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Spontaneous formation of thermodynamically stable Al-Cu-Fe icosahedral quasicrystal
from realistic atomistic simulations
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Icosahedral quasicrystals spontaneously form from the melt in simulations of Al-Cu-Fe alloys. We model the
interatomic interactions using oscillating pair potentials tuned to the specific alloy system based on a database
of density functional theory (DFT)-derived energies and forces. Favored interatomic separations align with the
geometry of icosahedral motifs that overlap to create face-centered icosahedral order on a hierarchy of length
scales. Molecular dynamics simulations, supplemented with Monte Carlo steps to swap chemical species, effi-
ciently sample the configuration space of our models, which reach up to 9846 atoms. Exchanging temperatures
of independent trajectories (replica exchange) allows us to achieve thermal equilibrium at low temperatures. By
optimizing structure and composition we create structures whose DFT energies reach to within ∼2 meV/atom
of the energies of competing crystal phases. Free energies obtained by adding contributions due to harmonic
and anharmonic vibrations, chemical substitution disorder, phasons, and electronic excitations, show that the
quasicrystal becomes stable against competing phases at temperatures above 600 K. The average structure
can be described succinctly as a cut through atomic surfaces in six-dimensional space that reveal specific
patterns of preferred chemical occupancy. Atomic surface regions of mixed chemical occupation demonstrate
the proliferation of phason fluctuations, which can be observed in real space through the formation, dissolution
and reformation of large-scale icosahedral motifs—a picture that is hidden from diffraction refinements due to
averaging over the disorder and consequent loss of information concerning occupancy correlations.
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I. INTRODUCTION

Since the discovery of quasicrystals as a distinct phase of
matter [1], and recognition of their quasiperiodicity [2], two
fundamental questions remain to be definitively answered:
Where are the atoms [3]? What stabilizes their quasiperiodic
order? Excellent descriptions of their average structures are
possible in terms of cuts through higher-dimensional periodic
lattices obtained by single-crystal diffraction refinements [4].
However, quasicrystalline structures can only be reliably equi-
librated at high temperatures; consequently, these models con-
tain ambiguous atomic positions with uncertain occupation
and chemistry. They omit important correlations in the case of
mixed or partial occupation, and they omit atomic vibrations
and diffusion. As regards their thermodynamic stability, local
icosahedral motifs are clearly favored energetically. Local
preference need not force long-range quasiperiodicity, as
is illustrated by the prevalence of periodic “approximants,”
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which mimic quasiperiodic order locally within an ordinary
crystalline unit cell that in turn repeats periodically [5,6].

An intriguing puzzle that has eluded researchers for three
decades is identifying the mechanism that selects an ordered
yet nonperiodic state. One possible explanation is that qua-
sicrystals are energetic minima, whose structure is forced
by specific interatomic interactions [7], by maximizing the
density of some favorable motif [8,9], or by creating a deep
pseudogap in the electronic density of states [10–12]. Another
possibility is that the structural ambiguity is an intrinsic char-
acteristic of quasicrystals [13–15]. In this view, the entropy
to be gained from chemical or positional fluctuations serves
to reduce the free energy relative to competing phases whose
energies (without entropy) are lower. Quasiperiodicity might
arise spontaneously because it allows icosahedral symmetry,
and this high symmetry maximizes the entropy.

The icosahedral phase of Al-Cu-Fe is an excellent place
to seek theoretical insight. Experimentally, the i-phase of
Al-Cu-Fe was the first well-ordered thermodynamically stable
quasicrystal to be discovered [16]. It exhibits a particular
symmetry classified as face-centered-icosahedral, and ex-
hibits strong pseudogap in electronic states density near Fermi
energy [17]. Recently, these quasicrystals attracted renewed
attention following their discovery in a meteorite [18].

In this paper, we report computer simulations leading
to spontaneous formation of icosahedral quasicrystals from
the melt. Such simulations have been previously reported
[19–21], but only for artificial models that do not describe
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FIG. 1. left to right: 2×, 3×, and 5× diffraction patterns of our 9846-atom 8/5 approximant at T = 1000 K. Diffraction intensities were
averaged over 17 independent configurations.

actual chemical species and hence yield no direct insight
into specific experimentally studied compounds. Here we
model Al-Cu-Fe ternary alloys using a combination of chem-
ically accurate density functional theory (DFT) calculations
and accurate interatomic pair potentials. Based on structure
models and thermodynamic data provided by our simulation,
we calculate a temperature-dependent phase diagram for the
Al-rich region of the alloy system showing that energy and
entropy conspire in the emergence of the quasicrystal phase as
thermodynamically stable at elevated temperatures. Figure 1
illustrates the diffraction patterns of our simulated structures
and verifies that we indeed obtain a quasicrystal with the
expected face-centered icosahedral symmetry.

II. SIMULATION METHODS

Three important ingredients enable the success of our
atomistic simulations: realistic DFT-derived interatomic in-
teractions; appropriately sized simulation cells with periodic
boundary conditions; efficient hybrid Monte Carlo/molecular
dynamics augmented by replica exchange. We exploit the data
generated by our simulation to present optimized structure
models revealing icosahedral order on a hierarchy of length
scales. Combining DFT-calculated formation enthalpies with
entropies derived from fluctuations, we calculate the absolute
free energies of the quasicrystal phase and competing crys-
talline phases. Then, from the convex hull of the set of free
energies we predict a temperature-dependent phase diagram
that shares characteristics with the experimentally assessed
behavior, including the emergence of the quasicrystal as a high
temperature stable phase.

Oscillating interatomic pair potentials accurately describe
elemental metals and alloys characterized by weakly-bound s
electrons, even in the presence of s-pd hybridization. While
these can be derived analytically within electronic density
functional theory [22–24], we instead employ a parametrized
empirical form known as EOPP [25] that we fit to a database
of DFT energies and forces (Appendix A). This form has
found success modeling many binary and ternary alloys
[26–28]. EOPP also lead to spontaneous formation of single-
component icosahedral quasicrystals [21]. Henley [29] con-
nected the oscillating potentials with pseudogap near EF via

the Hume-Rothery scenario, and argued that their second min-
ima participate in formation of fundamental clusters. Indeed,
under some circumstances the second minima can even create
local matching rules favoring quasiperiodicity [30]. Figure 2
illustrates our fitted potentials and the comparison with inter-
atomic separations in our simulated structures. Details of our
fitting procedure are provided in Appendix B.

Because the quasicrystal is aperiodic it cannot be pre-
cisely represented in a finite-size system. Fortunately, a se-
ries of “rational approximants” are known that capture the
local quasicrystal structure and minimize the deviation caused
by application of periodic boundary conditions. Reflecting
the hierarchical nature of quasiperiodic order, these special
sizes grow geometrically as acub = 2aqτ

n/
√

τ + 2, where
τ = (1 + √

5)/2 ≈ 1.61803... is the golden mean and aq

is “quasilattice parameter” or Penrose rhombohedron edge
length [5]. The volume grows rapidly as a3

cub ∼ τ 3n. Strictly,
face-centered icosahedral symmetry implies τ 3 scaling for

FIG. 2. Empirical oscillating pair potentials Vαβ (r) (thick solid
lines, energy axis on the left) and partial pair correlation functions
gαβ (r) (dashed lines, vertical axis on the right) for Al-Cu-Fe qua-
sicrystals. The EOPP are fit to a database of DFT energies and
forces (see Appendix B). The pair correlation functions are obtained
from single snapshot of the 9846-atom 8/5 approximant EOPP MD
simulation.
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self similarity (volume ∼τ 9) along fivefold and threefold di-
rections, but τ 1 scaling along twofold icosahedral directions.
Here, we label the approximants with a ratio of successive
Fibonacci numbers Fn+1/Fn, with 128 atoms for “2/1” up to
9846 for “8/5.” Our naming convention is drawn from the
definition of Henley’s canonical cells designed for packing
icosahedral clusters [31]. Since the fundamental clusters in
AlCuFe are τ -times smaller than the proper Mackay clusters
decorating the B.C.C. lattice in α-AlMnSi [5,32,33], our
“2/1” approximant has about the same edge length acub ∼
12.3 Å as α-AlMnSi.

For small cell sizes (2/1 and 3/2-2/1-2/1), imposing this
special length encourages nucleation of the quasicrystal from
the melt [34]. In larger cells (3/2, 5/3, and 8/5), the entropic
barrier to nucleation is hard to overcome; instead we seed the
structure using the previous approximant size. Because of the
discrete cell size scaling, a single unit cell of the seed occupies
less than 24% of the cell volume. Thus we take a supercell of
the smaller approximant and enforce the periodic boundary of
the bigger approximant. Near the large approximant boundary
we let the small approximant overlap itself in a region that
is 10% of the large approximant cell size. This introduces
a 25% excess of atoms in the large approximant placed at
unphysically short separations. We remove the excess atoms
through a fixed-site lattice gas annealing [35] to reach the
desired atomic density.

To efficiently anneal both chemical and positional order we
utilize a hybrid Monte Carlo/molecular dynamics (MC/MD
[36]) method that samples continuous evolution of atomic
positions through molecular dynamics while enabling inter-
change of chemical species through Monte Carlo swaps.
Species swaps are accepted with the Boltzmann probability
exp (−�E/kBT ) with �E the change in total energy for
the swap. Our simulations are performed in the canonical
ensemble with constant temperature, volume, and numbers
of atoms of each species. To achieve equilibration at low
temperatures and enhance sampling of the configurational
ensemble at all temperatures, we supplement our MC/MD
simulation with replica exchange [37]. MC/MD simulations
are performed in parallel at many temperatures Ti. At fixed
intervals we suspend the simulations and consider swapping
configurations at adjacent temperatures Ti and Ti+1. The
swap is accepted with a Boltzmann-like probability based on
the energy difference between the configurations. Although
the temperature of a configuration jumps during the swap,
the configuration remains a properly weighted member of
the equilibrium ensemble at its instantaneous temperature.
Further details are in Appendix C.

III. RESULTS

We analyze the simulated structures to demonstrate their
quasiperiodicity. The clearest demonstration is their diffrac-
tion pattern (Fig. 1) which shows characteristic 2×, 3×, and
5× patterns with sharp peaks near the characteristic positions
for face-centered icosahedral symmetry (minor deviations
occur due to the finite-size approximant). The face-centering
causes certain diffraction peak positions to occur in ratios of
τ 3, while the remainder show τ 1 scaling.

Examining the structure in real space, we observe that
small approximants solidify into well-ordered structures that
can be conveniently described as packings of two cluster
types. One is a small 13-atom (Al12−xCux)Cu icosahedron that
we denote as I [see Fig. 3(a)]. The other is a larger pseudo-
Mackay icosahedron (pMI) [Fig. 3(b)] with a partially occu-
pied Al12−xFe inner shell (x ∼ 1–3 due to Al-Al repulsion),
and a second shell made up of two subshells: a (Cu,Fe)12

“unit-icosahedron” on the fivefold axes at 4.45 Å from the
center, and an Al-rich (Al,Cu)30 icosidodecahedron on the
twofold axes. In the example shown in Fig. 3(b), the Cu
and Fe atoms on the unit-icosahedron segregate to break the
symmetry from icosahedral to fivefold. I clusters connect
along twofold icosahedral directions with a spacing of b =
7.55 Å, and alternate with pMI along threefold directions
(c = 6.54 Å spacing). This even/odd alternation implements
the face-centered icosahedral order. For the 2/1 approximant
this packing is a unique structure producing A-, B-, and
C-type canonical cells [31] (CCT), while the 3/2-2/1-2/1
approximant also contains a symmetry-broken D-cell.

Larger approximants avoid the bulkiest canonical cell
D by introducing a new three-shell cluster extending to
∼7.7 Å [twofold radius; see Fig. 3(c)]. This cluster is entirely
bounded by CCT Y -faces, hence it extends, rather than vio-
lates, the CCT concept. Its innermost shell is Al12−xFe as in
usual pMIs, but the second shell, albeit topologically similar
to pMI, is Cu-rich with only 25% Al and no Fe atoms. Finally,
the third shell is made up from three icosahedral subshells:
Al60 (at 6.4 Å), a Fe30−xCux (x ∼ 6) τ -icosidodecahedron (at
twofold radius 7.7 Å) and a Cu12 τ 2-icosahedron (at fivefold
radius 7.2 Å). These 12 Cu atoms are in fact all centers of the
small I clusters; upon including them the whole cluster has
282 atoms.

The three clusters provide a simple, highly economical
zero-order description of the structure, since they cover prac-
tically all atoms in the structure (99% in 3/2, 98% in 5/3, and
97% in 8/5 approximant). A typical example of these clusters
as they appear in our simulations is shown in Fig. 3(d),
taken from the equilibrium ensemble at T = 1200 K, followed
by relaxation. Mixed chemical occupation breaks the cluster
symmetry and can serve as a stabilizing source of entropy,
while, together with the cluster covering, it is potentially a
means of forcing quasiperiodicity [8,9].

The ensemble of structures can be represented using the
six-dimensional (6D) cut and project scheme [3,4]. This is an
efficient way to represent the average structure in a manner
that automatically enforces perfect quasiperiodicity. Briefly,
we define a set of three-dimensional (3D) volumes, termed
“atomic surfaces,” placed on a 6D hypercubic lattice. A 3D
“parallel space” cuts through the 6D space, oriented at an
angle such that the 6D lattice edges project onto the six
fivefold axes of a 3D icosahedron in the parallel space. Then,
atoms are placed in parallel space at the points of intersection
with the atomic surfaces and then averaged over the ensemble.
Details are presented in Appendix D.

Approximately 80% of atoms match projected 6D posi-
tions with an accuracy of 0.45 Å or better. The exceptions
are primarily the frustrated Al atoms of the pMI inner shell:
their positions are dictated by Al-Al repulsion in the tight
inner shell of 9–10 Al atoms around the central Fe, rather
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FIG. 3. Three fundamental clusters constituting the quasicrystal structure. Color coding: yellow (Al), blue (Cu), red (Fe), purple (Cu atoms
on mixed Cu/Fe sites). (a) Small (Al12−xCux)Cu icosahedron (I). (b) The pseudo-Mackay icosahedron comprises an inner Al12−xFe shell,
an icosahedral (Cu,Fe)12 second shell, and an icosidodecahedral (Al,Cu)30 third shell. In the example shown here the Cu and Fe atoms in
the second shell have arranged to break the icosahedral symmetry down to fivefold (we show front and back views along the fivefold axis).
(c) Four-shell τ -pMI cluster with icosahedral Al60Cu12(Fe,Cu)30 outer shell encapsulating an Al12−xFe inner shell and a Cu-rich (Al,Cu)42

pMI-like second and third shell. (d) Snapshot of 5/3 approximant from a simulation at T=1200 K that we then relaxed. Small icosahedra I are
outlined by green circles, pMI by red, and an azimuth of the τ -pMI by black. Bonds between small icosahedra shown in blue lie along 2–fold
directions, bonds between pMIs shown in red lie along fivefold directions, and bonds between Is and pMIs shown in orange lie along threefold
directions. Tick marks are placed at 1 Å intervals.

than the wells of the Al-TM potential. Three atomic surfaces
emerge (see Fig. 4), two large ones (AS1 and AS2) sit at
hypercubic lattice sites (“nodes”), one even and the other
odd. The remaining small one (B1) sits at the hypercubic
body center. Each atomic surface has a particular pattern of
chemical occupation. AS1 is primarily Fe, concentrated at the
center, with Cu surrounding and finally traces of Al. AS2 is
primarily Al, with a small concentration of Fe at the center
and Cu separating the Al from the Fe. The remaining surface
B1, at the body center, is primarily Cu. The contrast between
AS1 and AS2, along with absence of B2, reflects the strong
symmetry breaking from simple icosahedral to face-centered
lattice.

FIG. 4. (top) Atomic surface occupation averaged over ensemble
of 3000 configurations from 9846-atom “8/5” approximant at T =
1242 K; (bottom) color bars for chemical species occupancy. Mixed
chemical occupation is represented by adding the RGB color values.

There is a unique connection between the three fundamen-
tal clusters (Fig. 3) and the three atomic surfaces. The B1

surface Cu atoms are centers of the I clusters, the central
Cu/Fe part of the AS2 surfaces occupy pMI clusters, and the
Fe core atoms of the AS1 surface are centers of the large
τ -pMI clusters.

Notice the smooth variations in color (i.e., chemical oc-
cupancy). Cu separates Al from Fe on the atomic surfaces
while blending continuously into each. Curiously, the location
of Cu at the boundary of Fe and Al on the atomic surface
is consistent with the position of Cu in the periodic table
between transition (d-band) metals and nearly free electron
(sp-band) metals. Mixed occupation implies swaps in chemi-
cal occupation in real space, and low atomic surface densities
correspond to partial site occupation. Because these lead to
spreading of the occupation domains in perpendicular space,
we may identify these chemical species swaps and fractional
occupation as types of phason fluctuations.

Our simulated atomic surface occupation largely agrees
with the popular Katz-Gratias model [38]. Specifically, the
node vertex surfaces (AS1 and AS2) both transition from Fe
at the center, through Cu, to Al around the edges. Only a
single body center (B1) is occupied, solely by Cu. Short-
distance constraints determined specific shapes of the KG
atomic surfaces. In our model these constraints are obeyed
through positional correlations so our surfaces have outer
shapes that differ from the KG model. Note that the outer
shapes are defined by regions of low occupation probability.

After annealing down to low temperatures using the inter-
atomic potentials, we apply DFT to relax the structures to T =
0 K and compute their enthalpies of formation, �H relative
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TABLE I. Chemistry, instability �E (letter “S” for stable), and
formation enthalpy �H for quasicrystal approximants and compet-
ing ternary phases at T = 0 K. The two variants of the B2-type
β-phase, resulting from annealing simulations, are a 2 × 2 × 2 Fe-
richer supercell with Pearson symbol tP16 and a 3 × 3 × 3 supercell
with ordered vacancies and Pearson symbol cP50).

�E �H Nat Al Cu Fe
Name meV/at meV/at per cell % % %

ω (tP40) S −280.0 40 70.0 20.0 10.0
λ (mC102) S −361.5 102 72.5 3.9 23.5
α/τ1 (oC28) S −377.4 60 66.7 6.7 26.7
β (tP16) S −344.3 16 50.0 18.2 31.2
φ′ (cP50)a S −267.0 50 46.0 46.0 8.0

i-(2/1) +1.8 −285.4 128 64.1 25.8 10.9
i-(3/2) +4.3 −292.5 552 63.8 23.9 12.3
i-(5/3) +4.0 −292.6 2324 65.0 22.5 12.5

aSimilar to experimentally known Al10Cu10Fe φ-phase.

to pure elements, and energetic instabilities, �E relative to
the tie-plane of competing crystal structure enthalpies. Table I
summarizes the compositions and formation enthalpies of
several competing phases.

The small approximants exhibit an unusual electronic den-
sity of states (eDOS), with a wide and deep pseudogap as
is usual in Al-based quasicrystals, and in addition a deeper
and very narrow second pseudogap inside the broad pseudo-
gap (see Appendix F). For optimal density and composition,
which we achieve by replacing Cu with a combination of Al
and Fe, the Fermi level lies inside this second pseudogap.
Specifically, we find the effective valence rules of Al = +3,
Cu = +1, and Fe = −2 apply, so we can raise or lower EF by
1 electron without altering the number of atoms through tar-
geted chemical substitutions such as 2Cu ↔ Al + Fe. Com-
position can be shifted at constant effective valence through
substitutions such as 3Al + 2Fe ↔ 5Cu. This rule matches
the slope of the quasicrystal and approximant phase fields
in the ternary composition space [39]. We discovered that
neighboring Fe-Fe pairs lead to states in the pseudogap that
can be removed by avoiding these pairs. These optimizations
can substantially lower the total energy. However, these struc-
tures remain unstable by 2–4 meV/atom relative to competing
ordinary crystal phases in the triangle η2(AlCu)–λ(Al3Fe)–
ω(Al7Cu2Fe) as described in Table I. Simulated larger ap-
proximants, and supercells of the 2/1 approximant, exhibit
only the broad pseudogap. Apparently the higher entropy
available in larger simulation cells introduces disorder that
washes out the detailed structure leading to the narrow second
pseudogap, trading a gain in energy for a compensating gain
in entropy. It is conceivable that the EOPP potentials are not
sufficiently accurate to capture the interactions responsible for
the narrow pseudogap feature.

Notice the sequences of enthalpies of formation, �H ,
that decreases monotonically with increasing approximant
size. This suggests a possible energetic mechanism favoring
quasiperiodicity. However, this is not yet clear, as we have
not demonstrated that the energetically optimized structures
are more perfect in their quasiperiodicity than representative
high temperature structures. Indeed, the decreasing enthalpy

is primarily a reflection of increasing Fe content. From the
energies relative to the convex hull, �E , which are posi-
tive and not systematically decreasing, it is likely that any
quasicrystal model will be unstable relative to competing
crystal phases at low temperatures. Hence, to explain the
formation of the quasicrystals from the melt at high tem-
peratures we must seek either a kinetic or a thermodynamic
argument.

We consider the larger approximants, 3/2 (552 atoms) and
5/3 (2324 atoms), as representative of the true quasicrystal.
They exhibit interesting structures and dynamics at elevated
temperatures. Because clusters are difficult to identify in
individual snapshots due to chemical disorder and atomic
displacements, it is best to examine time averages of the
structure. In Fig. 5 the inner shells of the pMIs are clearly
visible as smeared circles due to the high mobility of the
Al atoms, whose positions are frustrated by the incompatible
length scale of the icosahedral potential produced by the outer
shells with the short-range repulsion of the Al-Al potential.
An azimuth of the three-shell τ -pMI clusters with Cu-rich
interior is indicated by large black circles. Cu-centered small
icosahedra are also clearly visible. As time evolves, the iden-
tity of these clusters shifts, with some becoming more distinct
while others dissolve. Occasionally, the structures take pleas-
ing hexagon-boat-star-decagon (HBSD [35,40]) tiling forms
as as outlined in yellow in Fig. 5, but these structures, in turn,
further evolve. We provide a video illustrating the evolving
structure in our Supplemental Material [41].

We find a curious behavior at very high temperatures as the
quasicrystals melt. One aspect is that the melting point grows
as the approximant size increases. The 2/1 approximant (in
2 × 2 × 2 supercell) melts at T = 1669 K, the 3/2 at T =
1683 K, the 5/3 at T = 1723 K, and the 8/5 at T = 1788 K.
Additionally, the 2/1 and 3/2 melt in a single step, while the
5/3 melts in two steps (the first broad heat-capacity maximum
at 1590 K), and the 8/5 have three additional smaller but
sharp heat capacity peaks at 1266 K, 1471 K, and 1680 K that
precede melting. Melting of the larger approximants begins
around 1266 K with small Al-Cu-rich regions [see the Cu-
rich sides of the pMI and τ -pMI clusters in Figs. 3(b) and
3(c) and the center of the τ -pMI in Fig. 3(d)] that leave be-
hind an Fe-richer, and hence more mechanically stable, solid
quasicrystal phase. Because we perform our simulations at
fixed volumes, the actual melting occurs at high pressure—we
estimate P = 7 GPa at the melting point of 8/5. Note that this
is consistent with recent experiments of Bindi [42]. A video
showing liquid-quasicrystal phase coexistence is provided in
our Supplemental Material [41]. In this video the quasicrystal
melts and resolidifies as the liquid interface advances into the
solid and then recedes.

Finally, we seek to explain the thermodynamic stability.
As shown in Table I our lowest energy quasicrystal models
remain above the convex hull of energy by 2–5 meV/atom.
Thus at low temperatures we anticipate phase separation
into the competing phases, η2(AlCu)-λ(Al3Fe)-ω(Al7Cu2Fe).
Indeed, this is what is shown in the standard phase diagram
for the Al-Cu-Fe system [43]. Finite temperature stability
is given by the convex hull of free energy. As discussed in
Appendix G the free energy includes harmonic vibrational
free energy Fh derived from phonons, electronic free energy
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FIG. 5. Running occupation averages of duration 0.4 ns from MCMD simulation at 1200 K in a 2304-atom “5/3” approximant cubic
cell with composition Al65.5Cu22.0Fe12.5. The view is parallel to a pseudo fivefold axis, with a slice thickness of 4 Å. (a) Red circles mark
second shells of the selected pMI clusters, smaller green circles outline (Al/Cu)12Cu icosahedra, and large black circles outline τ -pMI clusters.
Linkages connecting the clusters constitute twofold (blue, b = 7.55 Å) and threefold (yellow, c = 6.54 Å) linkages of the canonical cell tiling.
Yellow linkages connect into hexagons, boats, stars and decagons analogous to local arrangement familiar from HBSD decagonal phases. (b) A
new configuration that occured 0.8 ns later at the same location. Defective tilings (blue skinny rhombuses) occur at intermediate times.

Fe, and other contributions such as anharmonic phonons,
chemical substitution, and tiling degrees of freedom, Fa.

Comparing free energies of the competing ordinary crys-
tals, small quasicrystalline approximants and the quasicrystal
(considered as a large approximant) we predict the stable
phases at various temperatures by evaluating the convex hull
of free energies over the composition space (see Fig. 6).
Details are presented in Appendices E and F. Notably, we
observe that the 2/1 approximant gains stability at T = 0 K

when quantum zero point vibrational energy is included, and
the 5/3 approximant, which we take as a proxy for the
quasicrystal emerges as a stable phase at temperatures above
T = 600 K owing to the excitations contained in Fa.

IV. DISCUSSION

We have provided four pieces of evidence demonstrating
the appearance of a thermodynamically stable quasicrystal

FIG. 6. Calculated Al-Cu-Fe phase diagrams at (a) T = 0 K and (b) T = 600 K. Heavy circles indicate known phases, light circles are
quasicrystal approximants, and squares are other hypothetical structures. Black symbols lie on the convex hull while blue lie slightly above,
by less than 4 meV/atom. Line segments and enclosed triangles are predicted tie-lines and tie-planes connecting coexisting phases.
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state in our model of Al-Cu-Fe. First is the spontaneous
formation of quasicrystal approximants, directly from the melt
in the case of small approximants, and with the assistance of
smaller approximant seeds in the case of large approximants.
Second is the appearance of progressively larger clusters and
superclusters with increasing approximant size. Third is the
decreasing total energy of highly optimized structures with in-
creasing approximant size, suggesting that energy could favor
quasiperiodicity. Finally, we have calculated free energies for
quasicrystal approximants and competing ordinary crystalline
phases and foud that the 5/3 approximant, taken as a proxy for
the true quasicrystal, acquires thermodynamic stability above
T = 600 K.

Our findings shed light on the underlying reasons for
quasicrystal formation and suggest there is not a single ex-
planation but rather a coincidence of favorable conditions.
Although the formation enthalpies decrease (i.e., become
more negative; see Table I) with increasing approximant size,
they actually lose stability relative to competing crystal states
owing to the slope of the convex hull with increasing Fe
content. The largest cluster for which we have DFT energies,
namely, 5/3, is the smallest approximant that can accomodate
the τ -pMI supercluster including its complete surrounding I
clusters. If we postulate that this is an energetically favorable
motif, then it may be that DFT energies are needed for yet
larger approximants before we can claim existence of an
energetic preference for the quasicrystal as compared with
finite approximants. Further, the appearance of superclusters
is a consequence of quasiperiodicity, not a cause. Indeed, both
matching rule and random tiling models share this feature
provided that these are viewed in a time-averaged sense as
in the present case. While our explanation for thermodynamic
stability at high temperatures is an example of entropic stabi-
lization, the entropy includes phonon anharmonicity in addi-
tion to phason-related chemical species swaps and tile flips.

Our simulation goes beyond usual structure models of
quasicrystals in that it captures the full dynamic evolution,
including correlations among positions of partial and mixed
occupation that represent phason fluctuations. At the same
time it surpasses previous quasicrystal simulation models in
the degree of fidelty to the specific chemical interactions of
the constituent elements that we capture at or near the DFT
level of accuracy. This allows us to evaluate the free energy
of the real quasicrystal with accuracy sufficient to explain its
formation.

Limited experimental information concerning the qua-
sicrystal structure exists at present. The most important is
the 6D Patterson function (a type of positional correlation
function) measured by neutron diffraction on a single crystal
sample [44]. Our results are consistent with that data, which
was the first to identify the three atomic surfaces similar to
those that we show in Fig. 4. A clear need exists for addi-
tional diffraction studies whose refinements could be com-
pared more precisely with our average structure. Additional
predictions could conceivably be tested experimentally, for
example free energies could be measured, and our predicted
low temperature stable 128-atom structure could possibly
be produced by experiments that circumvent the diffusion
barriers.

In conclusion, although our explanation for quasicrystal
stability is not simple, it illuminates the complex interplay of
multiple factors. These include the composition-dependence
of competing phase energies, as well as multiple sources
of entropy. Chemical preferences for site classes in cluster
motifs and on atomic surfaces are favored by our EOPP
interatomic potentials. We remark that cluster overlap together
with cluster symmetry breaking provides a possible mech-
anism to force quasiperiodicity, but this appears insufficient
to stabilize the Al-Cu-Fe quasicrystal against competing ordi-
nary crystalline phases at low temperature. In our model, the
quasicrystal is a high temperature phase.
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APPENDIX A: DFT

First principles calculations within the approximations of
electronic density functional theory (DFT) lie at the founda-
tion of our structural and thermodynamic models. We em-
ploy projector augmented wave potentials [45] in the PW91
generalized gradient approximation [46] as implemented in
the plane-wave code VASP [47]. Our k-point meshes are
increased to achieve convergence to better than 1 meV/atom
with tetrahedron integration. We employ the default energy
cutoffs. For T = 0 K enthalpies, all internal coordinates and
lattice parameters are fully relaxed. Finite difference methods
are applied to calculate interatomic force constants that we
need for low temperature vibrational free energies. Ab ini-
tio molecular dynamics (AIMD) was performed to generate
additional energy and force data for fitting interatomic pair
potentials. AIMD calculations contained 544 atoms in cubic
cell and utilized only a single k-point. For accurate cohesive
energies, approximant k-meshes were converged to 103 k-
points/BZ for 128-atom 2/1, 63 for 552-atom 3/2, and 23 for
2324-atom 5/3.

APPENDIX B: EMPIRICAL OSCILLATING
PAIR POTENTIALS

We choose a six-parameter empirical oscillating pair po-
tentials (EOPP [25]) of the form

V (r) = C1

rη1
+ C2

rη2
cos(k∗r + φ∗) (B1)

to fit a DFT-derived database of force components and
energies. The database contains binary compounds Al2Cu
(both tetragonal and cubic), Al3Fe, Al5Fe2, ternary tetragonal
Al7Cu2Fe, orthorhombic Al23CuFe4, as well as the ternary
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FIG. 7. EOPP potentials fitted to ab initio (VASP) force and
energy data. Parity plots on left are (a) �E (units eV/atom) and
(b) F (units eV/Å). The resulting potentials are shown at right (c).
Parameters are summarized in Table II.

extension of Al3Fe, and a number of approximant structures.
The database contains a significant portion of AIMD data at
elevated temperatures, ranging from T = 300 K up to 2000 K,
covering both solid and liquid configurations. In total we use
13176 force-component data points and 63 energy differences
(see Fig. 7).

We initialized the fit from parameter values that fit GPT
potentials [35] for a similar system (Al-Co-Ni). The fit quickly
converged, with RMS deviation 0.16 eV/Å for forces, and
9.4 meV/atom for energy differences. Since Fe-Fe and Fe-Cu
potentials are prone to softening at nearest-neighbor distances
due to the lack of data in Al-rich systems, we increased
repulsion term coefficients C1 manually for Fe-Fe and Fe-Cu.
Final parameters of our potentials are listed in Table II. Our
cutoff radius is taken as 7 Å.

As a demonstration of the accuracy of our pair potentials,
we computed the vibrational densities of states (VDOS) for a
208-atom “3/2-2/1-2/1” approximant (see Fig. 8). The three
partials computed by EOPP semiquantitatively match the DFT
result, with accuracy comparable to the Sc-Zn case [27].

It should be noted that the potentials are valid only for a
particular density of the free-electron sea, and they should be
used exclusively at constant volume; or in constant-pressure
simulations, with additional external pressure set to a value
leading to the same equilibrium volume.

TABLE II. Fitted parameters for Al-Cu-Fe EOPP potentials.

C1 η1 C2 η2 k∗ φ∗

Al-Al 4337 10.416 −0.1300 2.2838 4.1702 0.8327
Al-Fe 1.03 × 105 17.511 4.8643 3.3527 3.0862 1.6611
Al-Cu 482 8.899 −2.8297 3.7479 3.2019 4.3551
Fe-Fe 1.233 × 106 13.622 5.0695 2.5591 2.5215 3.8725
Fe-Cu 461 7.363 −3.7766 3.1410 2.9191 5.7241
Cu-Cu 1069 9.321 −2.3005 3.2640 2.8665 0.0586

FIG. 8. Partial vibrational DOS for a 208-atom orthorhombic
approximant of icosahedral quasicrystal, calculated directly by DFT
(solid lines), or by EOPP (broken lines).

APPENDIX C: REPLICA EXCHANGE SIMULATIONS

To enhance the efficiency with which our simulations
explore the configurational ensemble, we employ a replica
exchange mechanism [37], also known as parallel tempering,
in which we perform many runs simultaneously at different
temperatures. The probability for a configuration i of energy
Ei to occur at temperature Ti is

Pi = 
(Ei )e
−βiEi/Zi, (C1)

where 
(E ) is the configurational density of states, Zi is the
partition function at temperature Ti, and βi = 1/kBTi. The
joint probability for configuration i at Ti and configuration j
at Tj is

P = PiPj = (
(Ei)
(Ej )e
−(βiEi+β j E j )/ZiZ j . (C2)

Now consider swapping temperature between configurations i
and j. The joint probability for configuration i to occur in the
equilibrium ensemble at temperature Tj and configuration j to
occur at temperature Ti is

P′ = (
(Ei )
(Ej )e
−(β j Ei+βiE j )/ZiZ j (C3)

= Pe(βi−β j )Ei−(βi−β j )Ej . (C4)

Hence, if the swap is performed with probability P′/P =
e�β�E , then equilibrium is preserved following the swap.

This process works most efficiently if energy fluctuations
are sufficiently large that the energy distributions H (E ) at
adjacent temperatures overlap, so that swaps occur frequently.
In this case, a given run (sequence of consecutive config-
urations) will diffuse between low and high temperatures.
Rapid structural evolution at high temperatures thus provides
an ongoing source of independent configurations for low
temperatures where structural change is intrinsically slow.

We perform isochoric replica-exchange atomistic simula-
tions in the temperature range of 200–1800 K, for several sizes
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TABLE III. Cooling simulations for sequence of quasicrystal ap-
proximants. All sizes have the same composition Al65.0Cu22.5Fe12.5.
Column MCS is number of Monte Carlo attempts per atom for the
lattice-gas stage of the simulation, MDS number of MD steps, time
step dt = 4 fs, per one cycle of the simulation. Final column lists the
total number of cycles in the whole simulation.

L/S Supercell T-range Na MCS MDS cycles/103

8/5 1 650–1824 9844 25 100 33
5/3 1 200–1800 2324 30 500 91
3/2

√
2 × √

2 × 1 400–1800 1096 25 200 80
2/1 2 × 2 × 2 200–1811 1032 25 200 110

of approximants: 2/1 (128–129 atoms), 3/2 (548 atoms), 5/3
(2324 atoms), and 8/5 (9844 atoms). The basic cycle of the
simulation is a species-swap fixed-lattice metropolis Monte
Carlo (MC) stage, consisting of ∼30–100 swap attempts per
pair, followed by 100–200 MD steps starting directly from the
final MC configuration, and finally attempted replica swaps
between adjacent temperatures. The temperatures spacing in-
creases linearly with temperature following

�T = α√
Na

, (C5)

where α is a multiplicative coefficient and Na number of
atoms; such spacing guarantees uniform replica exchange ac-
ceptance rates assuming constant heat capacity. Consequently,
for large systems an added load is due to the increasingly
finer temperature grid. The parameters of most important
simulations are summarized in Table III.

APPENDIX D: HYPERSPACE RECONSTRUCTION

Lifting a raw atomic structure to hyperspace amounts to
associating the position of each atom to an ideal point in a
6D hypercubic crystal. We require that the projection of the
ideal position into physical space match the actual atomic
position to within a tolerance rcore. Additionally, we require
that the ideal position lie close in 6D space to the physi-
cal 3D space within “atomic surfaces” of definite positions,
shapes and sizes. Specifically, we choose τ 2-triacontahedra
at 6D nodes, and unit triacontahedra at 6D body-centers, of
radius r6D=11.7 Å in the fivefold direction. In real space, the
projected sites are separated by at least 1.05 Å. We obtain
unambiguous registration with rcore = 0.45 Å.

We register each structure by: (i) identifying all Al12Cu
icosahedra in the actual atomic structure (centers of perfectly
icosahedral clusters will have the smallest positional deviation
from ideal sites); (ii) mapping these to the even-only body-
center sublattice (hence resolving the even/odd ambiguity);
(iii) Given the relative shift obtained from step (ii), we attempt
to map the entire set of atoms positions to the ideal 6D sites.
In practice about 80% of sites map, with the exceptions being
primarily the disordered inner shells of the pMI .

Working with periodically bounded boxes in real space
results in finite resolution of the perp-space, namely d⊥

res =
aq/

√
F 2

n + F 2
n−1, Fn are Fibonacci numbers and aq = 4.462 Å.

For our 8/5 approximant, d⊥
res = aq/

√
52 + 32 ∼ 0.765 Å.

The atomic surfaces that result from the registration for our
largest 8/5 approximant, after averaging over 3000 configura-
tions, are shown in Fig. 4.

APPENDIX E: TERNARY PHASE DIAGRAMS

We model phase stability by exploring the full compo-
sition space. In addition to the quasicrystal phase, we in-
clude the pure species in their favored structures, all known
binary Al-Cu and Al-Fe phases, and all known ternary
phases: λ-Al3Fe.mC102, β-AlCuFe, Al6Mn structure type
τ1-Al23CuFe4.oC28, ω-Al7Cu2Fe, φ-Al10Cu10Fe. All of the
phases have known structures with the exception of β and φ,
exhibiting vacancy and chemical disorder; the φ phase was
claimed to be a superstructure of Al3Ni2 structure [48] but
belongs to the same B2-type family.

To represent the β phase family, we evaluated DFT co-
hesive energies for every member of the 2 × 2 × 2-supercell
ensemble of the cubic B2 structure type, under the constraint
of fixing the cube-vertex occupation as Al. For a given Cu
content, we created a list of all symmetry-independent Cu/Fe
orderings on the body-center sublattice. Ground states with
1–5 Cu atoms per 16-atom supercell revealed that 2–4 Cu
atom range yields stable structures, while 1/16 or 5/16 Cu
atom compositions (with 7/16 and 3/16 Fe atom content, re-
spectively) are unstable. By examining the electronic DOS we
concluded that the ternary β phase is electronically stabilized
at low T by pushing EF beyond the steep Fe-d-band shoulder,
optimally by substituting 3Fe →3Cu (per 16-atoms). This
ternary β-phase is predicted to be stable at T = 0 K in the
composition range 12.5–25% of Cu.

At the Cu-rich composition, the β phase takes a vacancy-
ordered form with experimental composition Al10Cu10Fe.
Since we could not find any promising T = 0 K structure in
the 2 × 2 × 2 supercell, and larger supercells ensembles are
inaccessible to our direct DFT method, we proceeded with
EOPP potentials and fixed-site lattice-gas annealing [35], in
which atoms are constrained to occupy fixed lattice of sites,
but pairs of species with different chemistry are allowed to
swap their positions. Using this method we discovered a T =
0 K stable state in a 3 × 3 × 3 supercell, whose composition
can be described by a single parameter x = 4/(2×32) ∼0.074
and composition (Al0.5−xCux )(Cu0.5−2xFexVacx), where the
parentheses separate cube-vertex/body-center sublattices, re-
spectively.

The quasicrystal family of structures is represented by
2/1 and 5/3 approximants. The former turns out to be the
most stable T = 0 K structure within the family (δE = +1.8
meV/atom), while the 5/3 model at (δE = +4.0 meV/atom
is our best representation of the quasicrystal phase.

To predict the phase diagram at finite temperature, T > 0,
we add the free energy FTot in Eq. (G1) to the DFT-calculated
enthalpy for each structure considered. Because full phonon
calculations for large QC approximants are prohibitive, we
assume that they all share the same Fh as the 2/1 approximant.
We then compute the convex hull of the set of free energies
(see Fig. 6). Vertices of the convex hull are predicted to be
stable. Line segments and enclosed triangles are predicted
tie-lines and tie-planes connecting coexisting phases. We also
include a few structures whose free energies lie slightly above
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the convex hull by up to 4 meV/atom. Structures are labeled
using their phase name followed by their Pearson symbol.

All known structures lie on or near the convex hull, both
at T = 0 K and at T = 600 K, with the exception of Al2Fe
in its observed structure of Pearson type aP19. Instead we
find the hypothetical Al2Fe structure of Pearson type tI6 that
is believed to be more energetically stable [49]. Some bina-
ries extend into the ternary composition space, for example
Al(Cu,Fe).cP2. The two quasicrystal approximants, iQC-2/1
and iQC-5/3 (reference numbers 21 and 20, respectively),
swap stability between low and high temperature leading to
changes in the vertices, edges, and facets of the convex hull
as can be seen by comparing the two diagrams in Fig. 6. This
occurs because the smaller 2/1 approximant has an optimized
structure and composition at which a deep pseudogap appears
and the energy reaches the convex hull, whereas the larger 5/3
approximant lacks a unique optimized structure and composi-
tion but instead enjoys a large anharmonic contribution to its
entropy. The 2/1 approximant appears on the convex hull at
T = 0 despite having E > 0 according to DFT because of the
quantum zero point vibrational (or competing phases) that is
contained in Fh. The 5/3 approximant is the largest for which
we can reliably obtain its low temperature enthalpy by DFT,
and hence we take it as a proxy for the true quasicrystal state.

Thus we predict that the 2/1 approximant should be stable
at low temperatures but transform to the icosahedral qua-
sicrystal at elevated temperatures of 600 K and above. Corre-
spondingly, the quasicrystal loses stability at low temperature
and transforms into the 2/1 approximant. Many actual or
implicit transformations have been reported for Al-Cu-Fe qua-
sicrystals [50–53]. Fine detail of the phase diagram at 600 C
[39] revealed that except for small window of single-phase
stable quasicrystal composition around Al62Cu25.5Fe12.5, the
quasicrystal phase transforms into a rhombohedral approx-
imant (R-5/3 in our notation), and this transformation is
reversible [54]. The quasicrystal phase field shrinks with
decreasing temperature [43] but remains finite at T = 560 C, a
temperature above our predicted transformation. At low tem-
peratures the kinetics becomes slow and the transformation
will be inhibited, so the quasicrystal remains metastable at low
temperatures.

According to the experimental phase diagram, our
energy minimizing, electronically optimized composition
(Al65Cu22.5Fe12.5) with EF in the center of the pseudogap lies
in a coexistence region of three phases: λ, ω, and R, and the
latter should have composition Al63.5Cu24Fe12.5 in agreement
with Ref. [54]. However, the center of the R-approximant
phase field is around xCu = 0.26 and xFe = 0.12, not far
from the composition of our low-temperature winner, the 2/1
approximant Al63.3Cu25.8Fe10.9, which lies just outside the
R-phase stability range.

We simulated the R-phase structure in a cell of 718 atoms
at our optimized composition of Al65Cu22.5Fe12.5. Although
the optimal structure places EF at the center of a pseudogap,
the energy remains higher than the cubic 5/3 approximant by
∼ 3 meV/atom. Due to kinetic barriers at low temperatures,
existence of the 2/1 approximant cannot be ruled out. Ade-
quate evaluation of all competing phases around 800–1000 K
would require systematic variation of composition and density
of all competing phases.

TABLE IV. Energetic competition (in meV/atom) within cubic
approximant family at equal composition Al65.0Cu22.5Fe12.5, placing
EF exactly at the center of the pseudogap (see Fig. 9). 2/1 and
3/2 approximants are modeled in supercells of sizes 2 × 2 × 2 and√

2 × √
2 × 1, respectively. The largest 8/5 approximant (last row

of the Table) is inaccessible to DFT evaluation. Notice the enthalpy
HDFT decreases with system size. Column �EDFT from convex hull
evaluation would be equal to the �HDFT if the approximant compo-
sitions were strictly equal.

Nat �Eeopp HDFT �HDFT �EDFT

5/3 2324 Ref. −293.0 Ref. +4.0
3/2 1096 +0.9 −290.1 +2.9 +7.1 (+3.1)
2/1 1032 +5.3 −284.6 +8.4 +12.50 (+8.5)
8/5 9846 +0.3 – –

APPENDIX F: ENERGETIC OPTIMIZATION
OF QUASICRYSTAL APPROXIMANTS

The most direct comparison between approximants is
achieved under the constraint of equal density/composition
revealing the impact of structure alone. Also, these are the
conditions under which the EOPP energies are most mean-
ingful (see Appendix B). Expressing atomic density per b3

volume, where b ∼ 12.2 Å is the side of the 2/1 cubic cell,
we chose a density of 129.51 atoms/b3 and composition
Al65Cu22.5Fe12.5. To satisfy this constraint accurately for all
approximants, we worked with the 2/1 approximant in a
2 × 2 × 2 supercell (1032 atoms), the 3/2 approximant in
a

√
2 × √

2 × 1 supercell with 1096 atoms, and the 5/3 in
its unit cell with 2324 atoms. Supercells were also required
to counter the size effect when measuring anharmonic heat
capacity, Fa. The resulting optimized energies are presented
in Table IV. The sequence of formation enthalpies, both for
EOPP and full DFT calculations, appears to favor larger ap-
proximants that minimize the phason strain and accommodate
larger superclusters.

Since the optimal density and composition could vary
between approximants, we varied these individually for each
approximant within its conventional unit cell, with the results
presented previously in Table I. Again the enthalpy is found to
be a decreasing function of approximant size, both for EOPP
and for DFT. However, the energy relative to the convex hull is
minimized for the smallest approximant. This is because the
larger approximants favor greater Fe content, and the strong
bonding of Fe (see Fig. 2) causes a strong slope of the convex
hull facets in the direction of increasing Fe.

The 2/1 approximant system size (128–129 atoms) al-
lowed for full exploration of all degrees of freedom. Under
EOPP the icosahedral structure forms easily from the melt,
and we can apply full DFT refinement to simultaneously
explore compositional and density variation for EOPP pre-
optimized models. The structure with lowest �E occured at
increased Cu content, and density of 128 atoms/cell (identical
with the Katz-Gratias model prediction). Starting from this
model, we then performed AIMD for 5000 steps (5-fs time
step) of MD annealing at 1100, 900, and 700 K, and quenched
several snapshots from each temperature. The lowest energy
snapshot was from the 900 K annealing batch and yielded the
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FIG. 9. Electronic density of states for 2/1, 3/2, and 5/3 approx-
imants at fixed composition Al65.0Cu22.5Fe12.5. 2/1 and 3/2 approx-
imants represented by supercells (see Table IV) contain amount of
frozen disorder comparable to the 5/3 approximant. Resolution with
Gaussian σ = 0.02 eV (a), 0.01 eV (b), and 0.006 eV (c).

best atomic structure. This optimal structure exhibits a deep
pseudogap (0.015 states/eV/atom according to tetrahedron
method calculation; see Fig. 10) centered on the Fermi energy.
The pseudogap becomes shallower and broader for structures
in the equlibrium ensemble at higher temperatures.

In the 3/2 approximant cell, we explored several densities:
544 (KG model density), 552, and 448 atoms/unit cell. The
composition was refined by seeking deepening of the pseudo-
gap and controlling the Fermi energy assuming a rigid-band
picture and simple valence rules. The best structure was a
552-atom model, greater by 1.5% than the KG-model density.
This structure was then annealed under AIMD for 5000 steps
at 1250 K; we observed strong atomic diffusion and some Al
atoms moved as far as 6 Å. Subsequently, we cooled gradually
from 1250 K to 800 K in another 5000 steps, and finally from
800 K down to 300 K in 1000 steps. At the end, we found
that maximal displacement was 5.1 Å for Al, 2.9 Å for Cu,
and 0.5 Å for Fe atoms; 20 Cu and 100 Al atoms displaced by
more than 0.5 Å. Despite that, the energy of the final annealed
configuration was nearly identical to the initial configuration.
Our best 3/2 approximant has a narrow true gap (according to
the tetrahedron method) at EF .

The 5/3 approximant system size did not allow for sys-
tematic variations, but we did explore several densities (2304,
2324, 2338 atoms) and compositions, using pseudogap depth
and Fermi level position as guides. The final structure was
optimized under ab initio relaxation in ∼70 ionic steps. AIMD
annealing was not feasible. In contrast to the smaller approx-
imants, all 5/3 models considered had broader and less deep
pseudogaps. Nonetheless, the 5/3 approximant achieves the
lowest formation enthalpy of the approximants, most likely as
a result of its greatest Fe content (as seen in Fig. 2 the two

FIG. 10. Electronic density of states for 2/1, 3/2, and 5/3 ap-
proximants at their optimal compositions (see Table I), eigenenergies
density smeared using Gaussian σ = 0.02 eV (a). Zoom into fine-
accuracy tetrahedron method DOS calculation using 10×10 × 10
and 6 × 6 × 6 meshes, respectively, for 2/1 and 3/2 approximants in
(b) and (c). 5/3 approximant (2×2 × 2 calculation) with resolutions
σ = 0.006 eV (b) and 0.002 eV (c).

strongest bonds are near-neighbor Al-Fe and next-nearest-
neighbor Fe-Fe).

APPENDIX G: THERMODYNAMICS

The Helmholtz free energy F (N,V, T ) can be approxi-
mately decomposed into a relaxed T = 0 K energy E0, plus
corrections due to harmonic vibrational free energy, Fh, anhar-
monic positional disorder Fa, and electronic excitations Felect.
Thus, we write

FTot = E0 + Fh + Fa + Fe. (G1)

The harmonic vibrational free energy of a single phonon
mode of frequency ω is

fh(ω) = kBT ln [2 sinh (h̄ω/2kBT )]. (G2)

Notice that as kBT 
 h̄ω, fh(ω) → h̄ω/2, which is the
zero point vibrational energy. As kBT � h̄ω, fh(ω) →
kBT ln (h̄ω/kBT ), which is the classical limit of the free
energy. The full harmonic free energy

Fh(T ) =
∑

i

fh(ωi ). (G3)

The anharmonic contribution includes corrections due to
shifts in phonon frequency with large amplitude of oscilla-
tion and additional discrete degrees of freedom connected to
chemical substitution and possible additional tiling flips. At
low temperature these contributions can be neglected, so we
only include them beyond a temperature, T0, which we set at
200 K. At these elevated temperatures positional degrees of

013196-11
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freedom behave nearly classically, so we will evaluate Fa from
our classical MC/MD simulations using EOPP.

In the canonical NV T ensemble, the Helmholtz free energy
F (N,V, T ) = U − T S has the differential

dF (N,V, T ) = −SdT − pdV + μdN. (G4)

In particular, S = −∂F/∂T . The entropy is also related to the
heat capacity C = ∂U/∂T through C/T = ∂S/∂T . Hence,

C = −T
∂2F

∂T 2
. (G5)

Conveniently, C can be obtained at high temperatures from
classical MC/MD simulation through fluctuations of the en-
ergy,

C = 1

kBT 2
(〈E2〉 − 〈E〉2). (G6)

C, thus obtained, includes contributions from both harmonic
and anharmonic atomic vibrations, and potentially also from
chemical substitution and tile flipping.

Because we seek the anharmonic component of the free
energy, we define Ca ≡ C − 3NkB for T > T0, and Ca ≡ 0 for
T < T0. We now integrate Ca once to obtain

Sa(T ) =
∫ T

0

Ca(T ′)
T ′ dT ′, (G7)

and then integrate once more to obtain

Fa(T ) = −
∫ T

T0

Sa(T ′)dT ′. (G8)

By definition, Ca, Sa, and Fa all vanish below T0, then grow
continuously at high T .

The electronic free energy is obtained from the super-
position of single state energies and entropies. An elec-
tronic state of energy E is occupied with probability
given by the Fermi-Dirac occupation function, fμ(E ) =
1/{exp [(E − μ)/kBT ] + 1}. For N electrons, the chemical
potential is defined by the requirement that N = ∑

i fμ(Ei ) =
N . Fractional state occupation leads to electronic entropy

Se(E ) = −kB{ fμ(E ) ln fμ(E ) + [1 − fμ(E )] ln [1 − fμ(E )]}.
(G9)

Summing over electronic states, we obtain free energy

Fe =
∑

i

[Ei fμ(Ei ) − T Se(Ei )]. (G10)

The overlapping energy distributions at different tempera-
tures created by replica exchange provide an opportunity for
accurate calculation of heat capacity, entropy, and free energy
through the method of histogram analysis. At a single temper-
ature T , the frequency distribution of simulated energies E is
proportional to the Boltzmann probability

PT (E ) = 
(E )e−E/kBT /Z (T ). (G11)

This equation can be inverted to obtain the density of states

(E ) ∼ HT (E )e+E/kBT , where HT (E ) is a normalized his-
togram of energies obtained from a simulation at fixed temper-
ature T . Given the density of states, the partition function may
be calculated (up to an undetermined multiplicative factor) by
integrating

Z =
∫

dE
(E )e−E/kBT . (G12)

The free energy is determined (up to an additive linear func-
tion of T) from

F = −kBT log Z, (G13)

and all other thermodynamic functions can be obtained by
differentiation. Notice that Z (T ) and F (T ) are obtained as
continuous functions of temperature T over a range of tem-
peratures surrounding the original simulation temperature.

The same approach interpolates between the fixed simula-
tion temperatures by consistently merging densities of states
obtained from each temperature [55]. Up to an unknown
multiplicative constant, we have


(E ) =
∑

T HT (E )∑
T e(FT −E )/kBT

, (G14)

where the free energies FT must be obtained self-consistently
with 
(E ) from Eqs. (G14) and (G13). By setting the value of
F and its derivative S = −∂F/∂T to values determined from
first principles methods at the lowest simulation temperature,
we obtain absolute free energy across the entire simulated
temperature range.

[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic
Phase with Long-Range Orientational Order and no Transla-
tional Symmetry, Phys. Rev. Lett. 53, 1951 (1984).

[2] D. Levine and P. J. Steinhardt, Quasicrystals: A New Class of
Ordered Structures, Phys. Rev. Lett. 53, 2477 (1984).

[3] P. Bak, Icosahedral crystals: Where are the atoms? Phys. Rev.
Lett. 56, 861 (1986).

[4] H. Takakura, C. P. Gomez, A. Yamamoto, M. De Boissieu, and
A. P. Tsai, Atomic structure of the binary icosahedral YbCd
quasicrystal, Nat. Mater. 6, 58 (2006).

[5] V. Elser and C. L. Henley, Crystal and Quasicrystal Structures
in Al-Mn-Si Alloys, Phys. Rev. Lett. 55, 2883 (1985).

[6] C. L. Henley, and V. Elser, Quasicrystal structure of
(Al, Zn)49Mg32, Philos. Mag. B 53, L59 (1986).

[7] J. E. S. Socolar, Weak matching rules for quasicrystals,
Commun. Math. Phys. 129, 599 (1990).

[8] P. Gummelt, Penrose tilings as coverings of congruent
decagons, Geometriae Dedicata 62, 1 (1996).

[9] P. J. Steinhardt and H.-C. Jeong, A simpler approach to penrose
tiling with implications for quasicrystal formation, Nature 382,
431 (1996).

[10] T. Fujiwara and T. Yokokawa, Universal Pseudogap at Fermi
Energy in Quasicrystals, Phys. Rev. Lett. 66, 333 (1991).

[11] X. Wu, S. W. Kycia, C. G. Olson, P. J. Benning, A. I. Goldman,
and D. W. Lynch, Electronic Band Dispersion and Pseudo-
gap in Quasicrystals: Angular-Resolved Photoemission Stud-
ies on Icosahedral Al70Pd21.5Mn8.5, Phys. Rev. Lett. 75, 4540
(1995).

013196-12

https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.56.861
https://doi.org/10.1103/PhysRevLett.56.861
https://doi.org/10.1103/PhysRevLett.56.861
https://doi.org/10.1103/PhysRevLett.56.861
https://doi.org/10.1038/nmat1799
https://doi.org/10.1038/nmat1799
https://doi.org/10.1038/nmat1799
https://doi.org/10.1038/nmat1799
https://doi.org/10.1103/PhysRevLett.55.2883
https://doi.org/10.1103/PhysRevLett.55.2883
https://doi.org/10.1103/PhysRevLett.55.2883
https://doi.org/10.1103/PhysRevLett.55.2883
https://doi.org/10.1080/13642818608240638
https://doi.org/10.1080/13642818608240638
https://doi.org/10.1080/13642818608240638
https://doi.org/10.1080/13642818608240638
https://doi.org/10.1007/BF02097107
https://doi.org/10.1007/BF02097107
https://doi.org/10.1007/BF02097107
https://doi.org/10.1007/BF02097107
https://doi.org/10.1007/BF00239998
https://doi.org/10.1007/BF00239998
https://doi.org/10.1007/BF00239998
https://doi.org/10.1007/BF00239998
https://doi.org/10.1038/382431a0
https://doi.org/10.1038/382431a0
https://doi.org/10.1038/382431a0
https://doi.org/10.1038/382431a0
https://doi.org/10.1103/PhysRevLett.66.333
https://doi.org/10.1103/PhysRevLett.66.333
https://doi.org/10.1103/PhysRevLett.66.333
https://doi.org/10.1103/PhysRevLett.66.333
https://doi.org/10.1103/PhysRevLett.75.4540
https://doi.org/10.1103/PhysRevLett.75.4540
https://doi.org/10.1103/PhysRevLett.75.4540
https://doi.org/10.1103/PhysRevLett.75.4540


SPONTANEOUS FORMATION OF THERMODYNAMICALLY … PHYSICAL REVIEW RESEARCH 2, 013196 (2020)

[12] V. A. Rogalev, O. Groning, R. Widmer, J. H. Dil, F. Bisti,
L. L. Lev, T. Schmitt, and V. N. Strocov, Fermi states and
anisotropy of Brillouin zone scattering in the decagonal Al-Ni-
Co quasicrystal, Nat. Commun. 6, 8607 (2015).

[13] V. Elser, Comment on “Quasicrystals: A New Class of Ordered
Structures,” Phys. Rev. Lett. 54, 1730 (1985).

[14] C. L. Henley, Random tiling models, in Quasicrystals: The State
of the Art (World Scientific, Singapore, 1991), pp. 429–524.

[15] M. Widom, Elastic stability and diffuse scattering in icosahedral
quasicrystals, Philos. Mag. Lett. 64, 297 (1991).

[16] A.-P. Tsai, A. Inoue, and T. Masumoto, A stable quasicrystal in
Al-Cu-Fe system, Jpn. J. Appl. Phys. 26, L1505 (1987).

[17] J. Nayak, M. Maniraj, A. Rai, S. Singh, P. Rajput, A.
Gloskovskii, J. Zegenhagen, D. L. Schlagel, T. A. Lograsso,
K. Horn, and S. R. Barman, Bulk Electronic Structure of
Quasicrystals, Phys. Rev. Lett. 109, 216403 (2012).

[18] L. Bindi, P. J. Steinhardt, N. Yao, and P. J. Lu, Icosahedrite,
Al63Cu24Fe13, the first natural quasicrystal, Am. Mineral. 96,
928 (2011).

[19] M. Widom, K. J. Strandburg, and R. H. Swendsen, Quasicrystal
Equilibrium State, Phys. Rev. Lett. 58, 706 (1987).

[20] M. Dzugutov, Formation of a Dodecagonal Quasicrystalline
Phase in A Simple Monatomic Liquid, Phys. Rev. Lett. 70, 2924
(1993).

[21] M. Engel, P. F. Damasceno, C. L. Phillips, and S. C. Glotzer,
Computational self-assembly of a one-component icosahedral
quasicrystal, Nat. Mater. 14, 109 (2014).

[22] R. Phillips, J. Zou, A. E. Carlsson, and M. Widom, Electronic-
structure-based pair potentials for aluminum-rich cobalt com-
pounds, Phys. Rev. B 49, 9322 (1994).
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[28] M. Mihalkovič, J. Richmond-Decker, C. Henley, and M.
Oxborrow, Ab initio tiling and atomic structure for decagonal
ZnMgY quasicrystal, Philos. Mag. 94, 1529 (2014).

[29] C. L. Henley, Clusters, phason elasticity and entropic stabiliza-
tion: A theoretical perspective, Philos. Mag. 86, 1123 (2006).
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[49] M. Mihalkovič and M. Widom, Structure and stability of Al2Fe
and Al5Fe2: First-principles total energy and phonon calcula-
tions, Phys. Rev. B 85, 014113 (2012).

[50] P. A. Bancel, Dynamical Phasons in a Perfect Quasicrystal,
Phys. Rev. Lett. 63, 2741 (1989).

013196-13

https://doi.org/10.1038/ncomms9607
https://doi.org/10.1038/ncomms9607
https://doi.org/10.1038/ncomms9607
https://doi.org/10.1038/ncomms9607
https://doi.org/10.1103/PhysRevLett.54.1730
https://doi.org/10.1103/PhysRevLett.54.1730
https://doi.org/10.1103/PhysRevLett.54.1730
https://doi.org/10.1103/PhysRevLett.54.1730
https://doi.org/10.1080/09500839108214625
https://doi.org/10.1080/09500839108214625
https://doi.org/10.1080/09500839108214625
https://doi.org/10.1080/09500839108214625
https://doi.org/10.1143/JJAP.26.L1505
https://doi.org/10.1143/JJAP.26.L1505
https://doi.org/10.1143/JJAP.26.L1505
https://doi.org/10.1143/JJAP.26.L1505
https://doi.org/10.1103/PhysRevLett.109.216403
https://doi.org/10.1103/PhysRevLett.109.216403
https://doi.org/10.1103/PhysRevLett.109.216403
https://doi.org/10.1103/PhysRevLett.109.216403
https://doi.org/10.2138/am.2011.3758
https://doi.org/10.2138/am.2011.3758
https://doi.org/10.2138/am.2011.3758
https://doi.org/10.2138/am.2011.3758
https://doi.org/10.1103/PhysRevLett.58.706
https://doi.org/10.1103/PhysRevLett.58.706
https://doi.org/10.1103/PhysRevLett.58.706
https://doi.org/10.1103/PhysRevLett.58.706
https://doi.org/10.1103/PhysRevLett.70.2924
https://doi.org/10.1103/PhysRevLett.70.2924
https://doi.org/10.1103/PhysRevLett.70.2924
https://doi.org/10.1103/PhysRevLett.70.2924
https://doi.org/10.1038/nmat4152
https://doi.org/10.1038/nmat4152
https://doi.org/10.1038/nmat4152
https://doi.org/10.1038/nmat4152
https://doi.org/10.1103/PhysRevB.49.9322
https://doi.org/10.1103/PhysRevB.49.9322
https://doi.org/10.1103/PhysRevB.49.9322
https://doi.org/10.1103/PhysRevB.49.9322
https://doi.org/10.1103/PhysRevB.53.9021
https://doi.org/10.1103/PhysRevB.53.9021
https://doi.org/10.1103/PhysRevB.53.9021
https://doi.org/10.1103/PhysRevB.53.9021
https://doi.org/10.1103/PhysRevB.56.7905
https://doi.org/10.1103/PhysRevB.56.7905
https://doi.org/10.1103/PhysRevB.56.7905
https://doi.org/10.1103/PhysRevB.56.7905
https://doi.org/10.1103/PhysRevB.85.092102
https://doi.org/10.1103/PhysRevB.85.092102
https://doi.org/10.1103/PhysRevB.85.092102
https://doi.org/10.1103/PhysRevB.85.092102
https://doi.org/10.1103/PhysRevB.88.064201
https://doi.org/10.1103/PhysRevB.88.064201
https://doi.org/10.1103/PhysRevB.88.064201
https://doi.org/10.1103/PhysRevB.88.064201
https://doi.org/10.1038/nmat2044
https://doi.org/10.1038/nmat2044
https://doi.org/10.1038/nmat2044
https://doi.org/10.1038/nmat2044
https://doi.org/10.1080/14786435.2014.888499
https://doi.org/10.1080/14786435.2014.888499
https://doi.org/10.1080/14786435.2014.888499
https://doi.org/10.1080/14786435.2014.888499
https://doi.org/10.1080/14786430500419403
https://doi.org/10.1080/14786430500419403
https://doi.org/10.1080/14786430500419403
https://doi.org/10.1080/14786430500419403
https://doi.org/10.1080/14786430802302026
https://doi.org/10.1080/14786430802302026
https://doi.org/10.1080/14786430802302026
https://doi.org/10.1080/14786430802302026
https://doi.org/10.1103/PhysRevB.43.993
https://doi.org/10.1103/PhysRevB.43.993
https://doi.org/10.1103/PhysRevB.43.993
https://doi.org/10.1103/PhysRevB.43.993
https://doi.org/10.1080/13642819608239141
https://doi.org/10.1080/13642819608239141
https://doi.org/10.1080/13642819608239141
https://doi.org/10.1080/13642819608239141
https://doi.org/10.1107/S0108767313005035
https://doi.org/10.1107/S0108767313005035
https://doi.org/10.1107/S0108767313005035
https://doi.org/10.1107/S0108767313005035
https://doi.org/10.1080/14786435.2010.515264
https://doi.org/10.1080/14786435.2010.515264
https://doi.org/10.1080/14786435.2010.515264
https://doi.org/10.1080/14786435.2010.515264
https://doi.org/10.1103/PhysRevB.65.104205
https://doi.org/10.1103/PhysRevB.65.104205
https://doi.org/10.1103/PhysRevB.65.104205
https://doi.org/10.1103/PhysRevB.65.104205
https://doi.org/10.1007/s11661-013-2000-8
https://doi.org/10.1007/s11661-013-2000-8
https://doi.org/10.1007/s11661-013-2000-8
https://doi.org/10.1007/s11661-013-2000-8
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1016/0022-3093(93)90340-4
https://doi.org/10.1016/0022-3093(93)90340-4
https://doi.org/10.1016/0022-3093(93)90340-4
https://doi.org/10.1016/0022-3093(93)90340-4
https://doi.org/10.1088/0953-8984/8/15/002
https://doi.org/10.1088/0953-8984/8/15/002
https://doi.org/10.1088/0953-8984/8/15/002
https://doi.org/10.1088/0953-8984/8/15/002
https://doi.org/10.1103/PhysRevLett.81.598
https://doi.org/10.1103/PhysRevLett.81.598
https://doi.org/10.1103/PhysRevLett.81.598
https://doi.org/10.1103/PhysRevLett.81.598
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.013196
https://doi.org/10.1038/srep38117
https://doi.org/10.1038/srep38117
https://doi.org/10.1038/srep38117
https://doi.org/10.1038/srep38117
https://doi.org/10.1007/s11669-005-0061-0
https://doi.org/10.1007/s11669-005-0061-0
https://doi.org/10.1007/s11669-005-0061-0
https://doi.org/10.1007/s11669-005-0061-0
https://doi.org/10.1103/PhysRevB.44.2071
https://doi.org/10.1103/PhysRevB.44.2071
https://doi.org/10.1103/PhysRevB.44.2071
https://doi.org/10.1103/PhysRevB.44.2071
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/S0167-577X(03)00349-5
https://doi.org/10.1016/S0167-577X(03)00349-5
https://doi.org/10.1016/S0167-577X(03)00349-5
https://doi.org/10.1016/S0167-577X(03)00349-5
https://doi.org/10.1103/PhysRevB.85.014113
https://doi.org/10.1103/PhysRevB.85.014113
https://doi.org/10.1103/PhysRevB.85.014113
https://doi.org/10.1103/PhysRevB.85.014113
https://doi.org/10.1103/PhysRevLett.63.2741
https://doi.org/10.1103/PhysRevLett.63.2741
https://doi.org/10.1103/PhysRevLett.63.2741
https://doi.org/10.1103/PhysRevLett.63.2741
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