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A growing body of experiments display indirect evidence of icosahedral structures in supercooled
liquid metals. Computer simulations provide more direct evidence but generally rely on approximate
interatomic potentials of unproven accuracy. We use first-principles molecular dynamics simulations
to generate realistic atomic configurations, providing structural detail not directly available from
experiment, based on interatomic forces that are more reliable than conventional simulations. We
analyze liquid copper, for which recent experimental results are available for comparison, to quantify
the degree of local icosahedral and polytetrahedral order.

PACS numbers: 61.43.Dq,61.20.Ja,61.25.Mv

I. INTRODUCTION

Turnbull [1–3] established that metallic liquids can
be supercooled if heterogeneous nucleation can be re-
duced or avoided. Later, Frank hypothesized that the
supercooling of liquid metals might be due to frustrated
packing of icosahedral clusters. Icosahedral clustering
of 12 atoms about a sphere is energetically preferred to
crystalline (e.g. FCC, HCP or BCC) packings for the
Lennard-Jones (L-J) pair potentials. The icosahedron
is favorable because it is made up entirely of four-atom
tetrahedra, the densest-packed cluster possible. Local
icosahedral order cannot be propagated throughout space
without introducing defects.
Remarkably, the frustration of packing icosahedra is re-

lieved in a curved space, where a perfect 12-coordinated
icosahedral packing exists [4–6]. Disclination line defects
must be introduced into this icosahedral crystal in or-
der to “flatten” the structure and embed it in ordinary
three dimensional space. Owing to the 5-fold rotational
symmetry of an icosahedron, the disclination lines are of
type ±72◦. The negative disclination line defects that are
needed to flatten the structure cause increased coordina-
tion numbers of 14, 15 or 16. Large atoms, if present,
would naturally assume high coordination number and
aid in the formation of a disclination line network.
Many studies of L-J systems have tested Frank’s hy-

pothesis. Hoare [7] found that for clusters ranging be-
tween 2 to 64 atoms at least three types of “polytetrahe-
dral” noncrystalline structures exist, with a higher bind-
ing energy than HCP or FCC structures with the same
number of atoms. Honeycutt and Andersen [8] found
the crossover cluster size between icosahedral and crys-
tallographic ordering around a cluster size of 5000 atoms.
They also introduced a method to count the number of
tetrahedra surrounding an interatomic bond. This num-
ber is 5 for local icosahedral order. Steinhardt, Nelson
and Ronchetti [9] introduced the orientational order pa-

rameter Ŵ6 to demonstrate short range icosahedral or-
der.
Many other simulations have been performed on pure

elemental metals and metal alloys, using a modified John-
son potential [10], embedded atom potentials [11, 12], the
Sutton-Chen (SC) many body potential [13], to name a
few. These potentials model the interatomic interactions
with varying, and generally uncontrolled, degrees of ac-
curacy. Ab-initio studies on liquid Copper [14, 15], Alu-
minum [16] and Iron [17] achieve a high degree of realism
and accuracy, but have not been analyzed from the per-
spective of icosahedral ordering.

X-ray diffraction measurements of electrostatically lev-
itated droplets of Ni [18] found evidence of distorted
icosahedral short ranged order. Neutron scattering stud-
ies of deeply undercooled metallic melts [19] observed
the characteristic shoulder on the second peak of the
structure factor, which has been identified as a signature
of icosahedral short range order [20, 21]. The shoulder
height increases with decrease in temperature.

A recent XAS experiment on liquid and undercooled
liquid Cu by Di Cicco et al. [22] isolated the higher order
correlation functions. They applied Reverse Monte-Carlo
(RMC) refinement [23–25] simultaneously to diffraction
and XAS data to construct a model of the disordered sys-
tem compatible with their experimental data. They an-
alyze the three body angular distribution function N(θ)

and also the orientational order parameter Ŵ6. Their
conclusion was that weak local icosahedral order could
be observed in their sample. This experiment provided
the most direct experimental evidence to-date of the ex-
istence of icosahedra in a liquid metal.

Motivated by these results, we explore the structures
of liquid and undercooled liquid metals using first prin-
ciples simulations. First principles calculations achieve
the most realistic possible structures, unhindered by the
intrinsic inaccuracy of phenomenological potentials, and
with the ability to accurately capture the chemical na-
ture and distinctions between different elements and al-
loys. We use the VASP (Vienna Ab-initio Simulation
Package [26, 27]) code which solves the quantum me-
chanical interacting many-body problem using electronic
density functional theory. These forces are incorporated
into a molecular dynamics simulation. The trade-off for
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increased accuracy is a decrease in the system sizes we
can study, so we can only observe local order, not long
range. Also we are limited to short time scales.
Our analysis covers methods that have previously been

fruitful. We look at the radial distribution function, the
three body angular distribution function, which is simply
related to the three body correlation function, the Ŵ6

parameter as discussed above, and the Honeycutt and
Andersen bond statistics method [8].
The extent of the icosahedral order that we observe

in simulation is qualitatively in agreement with recent
experiments [22]. At high temperatures we found that
structural properties of liquid Cu strongly resembled a
maximally random jammed [28] hard sphere configura-
tion. From this we conclude that a nearly universal struc-
ture exists for single component systems whose energet-
ics are dominated by repulsive central forces. The degree
of icosahedral order is not great, presumably due to the
frustration of icosahedra, but it does show a tendency to
increase as temperature drops.
Section II describes our first principles molecular dy-

namics method in greater detail. The next section, sec-
tion III discusses our study on copper. Here we introduce
the radial distribution function g(r), the liquid structure

factor S(q), the Ŵ6 bond orientational order parameter,
the three body angular distribution function N(θ), and
the Honeycutt and Andersen analysis method. We con-
clude, in section IV, with some thoughts about enhancing
icosahedral order by alloying with a fraction of smaller
and larger atoms.

II. FIRST PRINCIPLES METHOD

First principles simulation is an incisive, powerful
and well-developed tool based on a quantum mechani-
cal treatment of the electrons responsible for interatomic
bonding. Since the method is based on fundamental
physical laws and properties of atoms, it can be applied
to a wide variety of metals, including alloys, and yields
the energy and forces computationally without any ad-
justable free parameters.
Our ab − initio molecular dynamics simulation pro-

gram, VASP [26, 27], solves the N-body quantum me-
chanical interacting electron problem using electronic
density functional theory, under the Generalized Gra-
dient Approximation (GGA). We use the projector-
augmented wave [29, 30] (PAW) potentials as provided
with VASP. Calculation times grow nearly as the third
power of the number of atoms, limiting our studies to
sample sizes of around a hundred atoms.
In first-principles molecular dynamics, although inter-

atomic forces and energies are calculated quantum me-
chanically, we still treat the atomic motions classically,
using the Born-Oppenheimer approximation. We use
Nose dynamics [31] to simulate in the canonical ensemble
at fixed mean temperature. The system was well equili-
brated before data was considered for analysis. The sim-

ulation started with a random configuration, at a tem-
perature high enough to ensure a liquid state, and was
allowed to equilibrate at this high temperature. Subse-
quently, lower temperatures were simulated starting from
previous configurations. All calculations were Γ point
calculations (a single ‘k’ point).
We took N=100 Cu atoms and applied periodic bound-

ary conditions in an orthorhombic cell. Our unequal lat-
tice parameters avoid imposing a characteristic length on
the system. The simulations were done at three different
temperatures, T=1623K, 1398K and 1313K in order to
compare with Di Cicco’s experiments [22]. The melting
point of copper is T=1356K, so samples at 1623K and
1398K are in the liquid regime, while the one at 1313K is
undercooled. We used number densities of 0.0740 Å−3,
0.0758 Å−3 and 0.0764 Å−3 respectively at T=1623K,
1398K and 1313K. These were obtained from a fit of the
XRD experimental volume per particle [32] to a straight
line versus temperature. Starting from configurations
that had been previously equilibrated at slightly differ-
ent densities, transients of about 250 steps (1fs per step)
passed prior to the onset of equilibrium fluctuations of
the energy. After the transient, a total of 3000 MD steps
were taken at each temperature, for a total simulation
time of 3ps. The run time was around 480hrs on a 2.8
GHz Intel Xeon processor for each temperature.

III. RESULTS

A. Two Body Correlation Function g(r)

The two body pair correlation function, g(r), is pro-
portional to the density of atoms at a distance r from
another atom. We calculate g(r) by forming a histogram
of bond lengths which we then smooth out with a gaus-
sian of standard deviation 0.05 Å. Fig. 1 shows the g(r)
we obtained at the three different temperatures. Our g(r)
at T=1623K, compares well with g(r) interpolated from
XRD experiments [32], with the two curves overlapping
almost everywhere except for a small disagreement in the
position of the first peak. Results from neutron diffrac-
tion experiment [33] at T=1393K, compare well with our
g(r) at T=1398K. Comparisons with the g(r) for Cu at
1500K from the ab − initio MD studies by Hafner et.

al. [15] and Vanderbilt et. al. [14] finds that the heights of
their first peak match well with our g(r) (interpolated to
T=1500K). But their peak positions are shifted slightly
to the left of ours (ours is at 2.50 Å). The g(r) from an
embedded-atom method (EAM) model for Cu [12] which
matches almost exactly with the XRD data at T=1773K,
is also consistent with our extrapolated g(r) at this tem-
perature.
The growth in height of the peaks in the supercooled

system at T=1313K suggests an increase of some type of
order. However this order is not related to the crystalline
FCC equilibrium phase, as we show in the following sub-
sections.
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FIG. 1: (Color online) Simulated liquid Cu correlation func-
tion, g(r), at three different temperatures. The simulated
curve at T=1623K matches well with the experimental XRD
result [32] interpolated to T=1623K. (The simulated g(r) at
T=1313K and T=1398K have been shifted up for visual clar-
ity)
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FIG. 2: (Color online) Simulated liquid Cu correlation func-
tion, g(r), at T=1398K for N=100 and N=200 atoms. A weak
finite size effect is observed after about r=5Å.

To test for finite size effects in our N=100 atom sys-
tem, we ran a separate simulation for N=200 atoms at
the intermediate temperature T=1398K (Fig. 2). The
first and second peaks of g(r) for both the system sizes
compare very well. There is a small but significant differ-
ence in the depth of the first minimum, then systematic
differences between the curves beyond 5Å. From this we
conclude that the finite size effect is not important at

small r values, but for larger values of r (beyond 5 Å)
there is a weak finite size effect. The three body angular
distributions, and the Ŵ6 histograms of the N=200 and
the N=100 runs, are also comparable, suggesting that
N=100 is sufficient for studies of local order of the types
we consider here.

B. Liquid Structure Factor S(q)

The liquid structure factor S(q) is related to the two
body correlation function g(r) of a liquid with density ρ
by,

S(q) = 1 + 4πρ

∞
∫

0

[g(r)− 1]
sin(qr)

qr
r2dr. (1)

Evidently, one needs a knowledge of the pair correlation
function up to large values of r to get a good S(q). In
our first principles simulation, we are restricted to small
values of r, due to our small system sizes, so we need a
method to get S(q) from our limited range g(r) function.
Baxter developed a method [34, 35] to extend g(r) be-

yond the size of the simulation cell. The method exploits
the short ranged nature of the direct correlation func-
tion c(r), which has a range similar to the interatomic
interactions [36], as opposed to the g(r) which is much
long ranged. The exact relation that connects these two
functions is the Ornstein-Zernike relation,

h(r) = c(r) + ρ

∫

h(|r− r
′|)c(|r′|)dr′ (2)

where h(r) = g(r)− 1.
Assuming that c(r) vanishes beyond a certain cutoff

distance rc, Baxter employed aWeiner-Hopf factorization
to obtain a pair of equations, valid for r < rc,

rc(r) = −Q′(r) + 2πρ

rc
∫

r

Q′(r′)Q(r′ − r)dr′ (3)

and

rh(r) = −Q′(r) + 2πρ

rc
∫

0

(r − r′)h(|r − r′|)Q(r′)dr′. (4)

Here Q(r) is zero for r > rc, and continuous at rc, and
Q′(r) = dQ(r)/dr. The continuity of Q(r) means that,

Q(r) = −

rc
∫

r

dr′Q′(r′). (5)

The remarkable property of this method is that if we
know h(r) over a range 0 ≤ r ≤ rc, then Eq. (3) can be
used to obtain c(r) over its entire range, which implicitly
determines h(r) over its entire range through Eq. (2).



4

We solve Eq. (4) and Eq. (5) iteratively to obtain the
auxiliary functions Q(r) and Q′(r), then finally substi-
tute their values in Eq. (3) to obtain the full direct cor-
relation function. A complete knowledge of the direct
correlation function gives us the structure factor S(q) in
terms of its fourier transform ĉ(q),

S(q) =
1

1− ρĉ(q)
(6)

where,

ĉ(q) = 4π

∞
∫

0

r2c(r)
sin(qr)

qr
dr. (7)

The S(q) showed good convergence with different choices
of rc, and a choice of rc=5Åseemed appropriate because
it was one half of our smallest simulation cell edge length.
Even though in metals there are long range oscillatory
Friedel oscillations, our ability to truncate c(r) at rc=5Å,
shows that these are weak compared with short range
interactions.
Fig. (3) compares the calculated S(q) at our three dif-

ferent temperatures, and the experimental neutron S(q)
at T=1393K [33]. The calculated S(q) at T=1398K com-
pares well with the experiment at all values of q. No res-
olution correction was applied to the experimental data,
and moreover it was smoothed. Both of these cause a
decrease in the height of the actual S(q), which becomes
quite appreciable at the first peak. As a test, we also ap-
plied a resolution correction to our simulated S(q) (not
shown), which reduced the height of the first peak bring-
ing it in closer agreement with the experimental value.
Nevertheless the overall excellent agreement shows that
the first principles simulation with only N=100 atoms is
able to produce representative structures at T=1398K.
This enables us to make further studies of the local icosa-
hedral and polytetrahedral order in liquid and super-
cooled liquid copper.

C. Bond Orientation Order Parameters

As introduced by Steinhardt, et al. [9], the Ŵl param-
eters are a measure of the local orientational order in
liquids and undercooled liquids. To calculate Ŵl, the
orientations of bonds from an atom to its neighboring
atoms are projected onto a basis of spherical harmon-
ics. Rotationally invariant combinations of coefficients in
the spherical harmonics expansion are then averaged over
many atoms in an ensemble of configurations. The re-
sulting measures of local orientational order can be used
as order parameters to characterize the liquid structures.
For an ideal icosahedral cluster, l = 6 is the minimum
value of l for which Ŵ6 6= 0. Table I enumerates Ŵ6

values for different ideal clusters. We see that the ideal
icosahedral value of Ŵ6 is far from other clusters, making
it a good icosahedral order indicator.
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FIG. 3: (Color online) Liquid structure factor S(q) as ob-
tained from the simulated two body correlation function g(r)
at T=1398K compared with the S(q) from neutron diffrac-
tion at T=1393K [33]. The calculated S(q) at the other two
temperatures are also plotted, and show the expected temper-
ature behavior. (The S(q) at T=1313K and T=1398K have
been shifted up for visual clarity)
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FIG. 4: (Color online) Simulated Ŵ6 distributions for liquid
Cu. Ideal icosahedron and FCC values are indicated.

We choose a cutoff distance to specify near neighbors
near the first minimum of g(r), at Rcut=3.4 Å. With this
value of Rcut we find an average coordination number of
12.5 which is nearly independent of temperature. Our
value of Rcut is significantly greater than that of Di Ci-
cco, et al.. Our Ŵ6 distributions (Fig. 4) show strong
asymmetry favoring negative values with tails extending
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TABLE I: Ŵ6 values for a few clusters

Cluster HCP FCC ICOS BCC
No. of atoms 12 12 12 14

Ŵ6 -0.012 -0.013 -0.169 +0.013

towards the ideal icosahedron value. Because the his-
togram vanishes as Ŵ6 approaches its limiting negative
value we see that there are essentially no perfectly sym-
metric undistorted icosahedra present in our simulation.
However, a significant fraction do have Ŵ6 values close
to the icosahedral value.
Remarkably, at high temperature the Ŵ6 distribution

of liquid Cu is close to the distribution of a 10000 atom
maximally random jammed configuration [28], suggest-
ing that the structure of Cu under this condition is dom-
inated by strongly repulsive short-range central forces.
The Rcut value for the MRJ configuration was again
taken near the first minimum of the g(r).

As we lower the temperature, the mean value of Ŵ6

drops and the peak of the Ŵ6 distribution shifts to the
left. However, the peak never moves below Ŵ6 = -0.05,
and the tail of the distribution at negative Ŵ6 shows no
strong temperature dependence. It seems that there is no
change in the number of nearly icosahedral clusters as the
temperature drops into the supercooled regime, possibly
a result of the frustration of icosahedral packing. Our
liquid has a single component, so there is no natural way
to introduce disclinations. This inhibits the growth of a
population of atoms with Ŵ6 close to its ideal icosahedral
value.
Comparing our result with that of Di Cicco et al. at

T=1313K, we see that our curve is more asymmetric to-
wards negative values than Di Cicco’s, so that we see a
greater fraction of atoms near the ideal icosahedral value
of Ŵ6. The discrepancy probably lies in the difference
between the two methods used to generate the positional
configurations (the difference is even greater if we use
Di Cicco’s value of Rcut). Their configurations were ob-
tained using Reverse Monte Carlo (RMC), which does
not guarantee accurate configurations. Our first prin-
ciples method should be more accurate in determining
these configurations. Of course, Di Cicco’s configurations
are consistent with experimentally measured three-body
correlations. It would be of great interest to see if our
configurations are also consistent with the raw experi-
mental data. The differences in Ŵ6 distributions should
not be overstated - the experiment and our simulations
both show that liquid and supercooled liquid copper has
weak but non-negligible icosahedral order.

D. Bond Angle Distribution N(θ):

The bond angle distribution N(θ) is a simple type of
three-body correlation function. Let θ be the angle be-
tween bonds from a single atom to two neighbors, and
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FIG. 5: (Color online) Distribution of N(θ) for liquid Cu.
Ideal icosahedron values are indicated.

define N(θ) as the probability density for angle θ, normal-
ized such that the total probability,

∫

N(θ)dθ=1. The
distribution for the central atom of an ideal 13-atom
icosahedral cluster, shows peaks at 63.4◦, 116.4◦ and
180.0◦. For other crystallographic clusters, like HCP,
FCC, and BCC, we see peaks at 60◦, 90◦ and 120◦. An-
gles around 60◦ degrees indicate nearly equilateral trian-
gles that may well belong to tetrahedra.
Fig. 5 shows the distributions for copper at three tem-

peratures. The distribution function shows maxima at
56◦ and 110◦ with a minimum around 80◦. Our result is
similar to that of Di Cicco (they show only T=1313K),
but with more pronounced minimum and second max-
imum. The peak around 60◦ shows an abundance of
nearly equilateral triangles, indicating the presence of
tetrahedrons, which can pack to form icosahedra. The
minimum close to 90◦ shows that there aren’t many cu-
bic clusters. We also see that the high-angle tail at high
temperature turns into a broad maximum at low tem-
perature centered around 165◦. This may represent a
shifting of the ideal 180◦ peak caused by cluster distor-
tion. The ordering increases as temperature decreases,
indicating that the number of nearly equilateral trian-
gles increases when the liquid is undercooled, probably
caused by an increase in polytetrahedral order with un-
dercooling.
The distribution of the MRJ configurations shows a

sharp peak at exactly 60◦, a broad peak at 110◦ and
a minimum around 90◦. The peak at 60◦ shows an
overwhelming presence of perfectly equilateral triangular
faces, which are easily formed when 3 hard spheres come
in contact with each other. But the minimum around
90◦ and a second maximum nearer to 110◦ as opposed to
120◦, suggests that the local order is not FCC or HCP.
This feature of the MRJ configuration agrees qualita-
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increased icosahedral ordering with supercooling. The corre-
sponding HA values for the MRJ configurations are indicated
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tively with the angular distribution of liquids, implying
an underlying universal structure for systems whose en-
ergetics are dominated by repulsive central forces. But
the quantitative differences also emphasize the necessity
to exactly model an atomic liquid to study its local en-
vironments, and quantify polytetrahedral order.

E. Honeycutt and Andersen analysis

Honeycutt and Andersen [8] introduced a useful assess-
ment of local structure surrounding interatomic bonds.
We employ a simplified form of their analysis, count-
ing the number of common neighbors shared by a pair
of near-neighbor atoms. This identifies the number of
atoms surrounding the near-neighbor bond and usually
equals the number of edge-sharing tetrahedra whose com-
mon edge is the near-neighbor bond. We assign a set of
three indices to each bond. The first index is 1 if the
root pairs are bonded (separation less than or equal to
Rcut). The second index is the number of near-neighbor
atoms common to the root pairs, and the third index
gives the number of near-neighbor bonds between these
common neighbors. We take Rcut=3.4Å, and note that
the Honeycutt and Andersen fractions depend sensitively
on Rcut.
In general, 142’s are characteristic of close packed

structures (FCC and HCP) and 143’s are characteristic
of distorted icosahedras [37]. They can also be considered
as +72◦ disclinations [4–6]. Likewise, 15’s are character-

istic of icosahedra, and 16’s indicate -72◦ disclinations.
Fig. 6 shows the 14’s, 15’s and the 16’s for liquid Cu
at the three temperatures. The 14’s have been separated
into 142’s and 143’s. The remaining 14’s are mostly 144’s
with fraction around 0.04. The fraction of 142’s and
143’s holds steady with temperature, with the icosahe-
dral fraction always exceeding the close packed fraction.
As the temperature drops, the fraction of 15’s grows. At
each of the three temperatures, the 15’s are mainly com-
prised of 154’s ( characteristic of distorted icosahedra)
and 155’s (characteristic of perfect icosahedra), with the
154’s slightly higher than the 155’s. Of all the 16’s, the
166’s are the highest and steadily increase with lowering
of temperature. The 166’s indicate the -72◦ disclination
lines, which relieve the frustration of icosahedral order.

These trends indicate a weak increase in polytetrahe-
dral ordering with supercooling. The same trend was
observed in simulations based on Sutton-Chen poten-
tials [13] except for the fact that our 142’s are slightly
higher compared to their 142’s.

For comparison, the values for a maximally random
jammed packing [28] are shown in Fig. 6. These values
are fairly close to liquid Cu at high temperature, and also
to a similar common neighbor analysis of dense random-
packing of hard spheres [38]. These results are consistent

with our previous observation for the Ŵ6 distribution
and N(θ), that a nearly universal structure arises at high
temperature, dominated by repulsive central forces.

IV. CONCLUSION

This study quantifies icosahedral and polytetrahedral
order in supercooled liquid copper. While the structural
properties of high temperature liquid Cu are close to a
maximally random jammed structure [28], proper mod-
eling of atomic interactions is essential to capture the
behavior of an element at liquid and supercooled temper-
atures. A first-principles simulation is the most reliable
means of achieving this. We find small but significant dis-
agreement with analysis based on Reverse Monte-Carlo
simulation.

Supercooled liquid copper shows a slight increase in
icosahedral and polytetrahedral order as temperature
drops, which is consistent with recent experiments [18,
19, 22]. The frustration of icosahedrons in the one com-
ponent liquid inhibits formation of perfect icosahedra,
giving rise to defective icosahedrons. Alloying with larger
atoms might relieve the frustration of packing icosahe-
drons by encouraging the formation of -72◦ disclinations.
Alloying with smaller atoms can relieve frustration of in-
dividual icosahedrons by placing the smaller atom at the
center [39]. Alloying with larger and smaller atoms simul-
taneously thus offers the chance to optimize icosahedral
order.
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