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Abstract: The information required to specify a liquid structure equals, in suitable units, its1

thermodynamic entropy. Hence, an expansion of the entropy in terms of multi-particle correlation2

functions can be interpreted as a hierarchy of information measures. Utilizing first principles3

molecular dynamics simulations, we simulate the structure of liquid aluminum to obtain its density,4

pair and triplet correlation functions, allowing us to approximate the experimentally measured5

entropy and relate the excess entropy to the information content of the correlation functions. We6

discuss the accuracy and convergence of the method.7
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0. Introduction9

Let pi be the probability of occurrence of a state i, in thermodynamic equilibrium. The Gibbs’
and Von Neumann’s formulas for the entropy [1,2],

S/kB = −∑
i

pi ln pi, (1)

are mathematically equivalent to the information measure defined by Shannon [3]. Entropy is10

thus a statistical quantity that can be calculated without reference to the underlying energetics that11

created the probability distribution, as recognized by Jaynes [4]. Previously we applied this concept12

to calculate the entropy of liquid aluminum, copper and a liquid aluminum-copper alloy binary13

alloy [5], using densities and correlation functions obtained from first principles molecular dynamics14

simulations that are nominally exact within the approximations of electronic density functional theory.15

In this paper we discuss the convergence and principal error sources for the case of liquid aluminum.16

As shown in Figure 1, we are able to reproduce the experimentally known entropy [6,7] to an accuracy17

of about 1 J/K/mol, suggesting that this method could provide useful predictions in cases where the18

experimental entropy is not known.19

In a classical fluid [8], the atomic positions ri and momenta pi (i = 1, . . . , N for N

atoms in volume V) take a continuum of values so that the probability becomes a function,
fN(r1, p1, . . . , rN , pN), and the entropy becomes

SN/kB = −
1

N!

∫

V
∏

i

dridpi fN ln (h3N fN) (2)

in the canonical ensemble. In this expression, the factor of N! corrects for the redundancy of
configurations of identical particles, and the factors of Planck’s constant h are derived from the
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Figure 1. Calculated entropies compared with experimental values [6,7]. sIdeal is from Eq. (12, s1 is
from Eq. (11), s2 is the pair-correlation correction from Eq. (14), and Se is from Eq. (27). We expect the
best liquid state result from s1 + s2 + se. In the solid state, below melting at Tm=933K, sQuasiharmonic is
the vibrational entropy in the quasiharmonic approximation.

quantum mechanical expression. For systems whose Hamiltonians separate into additive terms
for the kinetic and configurational energies, fN factorizes into a product ∏i fig

(N)
N of independent

Maxwell-Boltzmann distributions for individual atomic momenta,

f1(p) = ρ(2πmkBT)−3/2e−|p|2/2mkBT , (3)

times the N-body positional correlation function g
()

N N(r1, . . . , rN).20

Equation (2) can be reexpressed in terms of n-body distribution functions [8–11], g
(n)
N with n < N,

as
S/NkB = s1 + s2 + s3 + . . . , (4)

where the n-body terms are

s1 = −
1
ρ

∫

V
dp f1(p) ln (h3 f1(p)) (5)

s2 = −
1
2

ρ2
∫

V
dr1r2 g

(2)
N ln g

(2)
N , (6)

s3 = −
1
6

ρ3
∫

V
dr1r2r3 g

(3)
N ln (g

(3)
N /g

(2)
N g

(2)
N g

(2)
N ). (7)

The subscripts N indicate that the correlation functions are defined in the canonical ensemble, with a
fixed number of atoms N, and they obey the constraints

ρn
∫

V
∏

i

dri g
(n)
N =

N!
(N − n)!

. (8)
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Each term sn can be interpreted in terms of measures of information. Briefly, s1 is the entropy of
a single particle in volume V = 1/ρ, and hence in the absence of correlations. s2 is the difference
between the information content of the pair correlation function g

(2)
N , and the uncorrelated entropy,

which must be added to s1. Similarly, s3 is the difference between the information contents of the
three-body correlation g

(3)
N and the two-body correlation g

(2)
N , which must be added to s1 + s2. Notice

that the information content of the n-body is also contained in the (n + 1)-body and higher-body
correlations because of the identity

g
(n)
N (r1, . . . , rn) =

ρ

N − n

∫

V
drn+1g

(n+1)
N (r1, . . . , rn, rn+1) (9)

that expresses g
(n)
N as a marginal distribution of g

(n+1)
N .21

Mutual information measures how similar a joint probability distribution is to the product of
its marginal distributions [12]. In the case of a liquid structure, we may compare the two-body joint
probability density [13,14] ρ(2)(r1, r2) = ρ2g

(2)
N (|r2 − r1|) with its single-body marginal, ρ(2)(r). The

mutual information per atom

I[ρ(2)(r1, r2)] =
1
N

∫

V
dr1dr2 ρ(2)(r1, r2) ln (ρ(2)(r1, r2)/ρ(r1)ρ(r2)) (10)

tells us how much information g(r) gives us concerning the positions of atoms at a distance r from22

another atom. Mutual information is nonnegative definite. We recognize the term s2 in Eq. (6)23

as the negative of the mutual information content of g
(2)
N , with the factor of 1/2 correcting for24

double-counting of pairs of atoms.25

1. general theory26

1.1. One-body term27

The one-body term s1 in Eq. (5) can be evaluated explicitly, yielding

s1 =
3
2
− ln (ρΛ3), (11)

where Λ =
√

h2/2πmkBT is the quantum De Broglie wavelength. Both terms in Eq. (11) have simple28

information theoretic interpretations [15]. While an infinite amount of information is required to29

specify the exact position of even a single particle, in practice, due to quantum mechanical uncertainty30

we should only specify position with a resolution of Λ. Consider a volume V = 1/ρ. In the absence31

of other information, the probability that a single particle is localized within a given volume Λ3 is32

p = Λ3/V. Summing −p ln p over the (V/Λ3)-many such volumes yields − ln (Λ3/V) = − ln (ρΛ3).33

Similarly, the 3/2 in Eq. (11) is simply the entropy of the Gaussian momentum distribution, Eq. (3).34

Notice that s1 resembles the absolute entropy of the ideal gas,

SIdeal =
5
2
− ln (ρΛ3). (12)

The difference lies in the constant term 3/2 in s1 vs. 5/2 in SIdeal. We shall discover that the35

difference 5/2 − 3/2 = 1 is accounted for in the many-body terms s2, s3, . . . . Indeed, this is36

clear if we place N particles in the volume V = N/ρ. The derivation of Eq. (11) generalizes to37

s/NkB = 3
2 − ln (Λ3/V), but this must be corrected [15] by the irrelevant information, ln N!, that38

identifies the individual particles in each separate volume Λ3. The leading term of the Stirling39

approximation ln N! ≈ N ln N − N converts ln (Λ3/V) into ln (ρΛ3), while the second term adds40

1 to 3/2 yielding 5/2.41
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Either s1 or sIdeal can be taken as a starting point for an expansion of the entropy in multi-particle42

correlations. Prior workers [11,16–19] tend to favor sIdeal, while we shall find it more natural to begin43

with s1.44

1.2. Two- and three-body terms45

Translational symmetry allows us to replace the double integral over positions r1 and r2 in Eq. (6)
for s2 with the volume V times a single integral over the relative separation r = r2 − r1. A similar
transformation applies to the integral for s3. However, the canonical ensemble constraint Eq. (8)
leads to long-range (large r) contributions to the remaining integrations. Nettleton and Green [16]
and Raveche [17,18] recast the distribution function expansion in the grand-canonical ensemble and
obtained expressions that are better convergent. We follow Baranyai and Evans [11] and apply the
identity

ρ2
∫

V
dr1dr2 g

(2)
N (r1, r2) = N(N − 1) (13)

to rewrite the two-body term as

s2 = S
(2)
Fluct + S

(2)
Info (14)

S
(2)
Fluct =

1
2
+

1
2

ρ
∫

dr [g(2)(r)− 1] (15)

S
(2)
Info = −

1
2

ρ
∫

dr g(2)(r) ln g(2)(r). (16)

The combined integrand {[g(2)(r) − 1] − g(2)(r) ln g(2)(r)} of s2 falls off rapidly, so that the sum of
the two integrals converges rapidly as the range of integration extends to large r. Furthermore, the
combined integral is ensemble invariant, which allowed us to substitute the grand canonical ensemble
radial distribution function g(r) in place of the canonical g

(2)
N . The same trick applies to the three-body

term,

s3 = S
(3)
Fluct + S

(3)
Info (17)

S
(3)
Fluct =

1
6
+

1
6

ρ2
∫

dr2(g(3) − 3g(2)g(2) + 3g(2) − 1) (18)

S
(3)
Info = −

1
6

ρ2
∫

dr2g(3) ln (g(3)/g(2)g(2)g(2)). (19)

The contribution of 1/2 in s2 as given by Eq. (14), together with an added 1/6+ 1/12+ · · · = 1/2
from the three-body Eq. (17) and higher terms, reconciles the one-body entropy with the ideal gas. For
consistency with previous workers [11,16–19] who omit the 1/2 from S

(2)
Fluct and the 1/6 from S

(3)
Fluct,

and to make connection with the ideal gas, we can add the entire series 1/2 + 1/6 + 1/12 + · · · = 1
to s1 and write

S/NkB = SIdeal + (s2 − 1/2) + (s3 − 1/6) + · · · (20)

which is equivalent to Eq. (4).46

In the grand-canonical ensemble, the S
(2)
Fluct term in Eq. (14) arise from fluctuations in the number

of atoms, N, and can be evaluated in terms of the isothermal compressibility χT as

S
(2)
Fluct/kB =

1
2

γ, (21)

where
γ = ρkBTχT (22)
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is the dimensionless compressibility. Note that χT , and hence also §(2)Fluct, are positive definite. The
remaining term is the entropy reduction due to the two-body correlation. As noted above, the mutual
information content of the radial distribution function g(2)(r) reduces the entropy by

S
(2)
Info/kB ≡ −

1
2

ρ
∫

dr g(2)(r) ln g(2)(r). (23)

The complete two-body term is now s2 = S
(2)
Fluct + S

(2)
Info.47

The three-body fluctuation term (see Eq. (16)) also relates to isothermal compressibility [18], with

S
(3)
Fluct =

1
2

γ −
1
3

γ2 +
1
6

ργ
∂γ

∂ρ

∣

∣

∣

β
. (24)

The final term in Eq. (17) reduces to a difference of three- and two-body entropies, and its sign48

is not determined. Essentially, the g(3) ln (g(3)/g(2)g(2)g(2)) term adds back the two-body mutual49

information I[g(2)] and then subtracts the information contained in the three-body correlation g(3).50

Note that g(3) necessarily contains all the information in g(2) because of the identity Eq.( 9).51

The pattern illustrated in Eqs. (21) and (24) holds for the analogous higher-body correlations52

as well, because integrals of the correlation function g(n) can be written in terms of integrals and53

density derivatives of g(n−1). One limit of special interest is the incompressible limit, where the initial54

terms of Eqs. (14) and (17) vanish and only the information-derived g ln g terms survive. This limit55

should apply to dense fluids at low temperatures. Another limit occurs at high temperature, where56

the density drops and the correlation functions approach 1. In this limit all integrals involving g(n)57

vanish so that S
(n)
Info = 0 and all the S

(n)
Fluct terms sum to 1/2 + 1/6 + 1/12 + · · · = 1.58

Truncation of the series of terms S
(n)
Info is accurate if higher many-body correlation functions can

be approximated by products of fewer-body correlations. That is, if the higher correlation functions
contain no new information. For example, the Kirkwood superposition approximation

δg
(3)
N (r, s, t) ≡ g(3)(r, s, t)/g

(2)
N (r)g

(2)
N (s)g

(2)
N (t) ≈ 1 (25)

causes S
(3)
Info to vanish.59

2. Results60

To provide the liquid state correlation functions needed for our study we perform ab-initio61

molecular dynamics (AIMD) simulations based on energies and forces calculated from first principles62

electronic density functional theory (DFT). We apply the plane-wave code VASP [20] in the63

generalized gradient approximation [21]. Simulations are performed at fixed volume for each64

temperature. In order to determine the proper volumes (i.e. liquid densities ρ) we performed65

simulations at several volumes to identify the volume at which the pressure (including the kinetic66

term) vanished. Most runs were performed using Normal precision FFT grids, however the smallest67

system (N=100 atoms) was found to require accurate precision.68

Figure 2 shows the result of convergence studies in both volume and plane-wave cutoff69

energy. Briefly, we found minimal dependence on the plane wave energy cutoff, but strong and70

non-monotone dependence on the number of atoms. We accept N = 500 atoms as a suitable target71

for convergence of the volume and we use the same condition for collecting our correlation functions.72

Our calculated density at 973K falls below the experimentally assessed value by about 1%, similar to73

the discrepancy for solid Al in the limit of low temperature. From the volume-dependence of pressure74

we obtain estimates of the dimensionless compressibility γ ranging from 0.008 at T=973K up to 0.01575

at T=2473K.76

Pair correlation functions g(2)(r) are collected as histograms in ∆ = 0.01 Å bins, normalized to77

4πr2∆N2/V and subsequently smeared with a Gaussian of width σ = 0.025 Å. Triplet correlation78
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Figure 2. Calculated aluminum density vs. number of atoms N at various temperatures. All results
hold for the default energy cutoff of 240 eV except for red squares that hold for 320 eV.

functions g(3)(r, s, t) utilize bin widths of ∆ = 0.10 Å , normalized to 8π2rst∆3N3/V2, and are79

not smeared. Our run durations for data collection were 10 ps. All structures were thoroughly80

equilibrated prior to data collection.81

Figure 3 illustrates the pair correlation function g(2)(r) at various temperatures. Note the82

oscillations that extend to large r; presumably these oscillations are responsible in part for the83

oscillations in ρ as a function of N. Note also the decreasing amplitude of oscillation with increasing84

temperature. Figure 4 illustrates the three-body correlation function for the special case of equilateral85

triangles with r = s = t. The inset displays the ratio δg(3)(r, r, r) (see Eq.( 25). Notice that δg(3) is86

nearly a step function, with small decaying oscillations that diminish with increasing temperature.87

2.1. One-body term88

The one-body term explicitly depends on density, and also depends implicitly on temperature89

through the De Broglie wavelength Λ. Taking our calculated densities, and evaluating Λ, s1, and sIdeal,90

we note that s1 and sIdeal are greater than, but rather close to, the experimental liquid entropies [6,7],91

as shown in Fig. 1. The differences drop as the temperature grows, as expected because nonideality92

of the liquid metal becomes less important at high temperature.93

2.2. Two-body term94

In figure 5 we plot the terms S
(2)
Fluct and S

(2)
Info as defined by Eqs. (21) and (23), respectively, where95

we integrate from zero separation up to a cutoff of R. Owing to the R2 increase of the volume96

differential dr, oscillations of g(2) are magnified at large R. The fluctuation term appears to converge97

towards a value close to 0, consistent with the low compressibility of the liquid metal, while the98

information term converges towards a negative value. Note that the oscillations are nearly opposites,99

so that their sum converges rapidly towards a negative value of s2.100
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Figure 3. Pair correlation function g(2)(r) at various temperatures.
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Figure 4. Triplet correlation function g(3)(r, r, r) at various temperatures. Inset: Kirkwood ratio
Eq.( 25).
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Figure 5. Two-body terms SFluct and SInfo and their sum from simulated pair correlation function g(2)

at T=973K.

Adding the entropy reduction s2 to the single-particle entropy s1 yields values that are close to101

experiment but lie slightly below, as is evident in Fig. 1 (blue triangles). However we know that102

liquid metals have an electronic entropy (see Sec. 2.3), SElec, and when we include that term (Fig 1,103

orange crosses) the values lie within 1 J/K/mol of the experimental values. Had we chosen to add104

s2 − 1/2 + SElec to sIdeal instead of adding s2 + SElec to s1 the values would have been greater by105

R/2 = 4.157 J/K/mol, resulting in poorer agreement (Fig. 1 magenta + signs). In section 2.4 we106

explain why s1 + s2 + . . . is a more suitable starting point for an expansion in multiparticle correlation107

functions than sIdeal + (s2 − 1/2) + . . . is.108

2.3. Electronic entropy109

The electronic density of states D(E), which comes as a byproduct of first principles calculations,
determines the electronic entropy [22]. At low temperatures, all states below the Fermi energy EF are
filled and all states above are empty. At finite temperature, single electron excitations vacate states
below EF and occupy states above, resulting in the Fermi-Dirac occupation function

fT(E) =
1

exp [(E − µ)/kBT] + 1
. (26)

Fractional occupation probability creates an electronic contribution to the entropy,

SElec = −kB

∫

D(E)[ fT(E) ln fT(E) + (1 − fT(E)) ln 1 − fT(E)]. (27)

We apply this equation to representative configurations drawn from our liquid metal simulations,110

with increased k-point density in order to converge the density of states.111

At low temperatures, the electronic entropy approaches (π2/3)D(EF)k
2
BT, which depends only112

on the density of states at the Fermi level. However, at the high temperatures of liquid metals the113
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electronic entropy requires the full integral as given in Eq. (27), rather than its low temperature114

approximation.115

2.4. three- and higher-body terms116

We saw in Fig. 5 that the integral in Eq. (21) converges slowly to the dimensionless117

compressibility γ which is a positive but very small value. Accordingly, the same must be true118

for the integral of the three-body fluctuation term, Eq. (24), and all higher-body terms as well.119

Thus all fluctuation terms are essentially negligible contributions to the entropy at the temperatures120

considered here. This observation must break down at sufficiently high temperatures, because in121

the limit of very high temperature all correlation functions approach 1, so that all integrals vanish.122

As noted by Baranyai and Evans [11], s2 → 1/2, s3 → 1/6, s4 → 1/12 and s3 + s4 + · · · → 1.123

This limit only holds at extreme high temperatures and low densities, however the small shortfall in124

s1 + s2 + SElec at T=2473K could reflect a need to include a small fluctuation contribution due to the125

many-body terms S
(n)
Fluct at high temperatures.126

We still need to discuss the three-body information term, S
(3)
Info (Eq. (17)). Previous studies have127

discussed this term for model Lennard-Jones and hard-sphere fluids [23,24]. This term vanishes128

within the Kirkwood superposition approximation, δg(3) = 1, and as seen in Fig. 4 this approximation129

is quite accurate even at T=973K. Presumably the nearly free electron character of aluminum, which130

causes its interactions to be well described by a nearly hard-sphere pair potential [25], leads to the131

weak form of δg(3). The deviations of δg(3) from 1 are oscillatory, both in radial dependence as seen132

in Fig. 4, and in angle as shown in Fig. 6. We lack sufficient resolution in g(3) to evaluate the complete133

integral, however integrating over r at fixed angle the terms are of magnitude 0.1 or less, and they134

reverse sign as a function of angle, leading to further cancellation.135
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3. Discussion136

We find that the entropy of liquid aluminum is described rather accurately using the first two137

terms in an expansion of the entropy in multiparticle correlations. We show in particular that it138

is advantageous to start the series with s1 rather than sIdeal, and in compensation to include the139

terms 1/2, 1/6, . . . within s
(2)
Fluct, s

(3)
Fluct, . . . , respectively, because each of these terms then becomes140

of the order of the small dimensionless compressibility γ. The remaining terms, S
(n)
Info, each have141

a simple information-theoretic interpretation, with s1 being the information to specify individual142

particle positions with resolution Λ3, S
(2)
Info = −I[g(2)] being the mutual information content of the pair143

correlation function, and the corresponding higher order terms reflecting the additional information144

contained in g(n) that is not already present in the lower order terms.145

In terms of accuracy, obtaining an accurate density is important. The difference between146

densities predicted at different system sizes N can shift the value of s1 by about 0.5 J/K/mol, with147

greater density reducing s1. More significant is the impact of density on s2, with the same difference in148

density increasing the mutual information I[g(2)] by up to 6 J/K/mol. Both of these potential sources149

of error substantially exceed the truncation error due to neglect of multiparticle correlations, a finding150

that may hold generally for nearly-free-electron metals, while transition metals with angle-dependent151

forces may require additional terms.152
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