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Abstract. Polytope 120, a perfect icosahedral crystal in non-Euclidean three-dimensional 
space, models local icosahedral order in metallic glasses. We utilise the symmetries of 
polytope 120 to determine its vibrational spectrum, Debye-Waller factor and Lindemann’s 
constant. The melting temperature of the icosahedral crystal is twice as large as the melting 
temperature of an FCC crystal. Enhanced stability against melting arises from the greater 
stiffness and larger Lindemann’s constant of the icosahedral polytope. 

Polytope 120 is a close-packed icosahedrally coordinated crystal with 120 atoms embed- 
ded in S3, the curved three-dimensional surface of a sphere in four-dimensional space 
[l]. Several authors use the polytope 120 to model local icosahedral order in metallic 
glasses. It is believed that metallic glasses, Frank-Kasper crystals and quasi-crystals 
share the same local icosahedral order as polytope 120 [2-91. It is energetically favourable 
for atoms interacting with attractive central forces to form icosahedral clusters, in which 
20 tetrahedra with small distortions are packed together around a central point. This 
idea has been used to explain the large supercooling of undercooled liquids [6]. Ico- 
sahedral order cannot be extended throughout R3 because of the icosahedron’s five- 
fold symmetry and icosahedral frustration. In Frank-Kasper crystals [7] there are regions 
of icosahedral order threaded by an ordered array of disclination lines. Metallic glasses 
may be described as Frank-Kasper phases in which the disclination lines have become 
entangled [3, 81. 

In this Letter we present the result of a calculation of the mean square displacement 
( r2 ) ,  where r is the displacement of an atom vibrating around its equilibrium position in 
polytope 120. From the value of ( r2 )  we determine the Debye-Waller factor which 
describes the effects of thermal vibrations of atoms on the structure function of the 
polytope 120. We also estimate Lindemann’s constant of the polytope 120, the ratio of 
the root mean square of r to the separation of nearest neighbours, by evaluating the 
mean square displacement at the temperature at which the polytope melts. 

We find that ( r2)  varies linearly with temperature in the harmonic approximation, so 
the Debye-Waller factor decreases exponentially as a function of temperature. At a 
given temperature the mean square atomic displacement is greater in an FCC crystal than 
in the polytope. In addition, the Lindemann’s constant of the polytope is larger than the 
corresponding Lindemann’s constant of an FCC crystal so at their melting points the 
vibrational amplitude is greater in the polytope than in an FCC crystal. In other words, 
the polytope 120 is more stable than an FCC crystal against thermal motions in two 
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respects: the polytope vibrates less at a given temperature, but can withstand greater 
amplitude vibrations without melting. 

To evaluate the mean square displacement we solve the equations of motion for 
atoms moving on S3 interacting through a pair potential. We construct the vibrational 
eigen-functions explicitly by requiring that they transform under irreducible rep- 
resentations of G, the symmetry group of the polytope [9]. Then we derive a force 
operator acting on an atom for an arbitrary potential V(r)  within the harmonic approxi- 
mation. The vibrational frequencies are readily extracted from the eigenvalues of the 
force operator. 

To classify the vibrational spectrum of the polytope according to irreducible rep- 
resentation of G, we use techniques from molecular vibration theory. First of all, one 
finds the total representation T given by all the vibrational coordinates (basis vectors) 
together, then decomposes it into irreducible representations of G (see table 1). The 
basis vector at position ri is defined as [9] 

Table 1. Vibrational eigenvalues ,Iup and Abs and degeneracy d, according to irreducible 
representation. 

Longitudinal 
4 
9 

16 
25 
36 
36 
16 

Transverse 
6 

16 
30 
48 
30 
40 
24 
24 

10.61803399 
7.472135955 
4.045084972 
1 

- 2.716 579 672 
- 1.137522293 
-3.281 152949 

9.708203932 

3 
0 

-2 
-2 
-2 
-3 

6.472135955 

1.118033989 
0.427 050 9831 

-0.272 542 4859 
-0.8090169944 

0.197759 1197 
- 1.079 725 131 
-0.345491 5028 

1.381 96601 1 
1.118033 989 
0.809 016 9944 
0.5 
0.3819660113 
0.118033 989 

- 1.118033989 
-0.4270509831 

This produces a basis vector of a tangential irreducible representation of G for all a/.? E T 
except for Cup = ZZ, for which it produces a sum of basis vectors of the two occurrences 
of ZZ in T ,  

= h , ( 4  + h 2 W  ( 2 )  

Let V ( r )  be the interaction between atoms and the equilibrium separation between 
atoms be s = 1, so the curvature is K = S2, the Golden Mean. Without loss of generality 
we may take the atom at the North pole as a particular one and study its response to 
displacement of nearest neighbours VI,  because each atom has the same environment. 
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Displacing each atom of the polytope to another position on S3 by a small displacement 
~ $ ( d ) ,  we find that the total force exerted on the North pole is 

where A ,  B are coefficients related to the form of the interaction V ( r )  [lo]. The first term 
in equation (4) above is normal to S3 and is discarded since atoms are confined to move 
in S3 only. 

Now because the functions qffS are eigen-functions of F,,,, we may write 

x (V - 1)(V - 1).+m,(V) = AaBkYB(1) (6) 
V E V I  

where A,, and A,, are vibrational eigenvalues. The final form of the force operator 
acting on an eigen-function is 

F'[qq9(1)1 = - [ A ( A ~ B  - j l F 1 A )  + B(AffB - A F ~ A ) l E q f f , ( l ) .  (7) 

Values of A, and A@, are listed in table 1. 
This general force operator is suitable to any kind of pair potential. For the sake of 

comparison with Monte Carlo simulations, we adopt a purely repulsive inverse 12th 
potential 

V(r)  = 4/r? (8) 

mi, = A(A, - A F I A )  + B(A,  - A F I A ) .  

In this case A = 48, B = -48 x 14/(2 - S 2 ) .  The vibrational spectrum can be readily 
obtained through 

(9) 

With the spectrum, we are able to calculate the mean square displacements of atoms 
from their equilibrium positions in the polytope. The displacement of an atom is due to 
the superposition of all the normal modes. Thus the mean square displacement is 
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where N is number of atoms which is 120 and 2 is the partition function. Substituting 
the values of w& obtained from (9) into (lo),  we have 

(r2),1, = 0.0023 kB T.  (11) 
This is a linear function of temperature T ,  but of course it cannot be valid over the whole 
temperature range. As one increases the temperature the amplitude becomes larger and 
larger, and eventually a temperature is reached at which the amplitude is so large that 
the polytope simply melts. One would expect the expression to break down before 
melting occurs, but as we shall see it is quite good up to the melting point. 

It is intriguing to compare (11) with the corresponding quantity for an FCC crystal, 
whichis aclose-packedstructurein three-dimensional flat space. We caneasily generalise 
(10) to three-dimensional flat space 

where D(k)  is the dynamical matrix of an FCC crystal with an inverse 12th potential and 
unit neighbouring distance [lo] and B ,  is the first Brillouin zone: 

( r 2 ) ~ c c  = 0.0027 kB T. (13) 
Thus at a given temperature the thermal vibrational amplitude of the polytope is smaller 
than the thermal vibrational amplitude of an FCC crystal. The icosahedral crystal is more 
stiff than the cubic crystal. The difference may be attributed to soft transverse phonon 
modes in the [110] direction of the cubic crystal. 

The Debye-Waller factor describes the effects of thermal vibrations of atoms about 
their equilibrium positions. It reduces the intensities of Bragg peaks or the values of the 
structure function of a crystal. Straley has simulated the motions of atoms of the polytope 
[ l l ] .  He  calculated the structure function of the polytope as a function of temperature 
and found a sudden jump at T,, which is recognised as the melting temperature, kBT, = 
16 (see figure 1). 

r 

t 
I I I I I 

0 4 8 12 16 
k0 T 

Figure 1. Structure function SI2 versus temperature. (Note: Some of the error bars are too 
small to be drawn). The full line is the theoretical prediction (equation (18)). 
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We derive a formula for the Debye-Waller factor of the polytope, compare it with 
Straley’s data, and find that the formula is in excellent agreement with Straley’s 
simulation results all the way up to the melting temperature. 

ynm,m2 (ffa)y:m:;,m2 (& b )  (14) 

where RI,  R2 are the positions of atoms displaced from R,, & respectively and ra(0) 
and r b ( t )  are the amplitudes of atoms at R ,  and R,. Lo, is the curved space analogue 
of a ‘translation’ in the p direction. If we keep only the zero-phonon contribution, we 
obtain 

= exp[-K2n(n + 2)(r2)ply/4]S,(T= 0). (18) 

Note the factor of 4 in the exponent which differs from the usual factor of 3 because 
the polytope is embedded in four-dimensional space. (Note that S, vanishes [8] except 
when n = 0, 12, 20, 24 . . . .) 

The agreement suggests that the harmonic approximation works well, and it gives 
us confidence about our calculations even at the melting temperature. Lindemann’s 
constant is such a quantity measured at the melting temperature. It is the ratio of the 
root mean square of r to the nearest separation between atoms. For the polytope, 
combining (9) with k,T, = 16, we find that 

Lpoly = 0.19. (19) 
We also carry out the calculation of this physical quantity using density functional 
theory with Straley’s data on the structure function of the polytope in its liquid phase. 
It is interesting to note that the values obtained are in reasonable agreement although 
there are unresolved problems with density functional theory itself [12]. 

The corresponding problem has been studied by computer simulation for an FCC 
crystal with the inverse 12th potential and unit neighbour distance between atoms 
[13], and Lindemann’s constant was found to be 

L F C C  = 0.15. (20) 
Lpoly is about 20% larger than LFC-, so at the melting temperature the thermal 
vibrational amplitude of polytope 120 is much greater than the thermal vibrational 
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amplitude of an FCC crystal. The ratio of the polytope melting temperature to the FCC 
melting temperature may be calculated from 

in agreement with the finding of Straley. 
Thus polytope 120 has greater stability against thermal motions than an FCC crystal 

does. The polytope consists solely of tetrahedral cells, whereas an FCC crystal contains 
a mixture of tetrahedral and octahedral cells in a ratio 2:  1. There are soft modes in 
certain directions [ 101 in an FCC crystal because the tetrahedral cells resist distortions 
more effectively than octahedral cells do. The soft modes, which reduce the crystal’s 
rigidity, are suppressed in the isotropic polytope [9] leading to enhanced thermal 
stability. 
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