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ABSTRACT: Correlations reduce the configurational entropies of liquids
below their ideal gas limits. By means of first-principles molecular dynamics
simulations, we obtain accurate pair correlation functions of liquid metals,
then subtract the mutual information content of these correlations from the
ideal gas entropies to predict the absolute entropies over a broad range of
temperatures. We apply this method to liquid aluminum and copper and
demonstrate good agreement with experimental measurements; then, we
apply it to predict the entropy of a liquid aluminum−copper alloy.
Corrections due to electronic entropy and many-body correlations are
discussed.

■ INTRODUCTION

The remarkable equivalence of information and entropy, as
recognized by Shannon1 and Jaynes,2 implies that the atomic
coordinates of a solid or liquid contain all of the information
that is needed to calculate its configurational entropy.
Qualitatively, ordered structures are fully described with little
information. For example, specifying a crystal lattice and its
atomic basis uniquely determines the positions of infinitely
many atoms in a crystallographic structure using a finite
amount of information, so the entropy per atom vanishes.
Meanwhile a disordered structure requires separately specifying
information about each atom, which implies a finite entropy per
atom. For example, to specify the distribution of chemical
species in a random equiatomic binary solid solution requires
log2 2 = 1 bit of information for each atom. The principle also
holds for gases and liquids, with suitable modification to
account for continuous positional degrees of freedom, as
outlined below. Thus configurational entropies depend on
configurations alone and do not require separate knowledge of
the interatomic interactions, in contrast to energies, which
require both the configurations and the interactions.
Given a distribution of discrete states i with probabilities pi,

the expected information required to specify the actual state is1

∑= −S k p p/ ln
i
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By choosing the natural logarithm and assigning units of kB we
identify the information as entropy, as suggested by von
Neumann.3 In quantum statistical mechanics4 we take the
Boltzmann probability distribution, pi = exp(−Ei/kBT)/Z, with
the partition function Z as the normalizing factor. Classically,
the distribution becomes continuous. In the canonical ensemble
the N-particle entropy in volume V becomes5
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where f N(r1, p1, ..., rN, pN) is the N-body probability density as a
function of the atomic positions, ri, and momenta, pi. This
expression, including the factors of Planck’s constant, h, can be
derived as the high-temperature limit of the quantum
expression eq 1.
Applying eq 2 to an uncorrelated fluid of density ρ = N/V

yields the entropy per atom of the classical ideal gas6

ρ= − ΛS k/
5
2

ln( )ideal B
3

(3)

The 5/2 term in eq 3 includes 3/2 coming from 3D integrals of
the single-body Maxwell−Boltzmann momentum distribution
f1(p) = ρ(2πmkBT)

−3/2 exp(−p2/2mkBT), plus an additional 2/
2 = 1 arising from the second term in the Stirling
approximation ln N! ≈ N ln N − N. The quantum de Broglie

wavelength πΛ = h mk T/22
B diverges at low T, so this

classical Sideal approaches −∞. However, the quantization of
energy levels in a finite volume yields the low-temperature limit
S → 0 as T → 0.6−8 Thus Sideal is an absolute entropy,
consistent with the conventional choice of S = 0 at T = 0. Note
that Sideal → −∞ when we take the thermodynamic limit of
infinite volume prior to the low-temperature limit T → 0.
However, the ideal gas is not a suitable model for real matter at
low temperature. More realistic models with a low density of
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states at low energy (e.g., harmonic solids) exhibit vanishing
low-temperature entropy, consistent with the usual third law of
thermodynamics.9,10

Equation 2 can be reexpressed in terms of n-body
distribution functions,5,11,12 gN

(n), as

= + + +S Nk s s s/ ...N B 1 2 3 (4)

with the n-body terms

ρ= − Λs
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The subscripts N indicate that the correlation functions are
defined in the canonical ensemble with fixed number of atoms
N. Equations 5−7 appear superficially similar to a virial-type
low-density expansion. However, we use correlation functions
that are nominally exact, not their low-density virial
approximations, so in fact the series is an expansion in
cumulants of the many-body probability distribution. Trunca-
tion of the series is accurate if a higher many-body correlation
function can be approximated by the products of fewer-body
correlations. For example, the Kirkwood superposition
approximation g(3)(1,2,3) ≈ g(2)(1,2)g(2)(2,3)g(2)(1,3) causes
s3 to vanish.
Mutual information measures how similar a joint probability

distribution is to the product of its marginal distributions.13 In
the case of a liquid structure, we may compare the two-body
joint probability density6,14 ρ(2)(r1, r2) = ρ2g(|r2 − r1|) with its
single-body marginal, ρ(r). The mutual information

∫ρ ρ ρ ρ ρ=I
N
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tells us how much information g(r) gives us concerning the
positions of atoms at a distance r from another atom. Mutual
information is nonnegative definite. We recognize the term s2 in
eq 6 as the negative of the mutual information, with the factor
of 1/2 correcting for double-counting of pairs of atoms. Thus s2
reduces the liquid-state entropy relative to s1 by the mutual
information content of the radial distribution function g(r).
Pair correlation functions for liquid metals obtained through

ab initio molecular dynamics (AIMD) simulation can predict
the configurational entropy through eqs 5−7, truncated at the
two-body level. We demonstrate this method for liquid
aluminum and copper, showing good agreement with
experimentally measured absolute entropies over broad ranges
of temperature. Corrections to the entropy due to electronic
excitations and three-body correlations are discussed. Finally,
we apply the method to a liquid aluminum−copper alloy.

■ THEORETICAL METHODS
Entropy Expansion. Direct application of the formalism

eqs 5−7 is inhibited by constraints such as
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that lead to long-range (large r) contributions to the two- and
three-body integrals. Nettleton and Green15 and Raveche16,17

recast the distribution function expansion in the grand
canonical ensemble and obtained expressions that are better
convergent. We follow Baranyai and Evans12 and utilize the
constraint (eq 9) to rewrite the two-body term as

∫ ∫ρ ρ= + − −s g g gr r
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The combined integrand {[g(2)(r) − 1] − g(2)(r) ln g(2)(r)} falls
off rapidly, so that the sum of the two integrals converges
rapidly as the range of integration extends to large r.
Furthermore, the combined integral is ensemble invariant,
which allows us to substitute the grand canonical ensemble
radial distribution function g(r) in place of the canonical gN

(2).
The same trick applies to the three-body term
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In the grand canonical ensemble, the first two terms in eq 10
arise from fluctuations in the number of atoms, N, and can be
evaluated in terms of the isothermal compressibility κT. We
define

∫ρ ρ κΔ ≡ + − =S g r k g r k Tr[ ( )]/
1
2

1
2

d [ ( ) 1]
1
2 Tfluct B B

(12)

and note that it is positive definite. The remaining term is the
entropy reduction due to the two-body correlation. As noted
above, the mutual information content of the radial distribution
function g(r) reduces the entropy by

∫ρΔ ≡ −S g r k g r g rr[ ( )]/
1
2

d ( ) ln ( )info B (13)

The complete two-body term is now s2 = ΔSfluct/kB + ΔSinfo/kB.
The corresponding three-body term in eq 11 reduces to a
difference of three- and two-body entropies, and its sign is not
determined.
Notice the constant term 5/2 in the ideal gas entropy, Sideal

(eq 3), while the one-body entropy, s1 (eq 5), instead contains
3/2. The contribution of 1/2 in s2, as given by eq 10, together
with an added 1/6 + ... = 1/2 from the three-body and higher
terms, reconciles the one-body entropy with the ideal gas. For
consistency with previous workers,12,15−17 and to make a
connection with the ideal gas, we could add the entire series
1/2 + 1/6 + ... = 1 to s1 and write

= + − + − +S Nk S k s s/ / ( 1/2) ( 1/6) ...N B ideal B 2 3
(14)

which is equivalent to eq 4.
Ab Initio Molecular Dynamics Simulation. To provide

the liquid-state correlation functions needed for our study, we
perform AIMD simulations based on energies and forces
calculated from first-principles electronic density functional
theory (DFT). AIMD provides a suitable compromise between
accuracy and computational efficiency. It accurately predicts
liquid-state densities and pair correlation functions with no
adjustable parameters or empirical interatomic interactions. We
apply the plane-wave code VASP18 in the PBEsol generalized
gradient approximation,19 utilizing a single k-point in a
simulation cell of 200 atoms.
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Simulations are performed at fixed volume for each
temperature. In the case of Cu we fix the volumes at the
experimental values.20 Because experimental values are not
available over the needed temperature range for Al and are not
available at all for AlCu, we determined these volumes by the
condition that the average total pressure (including the kinetic
term) vanishes. The predicted volumes for Al are insensitive to
the energy cutoff of our plane-wave basis set, so we use the
default value of 240 eV. Over the temperature range where
volumes are available for Al,20 we reproduce the experimental
values to within 0.5%. For AlCu an elevated energy cutoff was
required. We found 342 eV, which is 25% above the default for
Cu of 273 eV, to be sufficient to achieve convergence. Given a
suitable volume, the energy cutoff has minimal impact on our
simulated correlation functions and predicted entropies.
Pair correlation functions are collected as histograms in 0.01

Å bins and subsequently smeared with a Gaussian of width σ =
0.025 Å. Our run durations for data collection were 50 ps for Al
and Cu and 20 ps for AlCu. All structures were thoroughly
equilibrated prior to data collection.
Electronic Entropy. The electronic density of states D(E),

which comes as a byproduct of first-principles calculation,
determines the electronic entropy. At low temperatures, all
states below the Fermi energy EF are filled and all states above
are empty. At finite temperature, single electron excitations
vacate states below EF and occupy states above, resulting in the
Fermi−Dirac occupation function

μ
=

− +
f E

E k T
( )

1
exp[( )/ ] 1T

B (15)

(μ is the electron chemical potential). Fractional occupation
probability creates an electronic contribution to the entropy

∫Δ = − + − −S k D E f E f E f E f E/ ( )[ ( ) ln ( ) (1 ( )) ln(1 ( ))]T T T Telec B

(16)

We apply this equation to representative configurations drawn
from our liquid metal simulations, with increased k-point
density (a 2 × 2 × 2 Monkhorst grid) to converge the density
of states.
At low temperatures, the electronic entropy approaches (π2/

3)D(EF)kB
2T, which depends only on the density of states at

the Fermi level. However, at the high temperatures of liquid
metals the electronic entropy requires the full integral, as given
in eq 16, rather than its low temperature approximation.

■ RESULTS AND DISCUSSION
Application to Pure Liquid Metals. Figure 1a displays a

simulated radial distribution function g(r) for liquid Al at T =
1000 K. Integrated contributions to the entropy are shown in
Figure 1b. The excluded volume region below 2 Å, where g(r)
vanishes, does not contribute to ΔSinfo, but it does contribute,
negatively, to ΔSfluct. Strong peaks with g(r) > 1 contribute
positively to ΔSfluct. They also contribute positively to mutual
information and hence negatively to ΔSinfo, reducing the
entropy. Minima with g(r) < 1 do the opposite. The
information and fluctuation integrals each oscillate strongly
and converge slowly, while their sum is monotone and rapidly
convergent. Note that the asymptotic value of ΔSfluct is close to
zero, as is expected for a liquid metal with low compressibility
(for liquid Al, values of ρkBTκT ≈ 0.03 to 0.04 are reported21).
In contrast, the entropy loss due to mutual information is more
than 2kB.

Repeating this calculation at several temperatures and
choosing the values of ΔSfluct and ΔSinfo obtained at R = 12
Å, we predict the absolute entropy as a function of temperature,
as displayed in Figure 2. Our predictions lie close to

experimental values22,23 over the entire simulated temperature
range; however, there are systematic discrepancies. Our value is
too high at low temperatures and too low at high temperatures.
Including a further correction due to electronic entropy (not
shown) improves the agreement at high temperature while
worsening it at low. As noted in the discussion surrounding eq
14, we have arbitrarily included the constants 1/2, 1/6, ...
belonging to the fluctuation terms such as eq 12 in the ideal gas
entropy. Removing those terms, and instead plotting (s1 + s2)kB
+ ΔSelec, we find excellent agreement at low T and slight
underestimation at high T.
We find rather similar behavior in the case of liquid copper

(see Figure 3). Here the agreement with experiment is less
close, especially at low temperatures. Presumably we must
include many-body corrections such as s3 or higher that are
likely to be stronger at low temperatures. The d orbitals of

Figure 1. (a) Radial distribution function g(r) of liquid Al at T = 1000
K. (b) Contributions to the entropy of liquid Al integrated from r = 0
up to R.

Figure 2. Entropy of liquid Al, comparing the experimental values with
various approximations: the ideal gas (eq 3); ideal gas with pair
corrections (eq 14); and single-body entropy with pair correction and
electronic entropy, (s1 + s2)kB + ΔSelec.
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copper lie close to the Fermi surface, possibly causing
deviations from the Kirkwood superposition approximation
that increase the value of s3. Excitations of d electrons also
contribute significantly to ΔSelec, causing a faster than linear
increase with T.
Application to Binary AlCu Liquid Alloy. Finally, we

turn to a liquid aluminum−copper alloy. As demonstrated by
Hernando24 and applied by Laird and Haymet,25 eqs 12 and 13
generalize naturally to multicomponent systems, with mole
fraction xα for species α and with partial pair distribution
functions gαβ(r) between species α and β

∫∑ρΔ = + −αβ
αβ

α β αβS g r k x x g rr[ ( )]/
1
2

1
2

d [ ( ) 1]fluct B

(17)

and

∫∑ρΔ = −αβ
αβ

α β αβ αβS g r k x x g r g rr[ ( )]/
1
2

d ( ) ln ( )info B

(18)

We set s2 = ΔSfluct/kB + ΔSinfo/kB as before. We also need to
revise the ideal gas entropy

∑ ρ= − Λ
α

α α αS k x x/
5
2

ln( )ideal B
3

(19)

Notice that the ideal mixing entropy −kB∑α xα ln xα is included
in this expression for Sideal.
Simulated distribution functions and their integrals are

displayed in Figure 4 at T = 1373 K. Note the first peak of
the interspecies correlation gAlCu(r) is much stronger than the
intraspecies correlations, indicating strong chemical order. The
correlations gαβ reduce the entropy by 2.73kB, with the
interspecies Al−Cu dominating because (i) it exhibits the
strongest oscillations and (ii) it enters twice into eqs 17 and 18.
We can isolate the contribution of the average liquid structure
by defining g(̅r) = ∑αβxαxβgαβ(r) and setting

Δ ≡ Δ ̅ + Δ ̅S S g S g[ ] [ ]ave fluct info (20)

which converges quickly to ΔSave = −2.29kB. Meanwhile, the
contribution due to chemical order is obtained by integrating

the information content contained in the relative frequencies of
αβ pairs26 at every separation r

∫∑ρΔ ≡ − ̅
αβ

α β αβ αβS k x x g r g r g rr/
1
2

d ( ) ln( ( )/ ( ))chem B

(21)

This sum converges quickly to ΔSchem = −0.44kB, which
roughly counteracts the kB ln 2 ideal entropy of mixing. Notice
the identity ΔSave + ΔSchem = ΔSfluct + ΔSinfo.
Beyond the entropy losses ΔSave and ΔSchem, there is a small

additional loss of electronic entropy associated with the
chemical bonding of Al and Cu, which depresses the electronic
density of states at the Fermi level. At T = 1373 K we find
values of 4.3, 3.2, and 3.1 states/eV/atom for liquid Al, AlCu,
and Cu, respectively. This results in a negative electronic
entropy of mixing of ΔSe = −0.02kB.
The entropy of the liquid alloy (see Figure 5) lies rather close

to the average entropies of Al and Cu individually. We do not
have experimental values to compare with.

Figure 3. Entropy of liquid Cu, comparing the experimental values
with various approximations: the ideal gas (eq 3); ideal gas with pair
corrections (eq 14); and single-body entropy with pair correction and
electronic entropy, (s1 + s2)kB + ΔSelec.

Figure 4. (a) Partial radial distribution functions gαβ(r) of liquid AlCu
alloy at T = 1373 K. (b) Contributions to the entropy of liquid AlCu
integrated from r = 0 up to R.

Figure 5. Entropy of liquid AlCu, comparing the experimental values
of elemental Al and Cu with various approximations: the ideal gas (eq
3); ideal gas with pair corrections (eq 14); and single-body entropy
with pair correction and electronic entropy, (s1 + s2) kB + ΔSelec.
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■ CONCLUSIONS

This study demonstrates the feasibility of absolute entropy
calculation based on ab initio simulated pair correlation
functions. Given the absolute entropy, we could use the ab
initio total energies to calculate absolute free energies. Here we
focus on the reduction of entropy from the ideal gas value by
the mutual information content of the pair radial distribution
function. In comparison with experimental values for pure
elements, we show good agreement in the case of Al and
slightly worse agreement in the case of Cu. We also applied it to
the case of a liquid AlCu alloy and found that strong chemical
order counteracts the ideal mixing entropy.
Two implementations of the distribution function expansion

were compared, both of them truncated at the pair level.
Equation 14 adds the series 1/2 + 1/6 + ... = 1 to the single-
particle entropy s1 to reach Sideal but then must subtract 1/2
from ΔSfluct, while eq 4 keeps the 1/2 within ΔSfluct. In the case
of liquid Al, the latter approach yields improved agreement, as
shown in Figure 2. However, in the case of liquid Cu, the
former approach is favorable at low T, while the latter is best at
high T. This temperature dependence is possibly due to angular
correlations created by anisotropic Cu d orbitals, leading to a
breakdown of the Kirkwood superposition approximation at
low T.
Keeping the 1/2 within ΔSfluct results in this term nearly

vanishing (it is positive definite but numerically small), and the
fluctuation term contained in s3 would likewise be small. Thus
in the approach of eq 4, ΔSfluct serves to improve convergence
of the sum of integrals in eqs 12 and 13, but ultimately the
entropy is primarily determined by the mutual information.
This method has been previously applied to model systems

such as hard sphere and Lennard-Jones fluids and to the one
component plasma12,15,17,27 as well as to simulations of real
fluids using embedded atom potentials.28,29 It can also be
applied with experimentally determined correlation func-
tions.17,30−32 An analogous expansion exists for the lattice
gas.33 Dzugutov34 utilized the method in a study reporting an
empirical scaling relation between excess entropy and diffusion
coefficients. However, it has only rarely been applied in
conjunction with ab initio molecular dynamics.21 It is clear from
the example of liquid Cu as well as from the work of
others27,31,35 that many-body terms are required to achieve high
accuracy in some cases. Fortunately these are available, in
principle, from AIMD.
Beyond assessing the impact of many-body terms, certain

other details remain to be optimized in our calculations. We
apply the PBEsol generalized gradient approximation for the
exchange correlation functional because it predicts good atomic
volumes (tested for solids19,36), but we have not tested the
sensitivity of our results to other choices of functional. We
consistently use systems of 200 atoms, but we have not tested
the convergence of the entropy with respect to the number of
atoms. After further testing and optimization, our methods
could be used to develop a database of calculated liquid state
entropies, both for pure metals and for alloys of interest.
Application to fluids in external fields and at interfaces14,29,37

is possible by generalizing the series in eqs 5−7) to allow for
spatially varying local density ρ(r). In this case we must set

∫ ρ ρ= − Λs
N

r r r
3
2

1
d ( ) ln( ( ) )1

3
(22)

Similarly, the full, spatially varying and anisotropic, two-body
density ρ(2)(r1,r2) (see eq 8) is required in place of the
translation-invariant radial distribution function g(r).
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