
PHYSICAL REVIEW E 88, 012117 (2013)

Generalized potentials for a mean-field density functional theory of a three-phase contact line
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We investigate generalized potentials for a mean-field density functional theory of a three-phase contact line.
Compared to the symmetrical potential introduced in our previous article [Phys. Rev. E 85, 011120 (2012)], the
three minima of these potentials form a small triangle located arbitrarily within the Gibbs triangle, which is more
realistic for ternary fluid systems. We multiply linear functions that vanish at edges and vertices of the small
triangle, yielding potentials in the form of quartic polynomials. We find that a subset of such potentials has simple
analytic far-field solutions and is a linear transformation of our original potential. By scaling, we can relate their
solutions to those of our original potential. For special cases, the lengths of the sides of the small triangle are
proportional to the corresponding interfacial tensions. For the case of equal interfacial tensions, we calculate a
line tension that is proportional to the area of the small triangle.
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I. INTRODUCTION

In our previous article [1], we treated a three-phase contact
line by a mean-field density functional that involves a symmet-
ric potential. This potential allows us to find analytical far-field
solutions because one of the mole fractions is constant for any
two-phase transition. In order to develop a phenomenological
model for a nonsymmetric potential, which is more realistic
for ternary fluid systems, we need a more general potential
that has three minima in arbitrary locations within the Gibbs
triangle. In this article, we introduce a flexible approach to
construct such generalized potentials.

As illustrated geometrically in Fig. 1(a), a three-phase
contact line is modeled for a ternary fluid system having
three bulk phases, α, β, and γ , which subtend dihedral angles
θα , θβ , and θγ . Each of the interfaces αβ, βγ , and γα, if
extrapolated far from the contact line, is perpendicular to a
side of the dashed triangle, which is illustrative of our much
larger actual computational domain. The contact line is where
the three interfaces appear to meet. We assume the system
to be translationally invariant along the vertical direction
perpendicular to this figure, thus reducing this problem to two
dimensions. Compared to the homogeneous bulk phases, the
inhomogeneity arises from the formation of interfaces and a
contact line, which are actually diffuse regions.

Based on the thermodynamic method introduced by Gibbs
[2, p. 228], the inhomogeneity is treated by means of an excess
grand potential �xs, which, by convention [3, chap. 8], can be
expressed by

�xs = Lτ + LRαβσαβ + LRβγ σβγ + LRγασγα. (1)

Here L is the length of the contact line and Rij is the distance
from the contact line along interface ij toward the boundary.
In the limit of all Rij → ∞, the line tension τ is defined as the
excess grand potential per unit length associated with the con-
tact line while each of the three interfacial tensions σij (excess
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grand potentials per unit area) is associated with an interface
ij in the far-field limit. A classical result [4] shows that

sin θα

σβγ

= sin θβ

σαγ

= sin θγ

σαβ

. (2)

According to this result, the boundary is actually a Neumann
triangle since the three sides are proportional to three
interfacial tensions.

Besides extensive studies of interfacial tensions (see
Ref. [5]), the line tension of a contact line plays a crucial role in
a broad range of physical phenomena such as the equilibrium
shapes of small droplets [6,7], microfluidics [8,9], heteroge-
neous nucleation [10], cell adhesion [11], the dynamics of a
drop spreading on a liquid thin film [12,13], and the behavior
of line tension at wetting transitions [14]. For a review for
both experimental and theoretical aspects of line tension, see
Ref. [15], and for a conceptual review, see Ref. [16].

A. Mean-field density functional theory

According to the mean-field density functional theory
introduced in our earlier work [1], the excess grand potential
for a ternary fluid system is

�xs = BL

∫
A

[f + g] dA, (3)

where f is a potential function and g is a gradient energy
of the chemical constituents. In this article, we assumed that
the dominant intermolecular forces in our system are short
range, so physical quantities can be formulated in terms of
local densities. Based on the assumption of uniform molar
volume, we change the variables of f and g from number
densities to mole fractions Xi , and

∑3
i=1 Xi = 1 (see Ref. [1,

Sec. II] for details). For reviews of the general mean-field
density functional method of interfaces, see Refs. [3,17].

In this phenomenological theory, there is no definite form
of the potential f for the excess grand potential �xs in (3). The
specific form that we used in earlier work [1] is

f =
3∑

i=1

(Xi − a)2(Xi − b)2 ≡ f o, (4)
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FIG. 1. (Color online) Schematic diagram for the mapping
between physical space and the Gibbs triangle (briefly, the Gibbs
space). (a) Sketch of our system consisting of three bulk phases,
α, β, and γ , divided by three interfaces, αβ, βγ , and γα. The
interfaces, if extrapolated, are each perpendicular to sides of the
dashed triangle (illustrative computational domain) and meet at a
three-phase contact line. The corresponding dihedral angles are θα ,
θβ , and θγ and (x,y) are Cartesian coordinates in physical space. The
region within three solid curves represents approximately the diffuse
region of the interfaces and the contact line. (b) The Gibbs space,
in which the three bulk phases are located at three points and (u,v)
are Cartesian coordinates in units of mole fractions. The three curved
lines that connect pairs of points for bulk phases are trajectories of
two-phase transitions. (c) Slice of an interface in a cuboid far from
the contact line. s is a coordinate perpendicular to the αβ interface
and w is the width of the cuboid in a direction perpendicular to the
contact line.

where 0 � a � 1 is a constant and b = (1 − a)/2, is a sym-
metric quartic function that allowed us to obtain asymptotic
analytical solutions in the far field. This form is an extension
of the potential used in the Landau’s phenomenological theory
[18,19]. Similar two-density quartic potentials have been used
in Refs. [20,21] for line tension and for a first order wetting
transition. Sixth-order polynomials have been used for second-
and higher-order transitions [21–23]. In this article, we focus
on potentials of quartic form.

Compared to other two-density models, our model is actu-
ally pseudobinary since it formulates the potential in terms of
three mole fractions {Xi}i=1,2,3 by the assumption of uniform
molar volume. Because of the constraint

∑3
i=1 Xi = 1, there

are two independent mole fractions, so our potential can be
described in terms of two independent variables, although
we sometimes display all three mole factions to illustrate its
symmetry.

Note that the gradient energy g in the functional (3) of the
excess grand potential �xs is specified by

g =
3∑

i=1

	2
i

2
|∇Xi |2 , (5)

where {	i}i=1,2,3 are constants. For cases with equal 	i

(isotropic gradient energy), the three-fold symmetric potential

leads to threefold symmetry of the physical domain. To resolve
this special geometry, we employed a triangular grid to obtain
numerical solutions over the entire domain (for details, see
Ref. [1, Sec. III]).

B. Mapping from physical space to the Gibbs space

In our mean-field density functional theory of a three-phase
contact line for a ternary fluid system (summarized in Sec. I A;
for details, see Ref. [1, Sec. II]), the functional of the excess
grand potential consists of a potential function and a gradient
energy. Since we use three mole fractions as variables, there
is a connection between the physical space and the space of
the Gibbs triangle (briefly, the Gibbs space). This connection
depends on the specific choice of potential and the coefficients
of the gradient energy. Figure 1 illustrates a mapping between
the physical space of our system [Fig. 1(a)] and the Gibbs space
[Fig. 1(b)]. In general, the three bulk phases of the physical
system are represented by the three minima of a given potential,
which are located at three points within the Gibbs triangle.

The curved lines within the Gibbs triangle [Fig. 1(b)] are
the trajectories of the two phase transitions in the far-field
regime between any pair of bulk phases in the physical space
[Fig. 1(a)]. The far-field regime is located at a distance that is
far from the contact line compared to the interfacial widths (or
the size of the central core region associated to the contact line).
In the far-field regime, a slice of interface can be contained in
a cuboid [Fig. 1(c)] and the interfacial width is constant. For
a two-phase transition between any pair of bulk phases, the
change of mole fractions from one bulk phase to another maps
to a curved line connecting two potential minima within the
Gibbs triangle. At equilibrium, these trajectories minimize the
excess grand potential according to the form of the potential
and the coefficients of the gradient energy. Since the interfacial
tensions are excess grand potentials per unit area, their values
depend on these trajectories.

According to the form (1) of the excess grand potential,
the line tension is the residue of excess potential in which we
subtract the contribution from the far-field interfacial tensions.
In physical space [Fig. 1(a)], it relates to the core of the diffuse
region centered at the contact line as if we subtract the cuboids
of the interfaces extended from the far-field until they meet
at the “contact line.” This core region corresponds to three-
phase transitions among all three bulk phases in the physical
space. It can be mapped to a region within the Gibbs triangle
[Fig. 1(b)] surrounded by the three trajectories of the two-phase
transitions. Similarly to the interfacial tensions, the line tension
is the excess grand potential per unit length. Its value depends
on the form of the potential within this core area and, of course,
the coefficients of gradient energy.

In this article, we extend our previous model to more
realistic systems. Specifically, we use geometrical reasoning
to construct generalized quartic potentials with three minima
arbitrarily located within the Gibbs triangle. For a subset of
these potentials, the resulting potential is a linear transfor-
mation of our original potential and we can obtain simple
analytic far-field solutions. We connect these solutions to our
original potential by scaling. For some special cases, we relate
interfacial tensions and line tension to the lengths of the sides
and the area of the small triangle formed by the three minima.
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II. GENERALIZED QUARTIC POTENTIALS

To find more general quartic potentials with arbitrary
mimina, while maintaining the condition of constant molar
density, we start with a discussion of quartic functions with
two independent variables that correspond to two independent
mole fractions. In general, a two-variable quartic polynomial
can be expressed by

f (X,Y ) =
4∑

n=0

n∑
i=0

ai,n−iX
iY n−i , (6)

which contains 15 independent parameters ai,n−i . However,
we need a form such that f is positive except for f = 0
at the three minima, which gives us three equations relating
the coefficients. At each of the minima, we require ∂f/∂X =
∂f/∂Y = 0, which amounts to six conditions. Furthermore,
in order to have parabolic potential wells, we need the
second derivatives of f to satisfy the following inequalities
at the three minima: ∂2f/∂X2 > 0 (or ∂2f/∂Y 2 > 0) and
(∂2f/∂X2)(∂2f/∂Y 2) − (∂2f/∂X∂Y )2 > 0. This gives us six
inequalities. In general, we have 15 − 3 − 6 = 6 free parame-
ters together with six additional constraints.

In this framework, our original potential in (4) is a special
case which has only one parameter, a, representing the size
or orientation (magnification or inversion) of the equilateral
triangle formed by the three minima [1, Sec. II A, discussion
after Eq. (14)]. In the development to follow, we obtain a
positive potential by assuming it to be a sum of squares of
various expressions. We break the symmetry of our original
potential by locating the three minima at the vertices of a
small triangle having any shape and orientation within the
Gibbs triangle. In the following discussion, we use the term
a “small triangle” to denote an inner triangle formed by the
three minima of a given potential within the Gibbs triangle.

A. First generalization

At first, we explore the structure of our original potential f o

in (4). Xi can be expressed as a function of two independent
Cartesian variables u and v, i.e., Xi = Xi(u,v) as illustrated
in Fig. 1(b). In Ref. [1], we showed that f o can be scaled to
the form

f̃ = f o

(a − b)4
=

3∑
i=1

Yi(u,v)2[Yi(u,v) − 1]2, (7)

where Yi(u,v) = [Xi(u,v) − b]/(a − b) are scaled mole frac-
tions, and

∑3
i=1 Yi = 1. This form is equivalent to f o when

a = 1. For simplicity, we mainly compare new potentials to f̃ .
As illustrated in Fig. 2(b), we specify explicitly the

Cartesian coordinates (u,v) for Yi(u,v),

Y1(u,v) = −
√

3

2
u − v

2
+ 1,

Y2(u,v) =
√

3

2
u − v

2
, (8)

Y3(u,v) = v.

In (8), the symbols u and v bear the same relationship to
the scaled mole fractions Yi as u and v in Fig. 1(b) do to

(a) Geometry of the three minima of f̃ (or fo when
a = 1)

u

v

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Contours of f̃

FIG. 2. (Color online) (a) Geometry of the three minima of the
potential f̃ given by (7) [or f o in (4) when a = 1]. f̃ is a function
of scaled mole fractions {Yi}i=1,2,3, where

∑3
i=1 Yi = 1. Yi can be

expressed in terms of two independent Cartesian coordinates (u,v).
α = (u0

1,v
0
1) = (0,0), β = (u0

2,v
0
2) = (2/

√
3,0), and γ = (u0

3,v
0
3) =

(1/
√

3,1) are the three minima of f̃ located at the three corners of
the Gibbs triangle. Li = 0 represents a line that passes through two
points (u0

j ,v
0
j ) and (u0

k,v
0
k ) (j �= k �= i), and Ii = 0 is a line parallel

to Li = 0 but passing through only one point (u0
i ,v

0
i ). (b) Contour

plot of f̃ . The value of f̃ decreases from its value at the center of the
inner area as one proceeds toward the three vertices where it is zero.

the unscaled mole fractions Xi . The three minima of the
potential f̃ in (7), namely α = (u0

1,v
0
1) = (0,0), β = (u0

2,v
0
2) =

(2/
√

3,0), and γ = (u0
3,v

0
3) = (1/

√
3,1), are located at the

three corners of the Gibbs triangle as in Fig. 2(b), consistent
with the contour plot in Fig. 2(a). Note that Yi(u0

j ,v
0
j ) =

Yi(u0
k,v

0
k ) = 0 for j �= k �= i and Yi(u0

i ,v
0
i ) = 1.

If we define two sets of linear functions L0
i (u,v) ≡ Yi(u,v)

and I 0
i (u,v) ≡ Yi(u,v) − 1 = L0

i (u,v) − 1, the form (7) of the
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potential f̃ can be expressed as

f̃ =
3∑

i=1

L0
i (u,v)2I 0

i (u,v)2. (9)

As shown in Fig. 2(b), L0
i = 0 is a line in the Gibbs space

that passes through two minima (u0
j ,v

0
j ) and (u0

k,v
0
k ), where

j �= k �= i, and I 0
i = 0 is a line parallel to Li = 0 that passes

through the remaining minimum (u0
i ,v

0
i ). For each minimum

of f̃ , there are three intersecting lines.
Based on the geometrical interpretation of the form (9) of

the potential f̃ , we can generalize its structure by allowing
these pairs of parallel lines to move and requiring the
intersections of three lines to be located within the Gibbs
triangle. To generate a potential function with the desired
properties, we locate the three minima arbitrarily, α = (u1,v1),
β = (u2,v2), and γ = (u3,v3), within the Gibbs triangle. We
then define two sets of linear functions Li(u,v) and Ii(u,v),
where Li(u,v) = 0 is a line passing through two minima
(uj ,vj ) and (uk,vk) for j �= k �= i and Ii(u,v) = 0 is a line
parallel to Li(u,v) = 0 and passing through the remaining
minimum (ui,vi).

As illustrated in Fig. 2(a), the line Li = 0 coincides with
the side of the small triangle opposite to the vertex i, while
the line Ii = 0 passes through the vertex i and is parallel to
the line Li = 0. Thus, a generalized potential with arbitrary
mimina is given by

fg =
3∑

i=1

d2
i Li(u,v)2Ii(u,v)2, (10)

where the di are nonzero weighting coefficients that relate
to the curvatures along the lines that connect each pair of
potential wells. For each term, Li(u,v)2Ii(u,v)2 represents
a positive quartic function that vanishes along two parallel
lines Li(u,v) = 0 and Ii(u,v) = 0. We need all three terms to
produce a positive quartic function that vanishes at the three
points (ui,vi)i=1,2,3 which are the intersections of three lines
chosen from the three pairs of parallel lines. Contours for such
a potential are illustrated in Fig. 3(b).

The choice of Li(u,v) and Ii(u,v) for the potential fg in (10)
is somewhat arbitrary but we use specific forms of Li(u,v) and
Ii(u,v) and a weighting coefficient for each term to maintain
generality. The specific forms of Li(u,v) and Ii(u,v) that we
use are

Li(u,v) ≡ Cijk[(u − uj )vjk − (v − vj )ujk]

= Cijk[(u − uk)vjk − (v − vk)ujk],

Ii(u,v) ≡ Li(u,v) − h

= Cijk[(u − ui)vjk − (v − vi)ujk], (11)

where Cijk ≡ (εijk + |εijk|)/2, εijk is the Levi-Civita sym-
bol for three dimensions, ujk ≡ uj − uk and vjk ≡ vj − vk;
moreover, h = Li(ui,vi) = 2A, and A is the area of the small
triangle. For simplicity, we require the indices of the three
vertices to be numbered counterclockwise. Note that

h =
∑

(i,j,k)∈{1,2,3}
εijkujvk =

∣∣∣∣∣∣
1 1 1
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ . (12)

(a) Geometry of the three minima of fg
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(b) Contours of fg

FIG. 3. (Color online) (a) Geometry of the three minima of
the quartic potential fg given by (10). α = (u1,v1), β = (u2,v2),
and γ = (u3,v3) are the three minima of this potential arbitrarily
located at any three points within the Gibbs triangle. Li = 0
represents a line that passes through (uj ,vj ) and (uk,vk) for
j �= k �= i, and Ii = 0 is a line parallel to Li = 0 but passing
through the vertex (ui,vi). (b) Contour plot of potential fg for
(u1,v1) = (0.3087,0.1667), (u2,v2) = (0.9060,0.1167), (u3,v3) =
(0.4974,0.6667), and (d1,d2,d3) = (1.0,1.1,1.2).

If we express Li and h in terms of two independent mole
fractions Y1 and Y2, we obtain

Li = 2√
3
Cijk

[(
Y1 − Y

(k)
1

)
Y

(jk)
2 − (

Y2 − Y
(k)
2

)
Y

(jk)
1

]
,

(13)

h = y
2√
3

∑
(i,j,k)∈{1,2,3}

εijkY
(j )
1 Y

(k)
2 ,

in which we have defined Y
(jk)
i ≡ Y

(j )
i − Y

(k)
i and expressed

the three minima (ui,vi)i=1,2,3 in terms of (Y (i)
1 ,Y

(i)
2 )i=1,2,3 by

using the relation (8) of (u,v) and Yi .
The form (10) of the potential fg has three coefficients

di and six parameters (ui,vi) that locate the positions of the
three minima, nine parameters in total. One could take out a
common factor without changing the nature of the potential.
From the earlier discussion regarding the desired properties of
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a general quartic potential given by (6), we know that there are
six free parameters, which means there are three parameters
that might be able to be merged with others.

From the forms (7) and (9) of the potential f̃ , our original
potential f o divided by a factor (a − b)4 can be viewed as a
special case of the potential fg given by (10), in which the three
minima form an equilateral small triangle with one parameter
a related to its size. With this parameter, we can scale the small
triangle from the Gibbs triangle to its center point with zero
area. To add degrees of freedom to allow this equilateral small
triangle to move around within the Gibbs triangle, we can
add two extra parameters corresponding to translations in two
perpendicular directions. For arbitrary shape and orientation
of the small triangle, we need a parameter corresponding to
rotation and two parameters for distortion, such as changes of
two inner angles. In general, these operations correspond to a
linear transformation with six free parameters, which will be
discussed in Sec. III B.

The general properties of the potential fg in (10) have
been tested by performing calculations of its first and second
derivatives with respect to u and v. For details, see Ref. [24,
Sec. 5.1.1]. From these calculations, we prove that fg ,
which is a generalization of potential f̃ in (7), satisfies our
desired properties of a quartic polynomial, as discussed in the
beginning of Sec. II. We also calculated the eigenvalues of the
Hessian matrix H , which is the matrix in terms of the second
derivatives of fg with respect to u and v. These eigenvalues
λ± are the principle curvatures at the mimina, i.e.,

λ± = h2

{
3∑

i=1

d2
i S2

i

±

√√√√√
(

3∑
i=1

d2
i S2

i

)2

− 4h2
∑

(i,j,k)∈{1,2,3}
Ci,j,kd

2
j d2

k

⎫⎪⎬
⎪⎭ ,

(14)

where Si ≡ Cijk

√
u2

jk + v2
jk is the length of the side of the

small triangle opposite to the vertex (ui,vi), as in Fig. 8. Note
that both of its eigenvalues λ± are positive.

For the case that all di = 1 and S1 = S2 = S3 =
(2/

√
3)(a − b), the eigenvalues of H in (14) reduce to

λ± = 2
3 (a − b)6(2 ±

√
3), (15)

which connects to our original potential f o in (4). When
a = b = 1/3, these two eigenvalues vanish, which means the
curvatures vanish. This is equivalent to the bulk criticality
for f o, for which the three minima merge to a one minimum
located at the center of the Gibbs triangle. In this case, the three
mole fractions are uniform throughout the physical space, i.e.,
Xi = 1/3. The resulting interfacial and line tensions at the
vicinity of this critical value scale consistently with previously
determined results in our earlier work [1], in which the ratio of
their exponents in terms of |Xi − 1/3| satisfies the mean-field
approximation in Ref. [25].

B. Second generalization

The potential fg in (10) can be generalized by replacing Ii

with an arbitrary linear function that passes through a point
(ui,vi), which is not necessarily parallel to Li . For details, see
Appendix A. We also observed that Ii(u,v)2 of fg does not
have to vanish on a line Ii(u,v) = 0. It can be replaced by a
positive quadratic function Ki(u,v) which is a paraboloid in
three-dimensional space that vanishes only at the point (ui,vi).
In general, Ki(u,v) can be expressed as

Ki(u,v) ≡ [ai(u − ui) + bi(v − vi)]
2 + c2

i (v − vi)
2, (16)

where ai , bi , and ci are three coefficients and ci �= 0. Then
a more general potential, as illustrated in Fig. 4(a), can be
expressed in the form

fG =
3∑

i=1

Li(u,v)2Ki(u,v). (17)

(a) Geometry of the three minima of fG
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(b) Contours of fG

FIG. 4. (Color online) (a) Geometry of the three minima of
the quartic potential fG given by (17). α = (u1,v1), β = (u2,v2),
and γ = (u3,v3) are the three minima of this potential arbitrar-
ily located at any three points within the Gibbs triangle. Li =
0 represents a line passing through (uj ,vj ) and (uk,vk), and
Ki = 0 is a point located at (ui,vi). (b) Contour plot of poten-
tial fG for (u1,v1) = (0.3087,0.1667), (u2,v2) = (0.9060,0.1167),
(u3,v3) = (0.4974,0.6667), and (ai,bi,ci) = (1,1,1), (i = 1,2,3).
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FIG. 5. Schematic representation of the generalization from a
potential f̃ in (7) to the potential fg in (10) of similar form and
to the more general potential fG in (17). At the left-hand side of
this figure, there are three pairs of two parallel lines. The three
minima of f̃ are located at the three nodes where lines intersect
and form a small equilateral triangle. In the middle of this figure,
we generalize f̃ to fg by allowing the three minima of fg to be
at arbitrary locations. In this case, the three pairs of parallel lines
determine the three minima. The right-hand side of this figure shows
a further generalization in which each minimum of fG is located by
two lines and a point.

Of the potentials we have explored fG in (17) is the most
general. It has nine coefficients and six parameters (ui,vi) for
the positions of the three minima. Thus, it has 15 coefficients in
total. We note that when ai = Cijkdivjk , bi = −Cijkdiujk , and
ci = 0, fG reduces to the potential fg in (10). Therefore, fg is a
subset of fG, where fG has six extra parameters corresponding
to the orientations of the three potential wells, as well as the
general shape of the potential. Recall the properties for the
desired potential: The potential has to be positive throughout
the entire domain and has three minima at zero potential;
at these minima, the first derivatives vanish and the Hessien
matrices for second derivatives are positive definite. These
properties have been tested in Ref. [24, Sec. 5.1.2].

Figure 5 presents a schematic summary of the generaliza-
tion from the quartic potential f̃ in (7) [equivalent to our
original potential f o in (4) when a = 1] to a similar form (10)
of the potential fg and to a more general quartic form (17)
of the potential fG. In the left-hand side of Fig. 5, we see
that the three minima of f̃ form an equilateral small triangle
and each minimum is located at an intersection of three lines.
These lines consist of three pairs of two parallel lines. For
each pair, there is a line passing through two minima and a
parallel line passing through the remaining minimum. Each
line corresponds to a paraboloid that vanishes at this line, and
each pair of parallel lines corresponds to the minima of a
quartic function. Thus, f̃ is a sum of three quartic function. As
a generalization, in the middle of Fig. 5, the three minima of fg

form a small triangle of arbitrary shape. The rules of selecting
parallel pairs of lines and constructing corresponding quartic
functions for fg are the same as for f̃ . The right-hand side of
Fig. 5 shows a further generalized potential fG, where each
minimum is not located at an intersection of three lines but
two lines and a point. In this case, each pair of parallel lines
in fg is transformed to a line passing through two minima
and a point at the remaining minimum. To compose fG, we
need two sets of quadratic functions. The one in the first set
vanishes along a line and the one in the second set vanishes at a
point.

III. GENERALIZED POTENTIALS WITH ANALYTIC
FAR-FIELD SOLUTIONS

A. Straight-line trajectory of two-phase transition

In Sec. II, we introduced a systematic way to find quartic
generalized potentials by means of geometric considerations.
In order to find the asymptotic solutions for two-phase
transitions in physical space for each of the three interfaces
in the regions far from the three-phase contact line, we need to
know the corresponding trajectories for transitions between
the pairs of wells of a given potential within the Gibbs
triangle. According to the discussion in Ref. [24, Sec. 2.4.1],
the property of our original potential that leads us to simple
far-field analytic solutions is that the trajectory of a transition
between any two phases follows a straight line within the
Gibbs triangle. From a geometric aspect, this straight line
lies along a valley connecting a pair of minima; as one goes
along this valley, the potential rises from a minimum, goes
over a saddle point, and decreases, to another minimum.
The first derivative and the second derivative of the potential
with respect to the normal of this straight line in the Gibbs
space are zero and positive, respectively. For the subset of
generalized potentials that share this common property, we can
find analytical far-field solutions. As shown in Appendix B,
the form of this subset is actually equivalent to the form (10)
of the generalized potential fg .

B. Linear transformation

According to the geometric representation in Sec. II, as
illustrated in Fig. 5, the form (9) of the potential f̃ can be
generalized to a similar quartic potential fg in (10) with arbi-
trary minima (u1,v1), (u2,v2), and (u3,v3) by choosing proper
linear functions Li(u,v) and Ii(u,v). In this way, the obtained
potential has six parameters {ui,vi}i=1,2,3 and three weighting
coefficients {di}i=1,2,3, which match our earlier reasoning
about using six parameters that correspond to operations such
as scaling, translation, rotation, and distortion. Furthermore,
we notice that these operations may be represented by linear
transformations of our original potential.

To construct a linear transformation that maps the three
minima from the corners of the Gibbs triangle to three arbitrary
internal points (u1,v1), (u2,v2), and (u3,v3) as illustrated in

FIG. 6. Schematic linear transformation from the three corners of
the Gibbs triangle to three arbitrary internal points (u1,v1), (u2,v2),
and (u3,v3) within it.
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Fig. 6, we write[
u′
v′

]
=

[
α β

γ δ

][
u

v

]
+

[
ξ

η

]
, (18)

where α, β, γ , δ, ξ , and η are six undetermined parameters.
By substituting (u1,v1), (u2,v2), and (u3,v3) for (u′,v′), and the
corresponding three corners (0,0), (2/

√
3,0), and (1/

√
3,1) for

(u,v), we solve[
u′
v′

]
=

[−
√

3
2 u12

1
2u12 + u31

−
√

3
2 v12

1
2v12 + v31

][
u

v

]
+

[
u1

v1

]
, (19)

where uij ≡ ui − uj and vij ≡ vi − vj . Then, by matrix
inversion, we find[

u

v

]
= 2√

3h

[ 1
2v12 + v31 − 1

2u12 − u31
√

3
2 v12 −

√
3

2 u12

][
u′ − u1

v′ − v1

]
, (20)

where h �= 0 is twice the area of the small triangle, defined in
(11) and (12).

A generalization of the potential f̃ in (7) with weighting
coefficients ei can be expressed in terms of two independent
Cartesian mole fractions u and v as follows:

f †(u,v) ≡ f †(Y1(u,v),Y2(u,v),Y3(u,v))

≡
3∑

i=1

e2
i Yi(u,v)2(Yi(u,v) − 1)2. (21)

To construct a new potential with three minima located at
(u1,v1), (u2,v2), and (u3,v3), we replace Yi(u,v) in (21) by

Zi(u
′,v′) ≡ Yi(u(u′,v′),v(u′,v′)), (22)

where the linear transformation (20) from (u′,v′) to (u,v)
has been used. We then (see Ref. [24] for details) find (after
dropping the primes)

Zi(u,v) = Li(u,v)

h
, (23)

where, as defined in (11), Li is a linear function that
satisfies Li(uj ,vj ) = 0 and Li(uk,vk) = 0 for (j �= k �= i),
whereas Li(ui,vi) = h, which leads to Zi(ui,vi) = 1. Note
that

∑3
i=1 Zi = 1. Thus, the new potential is defined as

f ∗(u,v) ≡ f †(Z1(u,v),Z2(u,v),Z3(u,v))

=
3∑

i=1

e2
i Zi(u,v)2[Zi(u,v) − 1]. (24)

With the definition (24) of the new potential f ∗, we find that
{f ∗(ui,vi) = 0}i=1,2,3, which shows that the three mimina of
f ∗ are located at {(ui,vi)}i=1,2,3. By expressing f ∗, which
relates to the potential f † in (21) [generalized from the
potential f̃ in (7)] by a linear transformation, in terms of
Li , i.e.,

f ∗ =
3∑

i=1

ei

h4

2
L2

i (Li − h)2 =
3∑

i=1

d2
i L2

i I
2
i = fg, (25)

where di ≡ ei/h2, we obtain exactly the potential fg in (9).
Thus, fg is a linear transformation from the original potential
f̃ with extra weighting coefficients. This is the reason that f̃

and fg share a common property: the two-phase transitions in
the physical domain follow straight lines in the Gibbs space.

Notice that the structure of the two-density quartic potential
used by Widom et al. [20,21] actually belongs to the general
category indicated by the form (10) of the potential fg . The two
relative densities of their potential can be treated as our two
Cartesian mole fractions u and v. We can scale their potential
in terms of three dimensionless quantities similar to the Zi

in our expression and obtain a form similar to fg . However,
their systems do not follow the assumption of uniform molar
volume. Therefore, in their systems, the sum of the quantities∑3

i=1 Zi �= 1 and cannot be mapped into our potentials.

C. Scaling

From Sec. III B, we know that the potential fg in (10)
and the potential f̃ in (7) can be connected by a linear
transformation. In general, a problem involved fg can be
solved by scaling into a form like f̃ , which we studied in
Ref. [1, Sec. IVC]. As an example, we consider the excess
grand potential given by (3) but with f → fg , namely

�̂xs = BL

∫
A

[fg(u,v) + g(∇u,∇v)]dA. (26)

We express the gradient energy in terms of two Cartesian mole
fractions u and v,

g(∇u,∇v) = εu|∇u|2 + εv|∇v|2 + εuv(∇u · ∇v), (27)

where εu = (3/8)(	2
1 + 	2

2), εv = (1/8)(	2
1 + 	2

2) + (1/2)	2
3,

and εuv = (
√

3/4)(	2
1 − 	2

2). For isotropic gradient energy,
	i ≡ 	, we have εu = εv = (3/4)	2 and εuv = 0. According
to the scaling (23) from (u,v) to Li , we can express �̂xs as

�̂xs = BL

∫
A

[
3∑

i=1

d2
i L2

i I
2
i + g(∇u,∇v)

]
dA

= BLh4
∫

A

3∑
i=1

[
d2

i Z2
i (Zi − 1)2 + 	̂2

i

2
|∇Zi |2

]
dA,

(28)

where

	̂2
1 = − 2

h4

[
εuu12u31 + εvv12v31 + εuv

2
(u12v31 + v12u31)

]
,

	̂2
2 = − 2

h4

[
εuu23u12 + εvv23v12 + εuv

2
(u23v12 + v23u12)

]
,

	̂2
3 = − 2

h4

[
εuu31u23 + εvv31v23 + εuv

2
(u31v23 + v31u23)

]
.

(29)

1. Case di = 1

Consider a special case of the potential fg in (10) when
all of the weighting coefficients are equal to 1, i.e., di = 1.
According to the asymptotic analysis in our previous work [1,
Sec. IIC], we know how to obtain analytical solutions for two-
phase transitions in a region far from the three-phase contact
line for the form (28) of the excess grand potential �̂xs. These
solutions show that the interfacial tension σ̂αβ is proportional to
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√
	̂2

1 + 	̂2
2 and the similar relations applied to σ̂γ α and σ̂βγ {see

Ref. [1, Eq. (25)]}. Therefore, we can express the relation (2)
of the dihedral angles and the interfacial tensions as follows:

sin θα√
	̂2

2 + 	̂2
3

= sin θβ√
	̂2

3 + 	̂2
1

= sin θγ√
	̂2

1 + 	̂2
2

, (30)

in which the denominators can be obtained by calculating the
sums of pairs of 	̂2

i in (29),

	̂2
1 + 	̂2

2 = 2

h4

[
εuu

2
12 + εvv

2
12 + εuvu12v12

]
,

	̂2
2 + 	̂2

3 = 2

h4

[
εuu

2
23 + εvv

2
23 + εuvu23v23

]
, (31)

	̂2
3 + 	̂2

1 = 2

h4

[
εuu

2
31 + εvv

2
31 + εuvu31v31

]
.

2. Case di = 1 and �i = �

Following the discussion in Sec. III C2 for the special case
with equal weighting coefficients di = 1 of the potential fg

in (10), a subset of this special case possesses an interesting
property. This subset is specified by assuming the gradient
energy g in (27) is isotropic, given by 	i = 	. The sums of
pairs of 	̂2

i in (31) then become

	̂2
1 + 	̂2

2 = 3	2

2h4

[
u2

12 + v2
12

] = 3	2

2h4
S2

3 ,

	̂2
2 + 	̂2

3 = 3	2

2h4

[
u2

23 + v2
23

] = 3	2

2h4
S2

1 , (32)

	̂2
3 + 	̂2

1 = 3	2

2h4

[
u2

31 + v2
31

] = 3	2

2h4
S2

2 ,

where Si is the length of the side of the small triangle opposite
to the vertex (ui,vi), defined earlier in the expression (14) for
the eigenvalues λ± of the Hessian matrix of fg . The relation
of dihedral angles in (30) then reduces to

sin θα

S1
= sin θβ

S2
= sin θγ

S3
. (33)

Therefore, for this special case, the sine of each dihedral angle
of a bulk phase is proportional to the length of the side of the
small triangle opposite to the vertex corresponding to the given
bulk phase. This is illustrated in Fig. 8 and will be revisited in
Sec. IV A.

Notice that, in general, 	̂1 �= 	̂2 �= 	̂3 in (32), which leads to
the lengths Si of the three edges of the small triangle unequal.
According to the relation (33) of the dihedral angles and
Si , the three dihedral angles differ. Therefore, fg is capable
of representing an asymmetric three-phase contact line with
isotropic gradient energy.

D. Asymptotic far-field solutions

Alternatively, we can find the relationship of the dihedral
angles of a system specified by the potential fg in (10)
directly. We consider a transition from phase β = (u2,v2)
to phase α = (u1,v1), which follows a straight line L3 = 0
within the Gibbs triangle as illustrated in Fig. 3(a). In the
far-field limit, the transition occurs in a regime far from the
three-phase contact line in the physical space. In this regime,

the three mole fractions Yi satisfy the boundary condition
∇Yi · n̂ = 0. By assuming u12 �= 0, we can interchange v with
u according to L3 = 0, i.e., v − v2 = (v12/u12)(u − u2) and
v − v1 = (v12/u12)(u − u1). The problem then is essentially a
one-dimensional problem. The excess grand potential �̂xs in
(28) reduces to the form

�̂xs = BLw

(
h

u12

)4 ∫ [
H (u) + ε̂uv

(
du

ds

)2
]

ds, (34)

where s is a coordinate perpendicular to the αβ interface
measured from β to α and w is the width of an area in the
far-field regime as illustrated in the bottom of Fig. 1 (for details,
see Ref. [1, Fig. 4]), H (u) ≡ (d2

1 + d2
2 )(u − u1)2(u − u2)2,

and ε̂uv = (u2
12/h4)(εuu

2
12 + εvv

2
12 + εuvu12v12). The limits of

integration are effectively from −∞ to ∞.
Following the variational method introduced in Ref. [1,

Sec. II.C] (details in Ref. [24, Sec. 5.2.3]), we obtain the
far-field solution for u at the αβ interface,

u(s) = u1 + u2

2
+ u1 − u2

2
tanh

[
s

δint,αβ

]
, (35)

where we choose s = 0 as u = (u1 + u2)/2 and define the
interfacial width parameter of the αβ interface as

δint,αβ ≡ 2

|u12|

√
ε̂uv(

d2
1 + d2

2

) =
√

2

√
	̂2

1 + 	̂2
2

d2
1 + d2

2

. (36)

Alternatively, if u12 = 0, we can use the relation of L3 = 0 to
obtain v(s) for the αβ interface

v(s) = v1 + v2

2
+ v1 − v2

2
tanh

[
s

δint,αβ

]
. (37)

Figure 7 illustrates the analytic far-field solutions for the mole
fraction Yi at the αβ interface for the special case in which
all of the weighting coefficient are constants, di = 1, and the
gradient energy is isotropic, 	i = 1 (εu = εv = 3/4 and εuv =

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

s

Y
i

Y1
Y2
Y3

FIG. 7. Analytic far-field solutions for the mole fraction Yi for
a special case of the potential fg in (10) at the αβ interface. In
this special case, di = 1 and 	i = 1 (εu = εv = 3/4 and εuv = 0).
The three minima of fg are (u1,v1) = (0.3087,0.1667), (u2,v2) =
(0.9060,0.1167), and (u3,v3) = (0.4974,0.6667).
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0). Compared to the similar analytic far-field solutions for our
original potential f o given by (4) in Ref. [1, Fig. 5], the mole
fraction Y3 is no longer a constant and, in general, the solutions
for Y1 and Y2 are not symmetric with respect to the interface.

The interfacial tension of the αβ interface in the far-field
limit is given by

σ̂αβ =
√(

d2
1 + d2

2

)
ε̂uv

3|u12| Bh4 =
√(

d2
1 + d2

2

)(
	̂2

1 + 	̂2
2

)
3
√

2
Bh4.

(38)

We can calculate the interfacial tensions of the βγ interface
and the γα interface by the same method. Compared to the
previous result (30) of the equilibrium dihedral angles for a
system with potential fg , a more general relation obeys

sin θα√(
d2

2 + d2
3

)(
	̂2

2 + 	̂2
3

) = sin θβ√(
d2

3 + d2
1

)(
	̂2

3 + 	̂2
1

)
= sin θγ√(

d2
1 + d2

2

)(
	̂2

1 + 	̂2
2

) . (39)

IV. GEOMETRY OF INTERFACIAL TENSION
AND LINE TENSION

Recall the discussion of the mapping from the physical
space to the Gibbs space in Sec. I B. In a ternary fluid system
with three phases, the interfacial tensions associated with the
three interfaces correspond to curved lines (trajectories) within
the Gibbs triangle that connect the three minima of a given
potential. Each trajectory can be obtained by minimizing the
excess grand potential for a two-phase transition in a far-field
limit. These trajectories bound a region of the Gibbs space
that associates with three-phase transitions. Consequently, the
line tension associated with the three-phase contact line is
determined by the excess grand potential within this region.
This mapping implies a geometrical relationship among the
values of interfacial and line tensions and the size and shape
of the core area.

Here we demonstrate this geometrical connection by some
special cases of the specific potential fg given by (10), in which
the core area is the small triangle formed by the minima of the
potential within the Gibbs triangle.

A. Case di = 1 and �i = �

As shown in Sec. III A, for the potential fg in (10), the
trajectory for a two-phase transition follows a straight line.
In the special case of fg discussed in Sec. III C2, all of
the weighting coefficients di = 1 and the gradient energy is
isotropic, 	i = 	. Compared to the form (2) of the classical
result, in which the sine of a dihedral angle is proportional
to a corresponding interfacial tension, the relation in (33)
indicates that the sine of a dihedral angle is proportional to
the length of the side of the small triangle, within the Gibbs
triangle, opposite to the vertex for the corresponding bulk
phase. This leads to the fact that the three interfacial tensions
are proportional to the three lengths of the sides of the small
triangle. It also implies that the small triangle is a Neumann
triangle, which is similar to the computational boundary of the
physical domain [see Figs. 1(a) and 8].

FIG. 8. Geometry of the three interfacial tensions in the Gibbs
space for a special case of the potential fg given by (10), in which
the weighting coefficients are equal to 1, di = 1, and the gradient
energy is isotropic, 	i = 1. The three vertices 1, 2, and 3 correspond
to the three minima α, β, and γ of fg . The length of the side of the
small triangle opposite to the vertex i is labeled by Si , and the area
of the small triangle is A. The interfacial tension of the αβ interface
σ̂αβ is proportional to the length of the side of the small triangle that
connects α and β, i.e., S3. Similarly, σ̂βγ ∝ S1 and σ̂γ α ∝ S2. θα , θβ ,
and θγ are the three dihedral angles corresponding to the three-phase
contact line.

To prove this property explicitly, we substitute 	̂2
1 + 	̂2

2 from
(38) into (32) to obtain

σ̂αβ = B	√
6
h2S3. (40)

Similarly, for the βγ interface and γα interfaces, the tensions
are

σ̂βγ = B	√
6
h2S1 and σ̂γ α = B	√

6
h2S2. (41)

B. Case di = 1, �i = �, and Si = S

We consider a subset of the case treated in Sec. IV A, in
which the small triangle formed by the three minima of the
potential fg in (10) is equilateral, i.e., Si ≡ S. The area of the
small triangle then is

A = h

2
=

√
3

4
S2. (42)

From the relation (32) between the sums of pairs of 	̂2
i and Si ,

we find that

	̂2
i ≡ 	̂2 = 3	2

2h4

S2

2
= 3	2

2h4

h√
3

=
√

3	2

2h3
. (43)

According to the form (26) of the excess grand potential
�̂xs, we use the Kerins-Boiteux formula [26] to obtain a line
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FIG. 9. Geometry of the line tension in the Gibbs triangle for a
special case of fg with equal weighting coefficients di = 1, isotropic
gradient energy 	i = 	, and the small triangle formed by the three
minima is equilateral. The line tension and the interfacial tensions
are proportional to the area A and the lengths of the sides of the small
triangle, respectively.

tension associated with the three-phase contact line,

τ̂ = B

∫
A

[−fg(u,v) + g(∇u,∇v)]dA,

= Bh4
∫

A

3∑
i=1

[
−Z2

i (Zi − 1)2 + 	̂2

2
|∇Zi |2

]
dA,

= Bh4	̂2τ̃ , (44)

where τ̃ is the dimensionless quantity introduced in Ref. [1,
Eq. (53)]. From the expressions for area A in (42) and 	̂2 in
(43), we then find

τ̂ =
√

3AB	2τ̃ , (45)

which is proportional to the area of the small triangle, as
illustrated in Fig. 9.

From above cases, the small triangle in the Gibbs space
not only tells us the compositions of the three bulk phases in
terms of mole fractions from the locations of its three vertices,
but also its size and shape give us information about the
equilibrium dihedral angles and the relative strengths of the
interfacial tensions. Moreover, the line tension is proportional
to the area of this small triangle.

V. SUMMARY AND CONCLUSIONS

We are interested in potentials that are positive semidefinite
that vanish only at three mimima. Moreover, we choose
to deal with potentials that vary quadratically around the
three minima. We seek potentials in the form of quartic
polynomials. Our original potential [1] is the sum of three
quartic polynomials, each of which vanishes along two parallel
lines in the Gibbs triangle. The three minima of our potential
are located at the intersections of any three among these
six lines. By recognizing this geometrical structure, we can

construct generalized quartic potentials with three minima
arbitrarily located at the vertices of a small triangle within
the Gibbs triangle.

As a first generalization, for each vertex, we can choose a
linear function that vanishes along a line that passes through a
pair of vertices and another linear function that vanishes along
a parallel line that passes through the remaining vertex. The
squares of these two linear functions form paraboloids that
vanish at these two lines. We use the product of these two
paraboloids to construct one of the three quartic polynomials
whose sum is the generalized potential. By performing similar
constructions at the other two vertex pairs, we can build a
potential which is the sum of three quartic polynomials that
vanishes at only three points. Our original potential belongs
to a subset of this generalization where the two “vanishing
lines” of each quartic polynomials are parallel. To construct
a potential in this subset, we need six parameters, namely
the coordinates of the three minima and three weighting
coefficients for each quartic polynomials. However, we find
that each paraboloid that vanishes at a line passing through
one vertex can be generalized to another paraboloid that
only vanishes at a point, the vertex. By means of this
second generalization, we construct another potential with nine
parameters related to the shapes of the new paraboloids and
containing six parameters to characterize the three minima.
We check the properties of these generalized potentials by
studying their first and second derivatives.

Generalized potentials in which the valleys connecting
any of the two minima follow straight lines in the Gibbs
triangle have simple analytic far-field solutions. We prove
that this subset of generalized potentials is a special case of
our first generalization that was constructed by three pairs
of parallel lines. Analytic far-field solutions of this subset
are presented. Moreover, we find that this subset is a linear
transformation of our original potential. By scaling, we can
relate their solutions to those for our original potential. When
the weighting coefficients of the potentials in this subset are
equal and the gradient energy is isotropic, the lengths of
the sides of the small triangle formed by the three minima
are proportional to the corresponding interfacial tensions. For
the case of equal interfacial tensions, we are able to calculate
a line tension that is proportional to the area of the small
triangle.
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APPENDIX A

We can generalize the potential fg in (10) by replacing
Ii with an arbitrary linear function Ji that passes through
(ui,vi). If Ji(u,v) ≡ ai(u − ui) + bi(v − vi), where ai and
bi are arbitrary constants, we can obtain a generalized
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(a) Geometry of the three minima of f1
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FIG. 10. (Color online) (a) Geometry of the three minima of the
quartic potential f1 given by (A1). α = (u1,v1), β = (u2,v2), and
γ = (u3,v3) are the three minima of this potential arbitrarily located
at any three points in Gibbs space. Li = 0 represents a line that passes
through (uj ,vj ) and (uk,vk) for j �= k �= i. (b) Contour plot of po-
tential f1 for (u1,v1) = (0.3087,0.1667), (u1,v1) = (0.3087,0.1667),
(u2,v2) = (0.9060,0.1167), (u3,v3) = (0.4974,0.6667), and (a1,b1) =
(1,0.1), (a2,b2) = (−1,0.1), and (a3,b3) = (−0.1,1).

potential,

f1 =
3∑

i=1

Li(u,v)2Ji(u,v)2, (A1)

as illustrated in Fig. 10(a). In this case, Ji = 0 and Li = 0 do
not need to be parallel.

For the special case in which J1, J2, and J3 match with L2,
L3, and L1, we can define a potential that employs only three
lines, namely

f2 = d2
12L1(u,v)2L2(u,v)2 + d2

23L2(u,v)2L3(u,v)2

+ d2
31L3(u,v)2L1(u,v)2, (A2)

where d12, d23, and d31 are weighting coefficients. At each
minimum, only two lines meet as illustrated in Fig. 11(a). The
contours of potential f2 are shown in Fig. 11(b).

(a) Geometry of the three minima of f2
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(b) Contours of f2

FIG. 11. (Color online) (a) Geometry of the three minima of
the quartic potential f2 given by (A2). α = (u1,v1), β = (u2,v2),
and γ = (u3,v3) are the three minima of this potential arbitrarily
located at any three points in Gibbs space. Li = 0 represents
a line that passes through (uj ,vj ) and (uk,vk) for j �= k �= i.
(b) Contour plot of potential f2 for (u1,v1) = (0.3087,0.1667),
(u1,v1) = (0.3087,0.1667), (u2,v2) = (0.9060,0.1167), (u3,v3) =
(0.4974,0.6667), and d12 = d23 = d31 = 1.

Note that f1 in (A1) and f2 in (A2) are special cases of the
potential fG defined in (17).

APPENDIX B

To study the general form of the subset of generalized
potentials in which any two-phase transition follows a straight
line, we explore the transition between two phases by means
of a potential f2D that is a quartic function of three mole
fractions having three minima (u1,v1), (u2,v2), and (u3,v3)
located at the three vertices of the Gibbs triangle. The potential
function along any two of the three wells actually reduces
to a one-dimensional potential f1D . Consider the transition
from (u1,v1) to (u2,v2) that follows a straight line L3 = 0. We
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let

f2D|L3=0 (u,v) = f1D, (B1)

where f1D is a positive quartic potential function having two
minima at (u1,v1) and (u2,v2). Since f1D follows a straight
line L3 = 0 within the Gibbs triangle, we can express f1D as
a function of one variable. We then let

f1D(u) = (u − u1)(u − u2)g(u), (B2)

where g(u) is a quadratic function of u. By requir-
ing ∂f1D/∂u = 0 at u1 and u2 and ∂2f1D/∂u2 > 0, we
obtain

f1D(u) ∝ (u − u1)2(u − u2)2. (B3)

We can generalize the contribution of f1D(u) to f2D(u,v),
which is denoted as f

(1)
2D by combination of L1(u,v) and

K1(u,v), i.e.,

f
(1)
2D = L2

1(u,v)K1(u,v), (B4)

similarly to the potential fG in (17), which vanishes at the
three minima. However, if the transition between (u1,v1) and
(u2,v2) follows the straight line L3 = 0, we need

∂L2
1(u,v)K1(u,v)

∂L̂3

∣∣∣∣
L3=0

, (B5)

where L̂3 ≡ (v12, − u12) is a normal vector perpendicular to
L3 = 0 in the Gibbs space. Thus, we calculate

∂
(
L2

1K1
)

∂L̂3

∣∣∣∣
L3=0

= 2

(
h

v12

)
(v − v1)(v − v2)

×
{

(v12)2

[(
a1

u12

v12
+ b1

)2

+ c2
1

]
(v − v1)

−u12

(
h

v12

) [
a1b1

u12

v12
+ b2

1 + c2
1

]
(v − v2)

}
, (B6)

in which we substitute (u − u1) = (u12/v12)(v − v1) for L3 =
0 by assuming v12 �= 0. In general, h �= 0, u12 �= 0, (v − v1) �=
0, and (v − v2) �= 0. The nontrivial solution for (B5) is a1 =
v12, b1 = −u12, and c1 = 0. Then, f

(1)
2D reduces to

f
(1)
2D = L1(u,v)2I1(u,v)2. (B7)

Similarly, we can apply this same analysis to the transi-
tions of (u2,v2) ↔ (u3,v3) and (u3,v3) ↔ (u1,v1). Thus, we
conclude that

f2D = fg. (B8)

In Sec. II, we have shown that the potential fg has our desired
properties. Moreover, the two-phase transitions of fg follow
straight lines in the space of the Gibbs triangle, which allows
us to find analytical solutions in the far field.
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