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The Burgers distortion is a two-stage transition between bcc and hcp structures. Refractory metal elements
from the Sc and Ti columns of the periodic table (bcc/hcp elements) form bcc structures at high temperatures
but transition to hcp at low temperatures via the Burgers distortion. Elements of the V and Cr columns, in
contrast, remain bcc at all temperatures. The energy landscape of bcc/hcp elements exhibits an alternating slide
instability, while the normal bcc elements remain stable as bcc structures. This instability is verified by the
presence of unstable elastic constants and vibrational modes for bcc/hcp elements, while those elastic constants
and modes are stable in bcc elements. We show that a pseudogap opening in the density of states at the Fermi
level drives the Burgers distortion in bcc/hcp elements, suggesting the transition is of the Jahn-Teller-Peierls
type. The pseudogap lies below the Fermi level for regular bcc elements in the V and Cr columns of the periodic
table. The wave vector kS when the gap opens relates to the reciprocal lattice vector G = (1 1

2
1
2 ) of the distorted

bcc structure as kS = 1
2 G. The bcc binary alloys containing both bcc/hcp and bcc elements exhibit a similar

instability but stabilize part way through the bcc to hcp transition.
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I. INTRODUCTION

Elements from the Sc and Ti columns of periodic table
are bcc at high temperatures and transform to hcp at low
temperatures. We refer to these as bcc/hcp elements. Their
transition is known as the Burgers distortion [1]. On the other
hand, elements from the V and Cr columns are bcc at all
temperature below their melting temperatures. Although prior
works discuss the bcc to hcp transition (e.g., angular distortive
matrices [2], space group representation [3], pressure-induced
transitions [4–8], molecular dynamics simulation [9]) and a
review of the instability of metal elements [10], including
Burgers and Bain instabilities, a complete understanding,
including the electronic structure driving the transition, is
missing. We seek the underlying cause of the instability in
order to understand the mechanical properties of refractory
metals and their alloys, especially high-entropy alloys con-
taining both bcc/hcp and normal bcc elements [11]. Our
study is also complementary to the previous work of Lee and
Hoffmann [12], who discussed a Jahn-Teller-type transition of
transition metals and alloys from bcc to fcc structures. While
they focused on transition metals starting from the V column
going to the right on the periodic table, corresponding to the
bcc to fcc transition, our study goes to the left on the peri-
odic table. However, both transitions share similar pseudogap
openings and bonding/antibonding orbital stabilization.

The Burgers distortion is a two-stage transition, consisting
of an orthorhombic shear deformation and an alternating
slide displacement between atomic layers of the bcc struc-
ture [13]. We sketch the mechanism in Fig. 1. In the notation
of Ref. [13], a Pearson type oS4 cell characterized by two
variables, λ1 and λ2, interpolates between the bcc and hcp
structures. The lattice constants of this oS4 cell are

a(λ1) = a0/α(λ1), b(λ1) = α(λ1)
√

2a0, c =
√

2a0, (1)

where a, b, and c are the three lattice constants of the oS4
cell, α(λ1) = 1 + ( 4

√
3/2 − 1)λ1, and a0 is the lattice constant

of the corresponding bcc structure. Notice that the lattice
constants of the oS4 cell depend on only the value of λ1, and
their variation generates orthorhombic shear. The positions of
the four atoms in the oS4 cell are
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Here λ2 generates the alternating slide between atomic layers
in (1,1,0) planes of bcc. When λ1 = λ2 = 0, we have a bcc
structure (Pearson type cI2), and the oS4 cell is a 1 × √

2 ×√
2 supercell of bcc. When λ1 = λ2 = 1, the structure is hcp

(Pearson type hP2).
Both λ1 and λ2 alter bond lengths. Nearest-neighbor (NN)

and next-nearest-neighbor (NNN) bonds are of particular im-
portance. To understand the instability of the bcc structure,
we consider their variation for small distortions. Expanding to
first order in λ1 and λ2, we find

NNL ≡ |R1 − R3| ≈
√

3

2
a0 + 1

12
(63/4 − 2

√
3)a0λ1,

NNS ≡ |R1 − R4| ≈
√

3

2
a0 − 1

12
(63/4 − 2

√
3)a0λ1,

(3)

NNNL ≡ |R1 − R2| ≈ a0 + 1

6
a0λ2,

NNNS ≡ |R3 − R4| ≈ a0 − 1

6
a0λ2.

Notice that both the NN and NNN bonds split into long and
short versions [subscripts L and S, respectively, in Eq. (3)],
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FIG. 1. Illustration of the Burgers distortion. (a) The
√

2 × √
2 ×

1 supercell of bcc viewed along the [1,0,0] direction. (b) Alternating
slide displacement. (c) Orthorhombic shear b > c. (d) Unit cell of the
hcp structure viewed along the [1,0,0] direction. Large cyan atoms
are in the lower layer; small magenta atoms are in the upper layer.
For pure elements all atoms are the same species; for binary alloys,
magenta and cyan are bcc/hcp and normal bcc, respectively. Atoms
are labeled according to Eq. (2).

with the NN bonds varying to first order only in λ1 and the
NNN bonds varying to first order only in λ2.

In the following sections, we examine the impact of elec-
tronic structure on the total energy as λ1 and λ2 vary during the
Burgers distortion. We show that λ2 distortion drives the initial
instability of the bcc structure by opening a gap in the elec-
tronic band structure, creating a pseudogap in the electronic
density of states and a charge density wave, with subsequent
relaxation in the λ1 variable that eventually stabilizes an hcp
structure. We recognize the initial instability as a type of
Jahn-Teller-Peierls distortion [14–17]. We then turn to alloys
and show how the bcc structure of binary alloys containing
both bcc/hcp and normal bcc elements are stabilized part way
through Burgers the distortion.

II. PURE ELEMENTS

A. Elasticity and phonons

1. Elasticity

We begin our analysis with a calculation of bcc/hcp and
normal bcc refractory element T = 0 K elastic constants.
These are obtained within density functional theory from
stress-strain relationships using two-point central differences
as implemented in VASP [18]. We employ the generalized

TABLE I. Calculated T = 0 K elastic constants of elements from
the Sc–Cr columns of the periodic table (GPa).

Moduli

C11 C12 C44 C11 C12 C44 C11 C12 C44 C11 C12 C44

Element Sc Ti V Cr
Moduli 59 59 27 99 119 41 317 163 28 580 175 119
Element Y Zr Nb Mo
Moduli 25 46 22 92 96 34 250 139 17 517 181 117
Element La Hf Ta W
Moduli −14 47 7 77 118 54 270 163 77 525 205 147

gradient approximation (GGA [19]) without spin polarization.
The energy cutoffs of the plane wave basis sets are set to
400 eV, and k-point meshes are set to 14 × 14 × 14 in 16-
atom 2 × 2 × 2 supercells of the conventional 2-atom unit
cell. We use “accurate” precision to avoid wraparound errors.
An extensive set of elastic constants for these metals and many
more crystalline compounds is available in Ref. [20] and in the
references of Ref. [10].

As shown in Table I, bcc/hcp elements from the Sc and Ti
columns have C11 � C12. This violates a Born stability con-
dition and predicts instability to a tetragonal or orthorhombic
distortion. These elements are stabilized in the bcc state at
high temperature by their vibrational entropy [21]. The bcc
structures become mechanically unstable at low temperatures,
causing the transformation to hcp. Elements from the V and
Cr columns all have C11 > C12, so that the bcc structures are
maintained at low temperatures. Note that our calculations un-
derestimate C44 for V and Nb, which arises from the combined
effects of Fermi surface nesting, an electronic topological
transition and the Jahn-Teller effect [22–24].

2. Phonon instability

We calculate the �-point phonon modes of the 2 × 2 ×
2 supercell structures using density functional perturbation
theory [25]. Figure 2 illustrates the unstable modes of Hf,
and Table II lists the unstable phonon mode frequencies for
all hcp/bcc elements. Each of the bcc/hcp elements has a

(a)

NNN
S

NNN
L

(b)

FIG. 2. Unstable phonon modes of Hf in a 2 × 2 × 2 supercell of
a conventional bcc unit cell viewed along the cubic [100] axis. Note
the y and z axes are rotated by 45◦ compared with those in Fig. 1.
Atom sizes indicate vertical height. Colors distinguish cube vertex
(magenta) from cube center (cyan). (a) Lower imaginary frequency.
(b) Upper imaginary frequency.
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TABLE II. The unstable (imaginary frequency) phonon modes of
elements from the Ti and V columns of the periodic table.

Element Frequency (THz) Element Frequency (THz)

Sc 2.73i Ti 3.21i, 4.93i

Y 2.05i Zr 2.50i

La 1.76i, 1.80i Hf 1.80i, 2.76i

sixfold-degenerate imaginary frequency mode, and three of
them also have a second sixfold-degenerate lower imaginary
frequency mode. All bcc elements are stable as bcc structures
with no imaginary frequency modes. In every case the (max-
imal) imaginary frequency mode corresponds to the λ2 alter-
nating slide deformation illustrated in Fig. 1(b). We can under-
stand the sixfold degeneracy because we have three choices
for the direction of alternation (i.e., x̂, ŷ, or ẑ in Fig. 1),
and for each direction of alternation we have two choices
of perpendicular direction in which to displace. Equivalently,
the cubic crystal system has six independent but symmetry-
equivalent {110} planes within which to slide. This mode
reduces the symmetry from cubic to orthorhombic. If the
initial cubic structure is displaced according to this mode, it
follows the Burgers distortion pathway and relaxes to hcp. The
lower imaginary frequency mode corresponds to a tetragonal
symmetry breaking. If the initial cubic structure is displaced
according to this mode, it follows the Bain path to either a tI2
or an fcc structure. Complete phonon dispersion relations of
several refractory metals are presented in Ref. [26].

3. Energy landscape

The instabilities of the bcc/hcp elements can be seen from
their energy landscapes as the λ1 and λ2 values are varied (see
Fig. 3). These are calculated within the conventional oS4 unit
cell using 12 × 8 × 8 k-point meshes and otherwise normal
VASP defaults. Specifically, only lattice volume is relaxed
and not cell shape or ion position in order to maintain the
λ1 and λ2 values. The bcc/hcp elements are more stable as
hcp structures, while bcc elements are more stable as bcc
structures. Notice that the Burgers distortion is driven initially
by the λ2 distortion since if we start from bcc (λ1 = 0, λ2 =
0), changing λ2 reduces the energy much more quickly than
changing λ1 does. Thus the Burgers distortion should begin in
the λ2 direction (alternating slide), then later complete in the
λ1 direction (variation of lattice parameters).

Figure 3 presents energy landscapes for the Ti and V
columns of the periodic table. Similar behaviors are found in
the Sc and Cr columns, although in the case of the Sc column
the initial instabilities in λ1 are somewhat stronger than those
in the Ti column.

B. Electronic structure

So far, our investigation of elasticity, phonon modes, and
energy landscapes has illustrated the instability of bcc/hcp
elements without revealing the underlying mechanism. Here
we seek an explanation by examining the electronic structure.
Our study focuses on the hcp/bcc element Hf and the normal
bcc element Ta. Our findings for Ta apply equally to the entire
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FIG. 3. Energy landscapes of elements from the Ti (left) and V
(right) columns of the periodic table. Elements from the Ti column
are stable as hcp (hexagons), whereas elements from the V column
are stable as bcc (squares). Color bars give energy contours in
meV/atom relative to energies of the bcc structures.

V and Cr columns of the periodic table, while our findings for
Hf apply to the entire Ti column and, with minor modification
(discussed later), to the Sc column.

1. Density of states

The electronic density of states (DOS) is qualitatively
similar for Hf and Ta, although the Fermi energy EF is higher
for Ta owing to its extra valence electron. Hf has a weak
pseudogap right at EF , while this pseudogap lies below EF

in the case of Ta. The pseudogap deepens upon application of
the λ2 distortion, as illustrated in Fig. 4. Thus, in the case of
Hf, increasing λ2 reduces the energy of occupied states below
EF while raising the energy of empty states above EF and
hence lowering the band energy [27–29] relative to the initial
bcc structure [30–32]. The band energy of Ta is less strongly
affected because the pseudogap opening occurs below EF .

The impact of λ2 on total energy ETotal(λ2) is quantified in
Table III for Hf and Ta. Here E0 refers to values at λ2 = 0.
Owing to the symmetry between ±λ2, all first derivatives
with respect to λ2 vanish. Hence we approximate their second
derivatives by taking a second central difference using λ2 =
±0.1 and 0. The total energy is the sum of several large
terms with opposing signs. Most contributions are decreasing
functions of λ2, with the exception of the Ewald energy of
repulsion among the positively charged ions which increases
due to the short second-neighbor bonds. The repulsion is
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FIG. 4. DOS comparison of Hf (left) and Ta (right) before and after the application of λ2 distortion.

stronger for Ta than for Hf. Among the negative contributions,
the band energy stands out as being stronger for Hf than for Ta.
Notice the relative signs of total energy variation, confirming
the instability of Hf and the stability of Ta.

2. Band structure

The pseudogap opening in the DOS results from a gap
opening in the band structure. Figure 5 plots the band struc-
tures of Hf and Ta at λ2 = 0 and 0.1. They are calculated using
the oS4 primitive cell. Figure 6 displays the Brillouin zone of
the bcc structure in the oS4 setting with λ2 = 0, and Table IV
gives coordinates of the special points [33]. Because oS4 is a
supercell of bcc, the usual bcc Brillouin zone is folded. The
bcc special points map onto special points of oS4, so that
the bcc fourfold point H appears at the oS4 point Y ; the bcc
twofold point N appears at the oS4 points �, R, and Y ; the bcc
threefold point P appears at a position 2/3 of the way along
the oS4 special line �X.

As λ2 increases, a band gap opens up between degenerate
states at the S point, reflecting the DOS pseudogap opening
both in Hf and in Ta. For Hf, the gap opens at EF , so that
occupied states drop in energy while empty states rise. In

TABLE III. Energy contributions E0 to bcc Hf and Ta and their
second variation as λ2 varies from −0.1 to 0.1. Here αZ and EEwald

give the electrostatic energy of the ions in the electron gas. VH is
the Hartree potential. Exc − Vxc and PAWdc are double-counting
corrections. Eband is the sum of Kohn-Sham eigenvalues, and Eatom

is an arbitrary offset approximating the energy of an isolated atom.
Units are eV/atom.

Hf Ta

Contribution E0 �2E/�λ2
2 E0 �2E/�λ2

2

αZ 86.33 −9.46 125.99 −13.20
EEwald −742.93 +29.64 −956.72 +36.59
−VH −104.39 −8.50 −112.11 −13.37
Exc − Vxc 20.13 −0.47 22.79 −0.47
PAWdc 11.14 -0.42 13.63 −0.06
Eband −140.89 −11.79 −152.54 −8.67
Eatom 860.87 0 1047.14 0
ETotal −9.72 −0.98 −11.80 +0.78

contrast, the extra electron in Ta places EF above the gap,
so that the drop in energy is partially offset by the increase
in energy of some occupied states. Hence λ2 has a greater
influence on band energy for Hf than for Ta.

Since λ2 reduces the symmetry from cubic to orthorhom-
bic, we recognize the energy reduction by a gap opening
as a bulk crystalline analog of the Jahn-Teller distortion.
According to Jahn and Teller [14], breaking the symmetry
of a molecule can split a partially occupied highest occupied
molecular orbital (HOMO), resulting in a drop in energy of
the HOMO and increase in energy of the split-off lowest
unoccupied molecular orbital. Equivalently, from the point of
view of Peierls [15], symmetry breaking creates a gap in a
partially filled band, reducing the energy of occupied states
and increasing the energy of unoccupied states. Hence we rec-
ognize the mechanical instability of bcc Hf as a manifestation
of the Jahn-Teller-Peierls mechanism.

We examined all the elements in the Sc–Cr columns of
the periodic table. The entire Ti column shows the same two
band degeneracies at the S point that is lifted by λ2, as seen
in Hf. These degenerate points fall below EF throughout the
entire V and Cr columns, which contain, respectively, one and
two electrons more than the Ti column. For the Ti column,
the upper degenerate point sits just at EF . In the case of
the trivalent elements of the Sc column, which contain one
electron less than the Ti column, EF lies just slightly above the
lower degenerate point. In view of their mechanical instability
we suspect that proximity to the degenerate point is sufficient
to drive the bcc to hcp distortion. Thus we expect similar
behavior across the rare-earth series, all of which can be
trivalent and all of which exhibit transitions from bcc at high
temperature to either hcp or fcc.

TABLE IV. Symmetry k points of the oS4 cell [33]. ζ = (1 +
a2/b2)/4 = 3

8 for the case a = b.

×b1 ×b2 ×b3 k ×b1 ×b2 ×b3 k

0 0 0 � −1/2 1/2 1/2 T

ζ ζ 1/2 A ζ ζ 0 X

−ζ 1 − ζ 1/2 A1 −ζ 1 − ζ 0 X1

0 1/2 1/2 R −1/2 1/2 0 Y

0 1/2 0 S 0 0 1/2 Z
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FIG. 5. Band structure comparison of (a) Hf and (b) Ta. See Fig. 6 and Table IV for special point locations. The insets enlarge the vicinity
of the special point S. Solid bands show λ2 = 0 (i.e., bcc in an oS4 setting), while dashed bands (see inset) show λ2 = 0.1.

Because the precise band energies can be influenced by the
choice of exchange correlation functional, we present the band
structure of Hf in the local-density approximation (LDA [34])
in Fig. 7(a). Similarly, because spin-orbit coupling is strong
for 5d metals and can split degenerate bands, we present the
band structure of Hf in the GGA [19] with spin-orbit coupling
in Fig. 7(b). In both cases, the degenerate state with λ2 = 0
is maintained at the special point S at EF , and the band gap
opens up for λ2 > 0.

3. Wave function and charge density

With λ2 = 0, the oS4 structure shown in Fig. 1(a) becomes
bcc, as can be verified from its diffraction pattern illustrated
in Fig. 8. As λ2 grows, superlattice peaks appear and grow
in amplitude proportionally to λ2. In real space the structure
evolves an alternating pattern of short and long next-nearest-
neighbor bonds [see Fig. 1(b)]. Notice that this alternation
doubles the periodicity along the y axis of the charge density
integrated over x and z. The peak at the lowest k value
arises at position G = b2 = 2kS in the notation of oS4 (see
Table IV), where kS is the position of the S point. This oS4
reciprocal lattice vector is equivalent to the superlattice peak
(hkl = 1 1

2
1
2 ) in conventional cubic unit cell indexing.

The modulation of the potential at wave vector b2 couples
the degenerate electron states ψk(r) = eik·ruk(r) of wave

Y  

X1 

A1 

T 
A 

X 
S 

R 

Z 

b3 

b2 

b1 

FIG. 6. Brillouin zone of oS4 with b = c = √
2a. See Table IV

for coordinates of special points.

vectors k = kS and −kS to first order in perturbation theory,
leading to standing-wave states that can localize in regions of
low potential in the vicinity of the short NNN bonds, thereby
reducing their energy to first order in λ2. Short NNN bonds are
strengthened (i.e., are more electron dense), and long NNN
bonds are weakened. Figure 9 plots the wave functions of the
occupied and empty states that split off from EF at the S point
[i.e., the dashed brown and indigo lines in Fig. 5(a)] in the yz

plane passing through an atomic layer. ψk turn out to be real
functions at the special k point. This plot reveals that they have
dyz character in the vicinity of the atoms.

For the occupied state [dashed purple line in Fig. 5(a)],
the sign of the wave function [Fig. 9(a)] alternates between
atoms connected by short NNNS bonds, so that the signs of
the lobes of adjacent dxy orbitals match, creating bonding
states with high electron density [Fig. 9(b)] adjacent to the
bonds between the atoms. In contrast, the sign of the wave
function does not reverse along NNNL bonds, causing the
signs of the lobes of the dxy orbitals to conflict, leading to
low electron density between the atoms. The higher-energy
unoccupied state [dashed brown line in Fig. 5(a)] exhibits the
opposite behavior [Figs. 9(c) and 9(d)], with charge density
concentrating adjacent to the long NNNL bonds. The entire
effect is a three-dimensional version of the classical Peierls
transition [36].

A similar effect is observed in Ta (not shown) because
setting λ2 �= 0 necessarily creates a superlattice. However, in
the case of Ta, both the upper and lower states of broken
degeneracy remain occupied, so the impact on band structure
energy is reduced.

III. BINARY ALLOYS

A. Elasticity, phonons, and energy landscape

Given the instability of the bcc/hcp elements and the sta-
bility of the normal bcc elements, it is interesting to examine
alloys containing both bcc/hcp and bcc elements. In this
section, we discuss binary alloys taking the Pearson type cP2
structure with bcc/hcp elements at cube vertices and normal
bcc elements at body centers.

Elasticity and phonon calculations for TiV, NbZr, and
HfTa binaries are summarized in Table V. The cubic elastic
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FIG. 7. Band structure comparison of Hf using (a) LDA and (b) Spin-orbit coupling. See Fig. 6 and Table IV for special point locations.
The insets enlarge the vicinity of the special point S. Solid bands show λ2 = 0 (i.e., bcc in an oS4 setting), while dashed bands (see inset) show
λ2 = 0.1.

constants obey the Born stability rules: C11 + 2C12 > 0,
C11 > C12, and C44 > 0. However, there are two unstable
phonon modes in the 2 × 2 × 2 cell, equivalent to those
illustrated for pure elements in Fig. 2. The modes with the
upper imaginary frequencies have a degeneracy of 6 and
correspond to the same alternating slide displacement as in
the pure elemental case. The modes with the lower imaginary
frequencies have a degeneracy of 3, rather than 6, because
only the normal bcc elements displace. Presumably this is
because the large hcp/bcc atoms force a large cubic lattice
constant, and the smaller normal bcc atoms displace to shorten
the next-nearest-neighbor bond lengths.

Taking the same oS4 structure as in Eqs. (1) and (2)
and setting atoms R1 and R2 to bcc/hcp and R3 and R4

to normal bcc, λ1 = λ2 = 0 is a cP2 structure, while λ1 =
λ2 = 1 corresponds to a Pearson type oP4 structure with
atoms at hcp positions but with the symmetry reduced to
orthorhombic due to the chemical order. Figure 10 shows
the energy landscapes of these binary alloys. Unlike the pure
bcc/hcp elements and pure bcc elements, neither the bcc nor
hcp structures are stable. Instead, the bcc structures start with

1 1.5 2 2.5 3 3.5
k  [2π/a]

In
te

ns
ity

  [
ar

b]

BCC Fundamental
BCC Superlattice

1 1 0

2 0 0
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2 2 0 3 1 01 ½ ½

FIG. 8. Diffraction pattern of oS4 with λ2 = 0.5. With λ2 = 0
only bcc peaks (red) are present, while superlattice peaks (blue) grow
linearly in λ2. Peaks are indexed according to their positions within
the conventional cubic unit cell.

the same λ2 instability as in the pure bcc/hcp element case, but
the transformation gets “stuck” part way through. The atoms
displace part way along λ2 while leaving λ1 nearly zero, and
these stable states are shown as stars in Fig. 10.

B. Electronic structure

As in Fig. 4 for pure elements, we show the DOS of HfTa
before and after the λ2 distortion (λ2 = 0.5) in Fig. 11. Notice
that the DOS has a shape similar to that of pure Hf and Ta,
while the Fermi energy lies 0.5 eV above the pseudogap,
compared with 0 eV in the case of Hf and 1 eV in the case of
Ta. As in the case of pure elements, λ2 deepens the pseudogap
and shifts occupied states to lower energies.

Figure 12 shows the band structure of HfTa before and after
the λ2 distortion (λ2 = 0.1). At the S point, brown and orange
states correspond to the brown state in the pure Hf and Ta
cases (Fig. 5), and indigo and magenta states correspond to
the indigo state in Hf and Ta. It is worth mentioning that, in
the binary alloy cases, in order to achieve Pearson type cP2
structure, a four-atom unit cell of the Pearson type oS4 cell is
required. Since a two-atom primitive cell of the Pearson type
oS4 cell is used for pure element cases, the number of bands
doubles for binary alloys compared with the pure elements.
For binary alloys, before any λ2 distortion at the S point, these
four states already split into two sets of twofold-degenerate
states because of the symmetry breaking of the inequivalent
atomic sites, but this band gap opening does not stabilize the
binary because the gap opening happens below the Fermi en-
ergy. After λ2 distortion, those two sets of twofold-degenerate
states further split because of the further symmetry breaking,

TABLE V. Elastic constants (GPa) and unstable phonon frequen-
cies (THz) of TiV, NbZr, and HfTa alloys in the cP2 structure. The
left frequencies correspond to the mode in Fig. 2(a), while the right
ones corresponds to Fig. 2(b).

Alloy Frequencies C11 C12 C44

TiV 3.44i, 3.43i 174 125 31
NbZr 1.17i, 2.41i 153 110 19
HfTa 2.04i, 2.28i 153 136 54
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FIG. 9. S-point wave functions of Hf with λ2 = 0.5. The panels show a 2 × 2 supercell of the conventional cubic unit cell in the same
orientation as Fig. 2. (a) and (b) show the occupied state, while (c) and (d) show the empty state. (a) and (c) show the real functions ψkS

(r);
(b) and (d) show the electron density |ψkS

(r)|2. The wave functions were obtained from VASP using WAVETRANS [35]. The red circles represent
the position of atoms, and blue (green) lines are the bonding of the shortened (elongated) NNN bonds.

and both nearest- and next-nearest-neighbor distances become
inequivalent, as shown in Fig. 1. This band gap opening
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FIG. 10. Energy landscapes of TiV, NbZr, and HfTa (square: cP2,
hexagon: oP4, star: most stable state). The color bars give the relative
stability with respect to the bcc structures.

makes the purple state below the Fermi energy, while the cyan
state rises to slightly higher than the Fermi energy, and this
accounts for the fact that λ2 distortion lowers the net energy
of binary HfTa.
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FIG. 11. DOS comparison of HfTa before and after the applica-
tion of λ2 distortion.
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FIG. 12. Band structure comparison of HfTa before and after the
application of λ2 distortion.

Table VI breaks down the alloy total energy into individual
contributions, as was done for pure elements in Table III.
Again, the electrostatic energy (first three terms) of ionic

TABLE VI. Energy contributions E0 to cP2 HfTa and their
second variation as λ2 varies from −0.1 to 0.1. Here αZ and EEwald

give the electrostatic energy of the ions in the electron gas. VH is
the Hartree potential. Exc − Vxc and PAWdc are double-counting
corrections. Eband is the sum of Kohn-Sham eigenvalues, and Eatom

is an arbitrary offset approximating the energy of an isolated atom.
Units are eV/atom.

Contribution E0 �2E/�λ2
2

αZ 105.02 −2.50
EEwald −847.38 +9.74
−VH −109.77 −4.58
Exc − Vxc 21.47 −0.07
PAWdc 12.51 −0.38
Eband −146.52 −2.66
Eatom 954.00 0
ETotal −10.66 −0.36

repulsion stabilizes the bcc structure, while the band energy
stands out as a strong destabilizing factor. The net variation
�2E/�λ2

2 < 0 exhibits instability that is weaker than in the
case of pure Hf.
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FIG. 13. S-point wave functions of HfTa with λ2 = 0.5. The panels show a 2 × 2 supercell of the conventional cubic unit cell in the same
orientation as Fig. 2. (a) and (b) show the occupied state (indigo in Fig. 12), while (c) and (d) show the empty state (brown in Fig. 12).
(a) and (c) show the real function ψkS

(r); (b) and (d) show the electron density |ψkS
(r)|2. The wave function was obtained from VASP using

WAVETRANS [35]. The red circles represent the position of Hf atoms, and the blue (green) lines are the bonding of the shortened (elongated)
NNN bonds. The result is similar for Ta layers.
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Bonding effects in the wave functions at kS are similar to
those observed in Hf and Ta, as shown in Fig. 13.

IV. CONCLUSIONS

This paper describes a complete mechanism of the Burgers
distortion of bcc/hcp elements that are stable at high temper-
atures due to their vibrational entropy but transition to hcp
at low temperatures. The two-stage distortion occurs through
an alternating slide displacement between (110) atomic layers
followed by relaxation of lattice parameters. The instability
is apparent in the violation of elastic stability criteria and the
presence of unstable imaginary frequency phonon modes in
the bcc state. Electronic structure investigation explains how
the distortion lowers the energy: a pseudogap in the electronic
density of states, a band gap opening at a high-symmetry k

point, and drop in energy of an occupied bonding state vs
increased energy of an empty antibonding state.

These effects are similar to the Jahn-Teller instability of
molecules that break symmetry to lower the energy of their
highest occupied molecular orbital and are also a three-
dimensional version of the Peierls instability that creates a
superlattice structure in order to open a band gap that lowers
the total band energy. They are most striking in tetravalent
refractory metals from the Ti column of the periodic table
because in this case the degenerate point sits very close to the
Fermi energy. They are also present in the trivalent refractory
metals of the Sc column because in these cases a second
degenerate point sits about 0.1 eV below EF . By similar
reasoning the effect should be present across the trivalent

Lanthanide rare-earth series, and we have confirmed this in
the case of Lu.

This work does not address the high-temperature stability
in the bcc state due to vibrational entropy. The imaginary
modes prevent application of the usual techniques for vi-
brational free-energy calculation. Sophisticated techniques
are required to incorporate the strong phonon anharmonic-
ity [37,38] in order to explain the stability of bcc at high
temperatures. Our present study addressed the instability in
the limit of T = 0 K. While the electronic state degeneracy
and splitting that we report remain present at the temper-
atures of the bcc to hcp transformation, conceivably some
additional phonon-related effect could enter as well. Normal
bcc elements from the V and Cr columns have extra valence
electrons, so their Fermi energies sit well above the degenerate
points. In these cases, ionic and electronic repulsions prevent
the instability, and their bcc structures are stable at all temper-
atures.

Finally, we addressed the case of alloys containing both
bcc/hcp and normal bcc elements. In this case the instability
remains and leads to distortions in atomic positions while
leaving lattice constants almost cubic. Perhaps this effect can
explain the large lattice distortions reported [11] in refractory
high-entropy alloys containing bcc/hcp elements.
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