to switch from the higher value of 11.45 Åof the OR
phase to a lower value of 10.45 Å, the defining feature of the
collapsed cT phase. Thus, the OR-cT transition at T = 0 and
finite P is a transition in thermodynamic stability, rather than a
soft mode or irreversible mechanical instability as implied by
the term “collapse.” In particular, the OR phase continues to
exist at high pressure (contrary to Ref. 13, and the cT phase is
present at low pressure; they simply become metastable rather
than thermodynamically stable.

Our calculated lattice parameters, shown in Fig. 3, across
the pressure range (0 � P � 1 GPa) are within 2% of
experiments. At P 0

c the discontinuities in lattice parameters
are �a = +0.04 Å, �b = +0.14 Å, and �c = −1.00 Å,
in good agreement with experiments.10 Within each phase,
the lattice parameters vary smoothly with no singularity on

TABLE I. Properties of structures at V = Vα . Length and volume
units are in Å, energy in eV/atom, bulk moduli in GPa, and magnetic
moments in Bohr magneton.

Structure b/a c/a Vα E0
α Bα Cα mFe

cT 1 1.84 16.55 −6.1296 85.6 −654 0
OR 0.98 2.02 17.57 −6.1318 63.3 −152 1.78
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FIG. 3. (Color online) The top two panels show the behavior of
the calculated lattice parameters, a,b,c of OR and cT structures with
pressure. The bottom panel shows the change in enthalpy, �H vs
pressure P . Note the “jumps” in the lattice parameters at P 0

c = 0.36
GPa (dashed lines), where �H = 0.

crossing P 0
c . On extending our calculations to higher pressures,

P = 1.5 GPa, we do not find signatures for any other low-T
transition.

B. Finite-temperature considerations

Although the first-principles results are derived at T =
0 K, we can estimate the temperature-dependent variation of
critical pressure Pc(T ) at low pressure to predict the finite-T
phase boundary between the orthorhombic and collapsed
tetragonal phases using a simple thermodynamic model. The
Clausius-Clapeyron equation relates the slope of the phase
boundary to the discontinuities in entropy (S) and volume (V )
as dP/dT = d�S/d�V . We calculated �V ≡ VcT − VOR ≈
1 Å3/atom. Temperature-dependent entropy can be calculated
by integrating C/T , where C is the heat capacity. We neglect
the distinction between constant volume and constant pressure
for low compressibility solids and assume that the dominant
entropy contribution comes from the lattice phonons. Note that
at low T the Debye approximation C = (12π4/5)kB(T/θ )3 be-
comes exact, where θ is the Debye temperature. Neglecting any
temperature variation of θ , the entropy also varies as (T/θ )3. A
value of θOR = 292 K has been reported experimentally.23 As
we have not located an experimental value for θcT we estimate

θcT ∼
(

BcT

BOR

)1/2 (
VcT

VOR

)1/6

θOR = 336 K (1)

according to the approximation of Madelung24 and Einstein.25

Note that �(θ−3) ≈ (−3�θ )/θ4.
Approximating �V and �θ as constants allows us to

integrate the Clausius-Clapeyron equation, yielding

Pc(T ) = P 0
c − 3π4

5

(
kB�θ

�V

) (
T

θ

)4

. (2)

Putting in our numerical values, kB�θ/�V = 0.69 GPa and
P 0

c = 0.36 GPa, we can invert Eq. (2) to find the Tc(P ) phase
boundary:

Tc(P ) = 124 K × (P − 0.36)1/4 (3)

in units of K. Equation (3) implies that the boundary
of the collapsed tetragonal phase rises vertically from its
low-temperature limit of 0.36 GPa, then bends sharply to
the right towards higher pressures, in qualitative agreement
with experiment.6,7 Note that the precise value of θcT only
influences the prefactor of Eq. (3). The boundary curves to
the right towards higher pressure (contrary to Ref. 15 because
the higher bulk modulus of the cT phase reduces its entropy
and hence raises its Gibbs free energy, G = E + PV − T S,
relative to the OR phase. At high temperature, it thus requires
a higher pressure to favor the lower volume, but lower entropy,
collapsed tetragonal phase.

Experimentally the collapsed tetragonal cT phase borders
the orthorhombic OR phase at low temperatures, but it borders
the noncollapsed tetragonal T phase at high temperatures. In
fact, the high-temperature T phase resembles the OR phase
in terms of its lattice parameters and even exhibits magnetic
moment fluctuations matching the striped antiferromagnetic
structure with correlation lengths of order 6–8 Å.8 The T phase
is essentially the OR phase with a loss of long-range order
in magnetization leading to a loss of orthorhombicity (i.e.,
a = b), and hence the extrapolation of the cT-OR boundary
to higher temperature and pressure should remain a good first
approximation to the cT-T phase boundary.10

IV. ELECTRONIC STRUCTURE

A. Pseudogaps in the density of states

Our electronic structure calculations give band dispersions
along different k directions, and the density of states (DOS). In
our DOS calculations (Fig. 4), both OR and cT phases exhibit
pseudogaps around EF . Useful insight into the material may
be gained by exploring the dispersion and pseudogap features
in further detail. We present the pseudogap region of DOS
alongside the selected dispersion relations for individual bands
for both OR and cT phases. Aside from the total DOS, the
figures also show the Fe, As, and Ca partial DOS; the total
DOS is dominated by Fe-d orbitals. The pseudogap in the
OR phase is narrow and centered on EF , while it is broader
and shifted up from EF in the cT phase. This overall behavior
persists for P > 0. For simplicity of discussion we label the
reciprocal spaces using primitive orthorhombic notation [i.e.,
X = (π/2a,0,0) and R = (π/2a,π/2b,π/2c) where a, b, and
c are the relaxed P = 0 lattice constants of the 20-atom cells].
The pseudogaps in both OR and cT cases arise from the paucity
of states near the Fermi level in the �-R direction, this being so
over a wider energy range in the cT case. We note that the width
and location of our DFT-calculated pseudogaps compare well
with LDA + DMFT calculations26 at P = 0 (i.e., DMFT and
PBE both incorporate important correlations that are missing
from LDA).

On considering orbital decomposition of the DOS in the OR
phase as shown in Fig. 4, we find that Fe-dxz (green curves)
and Fe-dyz (blue curves) show strong pseudogap features near
EF , this being stronger for Fe-dyz. To explore possible orbital
ordering, we examined the band occupation on the first Fe atom
(“Fe1,” here at x = y = z = 1/4, with majority spin up). This
atom contributes spin up dyz primarily to the DOS peak at
E ≈ −1.5 eV and spin down dyz to the peak at E ≈ 0.5. The
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FIG. 4. (Color online) Total densities of states (top panel, units
states/eV/atom). Selected dispersion relations and partial DOS for
cT (center) and OR (bottom) phases at P = 0. EF is denoted by
dashed lines. Dispersion relation and partial DOS d orbitals pertain
to Fe. As and Ca partial densities of states are multiplied by 2 for
clarity. All DOS calculations were performed with the tetrahedron
method, but Gaussian smearing of 0.05 eV was applied in top panel
for clarity.

dxz orbital is less strongly split, with spin up primarily at E ≈
−0.6 and spin down at E ≈ −0.4 eV with some spin down
also above EF . Integrating up to the Fermi level, we find the
spin up occupancies are equal, nxz,↑ = nyz,↑ = 0.82, while the
down occupancies differ, nxz,↓ = 0.56 > nyz,↓ = 0.36. Hence
the occupation number difference (nxz,↑ + nxz,↓) − (nyz,↑ +
nyz,↓) = 0.20 equals the moment difference (nyz,↑ − nyz,↓) −
(nxz,↑ − nxz,↓) = 0.20. These findings are qualitatively similar
to those obtained within a Hartree-Fock treatment27 of an
interacting Hamiltonian.

B. Hybridization of Fe and As orbitals

Prominent As-p orbitals hybridized with Fe-d lie above
EF (unoccupied) in the cT phase but are below EF (occupied)
in OR. Hybridization primarily involves dxz and dyz orbitals,
consistent with two-band models28,29 for indirect electron
hopping and striped magnetic order.

Figure 5 illustrates � point wave functions parallel to the
xy plane at z = 0.30, between the lower Fe plane at z = 0.25
and the adjacent As atoms at z = 0.36 (actually 0.365 for cT
and 0.363 for ortho). Projected positions of the Fe atoms at
(x,y) = (1/4,3/4) are shown as red circles. But since we are
above the Fe plane, Fe orbitals of dxz and dyz type appear as
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FIG. 5. (Color online) Wave functions at z = 0.30. (a),(b)
OR spin up As-Fe hybrids; (c) cT Ca-Fe hybrid. Red circles locate
Fe atoms at z = 1/4.

lobes of positive (green) and negative (magenta) values of the
wave function on opposite sides of the atom. Two spin-up wave
functions are shown for the OR structure. The first, Fig. 5(a),
at E = −0.76 eV corresponds to dxz orbitals on the majority
spin-up Fe atoms (here at x = 1/4) hybridized with pz orbitals
on the adjacent As atoms [here at (x,y) = (0,0) and (1/2,1/2)].
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The corresponding spin-down wave function (not shown) is
similar but shifted to the majority spin-down Fe atoms (at
x = 3/4). The second, Fig. 5(b), at E = −0.61 eV, has no
notable spin dependence, and features Fe-dyz orbitals, again
hybridized with As-pz. This pair of states thus reflects the
formation of striped magnetic order within the xy plane.

A representative wave function is shown for the
cT structure, Fig. 5(c), at E = −0.22 eV. This state consists of
bonding interactions of Fe-dyz orbitals weakly hybridized with
Ca-dyz. A second wave function degenerate with this involves
dxz orbitals instead of dyz. In the band-structure plot, another
pair of degenerate states appears at E = −0.09 eV. These
states are similar to those just described except they reverse
sign between the lower (z = 1/4) and the upper (z = 3/4)
Fe atoms. As a result, they do not hybridize with the Ca-d
orbitals. A set of Fe dxz and dyz states is also evident around
E = −0.42 eV. However, these states properly belong at the
collapsed tetragonal M point. They have been folded back to
the � point owing to the orthorhombic supercell.

V. CONCLUSION

While existing literature discusses the transition from the
orthorhombic to the tetragonal phase under pressure as a
“collapse” into the so-called collapsed tetragonal phase, our

total-energy calculations reveal that the transition is in fact
a first-order enthalpic transition. In our calculations, both the
magnetic orthorhombic and the nonmagnetic tetragonal phases
remain mechanically stable to high hydrostatic pressures,
at least 1.5 GPa; however the tetragonal phase is favored
enthalpically for P > 0.36 GPa. Our results are in good
agreement with experimental determination of electronic
structure and magnetic ordering. Our thermodynamic analysis
based on the Clausius-Clapeyron relation provides an under-
standing the finite-temperature phase boundary between OR
and cT phases. Our detailed electronic structure calculations
reveal interesting pseudogap features near the Fermi level
in both OR and cT phases, shed light on ordering of
Fe-d orbitals in OR phase, and identify the location and
nature of bonding orbitals comprised of Fe-d and As-p
electronic states in both OR and cT phases. The hybridization
results provide an understanding of striped magnetic order
in the OR phase, and also of hopping mechanisms in this
material.
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