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We study finite-size corrections to the free energy of free-fermion models on a 
torus with periodic, twisted, and fixed boundary conditions. Inside the critical 
(striped-incommensurate) phase, the free energy density f (N,  M) on an N x  M 
square lattice with periodic (or twisted) boundary conditions scales as f (N,  M) = 
f ~ - A ( s ) / ( N M ) +  .... We derive exactly the finite-size-scaling (FSS) 
amplitudes A(s) as a function of the aspect ratio s = M/N. These amplitudes are 
universal because they do not depend on details of the free-fermion Hamiltonian. 
We establish an equivalence between the FSS amplitudes of the free-fermion 
model and the Coulomb gas system with electric and magnetic defect lines. The 
twist angle generates magnetic defect lines, while electric defect lines are 
generated by competition between domain wall separation and system size; The 
FSS behavior of the free-fermion model is consistent with predictions of the 
theory of conformal invariance with the conformal charge c = 1. For instance, 
the FSS amplitude on an infinite cylinder with fixed boundary conditions is 
found to be one-quarter of that with periodic boundary conditions. Finally, we 
conjecture the exact form of the FSS amplitudes for an interacting-fermion 
model on a torus. Numerical calculations employing the Bethe Ansatz confirm 
our conjecture in the infinite-cylinder limit. 

KEY W O R D S :  Conformal invariance; incommensurate phases; finite-size- 
scaling amplitudes; free-fermion model; electric and magnetic defect; Coulomb 
gas; interacting fermion model; Bethe ansatz. 

I .  I N T R O D U C T I O N  

Study of finite-size corrections to the free energy of statistical systems is 
motivated by two facts. First, by understanding the corrections, one can 
subtract them from finite-size data obtained through transfer matrix or 
Monte Carlo calculations to obtain the bulk free energy. Second, the finite- 
size corrections contain information about universality class for systems at 

t Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. 
2 Present address: Department of Physics, Boston University, Boston, Massachusetts 02215. 

51 

0022-4715/90/1000-0051506.00/0 �9 1990 Plenum Publishing Corporation 



52 Park and Widom 

a conformally invariant critical point. Thus, from a utilitarian standpoint, 
one may improve numerical convergence of finite-size data if universality 
class is known. Or one may determine the universality class by measuring 
the finite-size effects. 

A great deal is known about finite-size effects in a variety of 
systems.(1 3) The form of corrections to the free energy depends on dimen- 
sionality, universality class, geometry, boundary conditions, and whether 
the system is at a critical point, but is independent of further details for a 
wide class of models. Perhaps the most significant result is a universal 
formula for corrections to the free energy at conformally invariant critical 
points in two dimensionsJ 4) Consider a strip of finite width N and infinite 
height, which is the usual geometry for transfer matrix calculations. With 
free (or fixed) boundary conditions across the strip, the free energy takes 
the form 

f N  = f ~ + L / N -  (n/24) ~ c / N  2 + . . .  ( | )  

where f ,  is a nonuniversal surface free energy associated with strip 
boundaries, ~ is the a n i s o t r o p y  f a c t o r  (the scale factor by which the vertical 
axis must be multiplied to achieve rotational invariance of correlation 
functions), and c is the c o n f o r m a l  charge  defining the universality class of 
the. system. (5) 

When periodic boundary conditions are utilized, the form changes 
slightly. Now fs = 0 and the coefficient of the second-order correction 
(finite-size-scaling amplitude) is exactly four times larger, 

f u  =fo~ - (re/6) ( c / N  2 + . . .  (2) 

The anisotropy factor can often be isolated by running the transfer matrix 
in the perpendicular direction. That is, in a system of infinite width N but 
finite height M, Eq. (2) becomes (6) 

fN = f ~  -- (Z~/6~) e l M  2 + . . .  (3) 

We actually calculate the finite-size corrections for systems which are 
rectangular, with height M and width N, as a function of the aspect ratio 
s = M / N .  Thus, our results include the limiting geometries of Eqs. (2) and (3). 
Furthermore, the finite-aspect-ratio cases may be of use in analyzing results 
of Monte Carlo calculations (7) as well as transfer matrix studies. 

Many important models of statistical mechanics (e.g., Ising and Potts 
models) acquire conformal invariance at their critical points. Thus, 
Eqs. (1)-(3) can be applied once the conformal charge is determined. There 
are, however, a few problems (e.g., directed percolation) lacking conformal 
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invariance for which the universal formulas should not hold. One impor- 
tant set of models for which questions of conformal invariance and finite- 
size corrections have not been thoroughly investigated are those displaying 
incommensurate phases (8) (e.g., ANNNI and chiral 3-state Potts models). 
This paper represents a first step toward filling that gap. 

In this paper we study fermion models without dislocations. Figure l 
shows a prototypical two-dimensional striped-incommensurate phase. 
Domain walls run vertically on average. Without dislocations the number 
of walls is a conserved, integral value with periodic boundary conditions. 
In the models considered in this paper the entire incommensurate phase is 
a critical phase with continuously varying domain wall density d. Domain 
wall density correlation functions decay algebraically with a modulation 
such that domain walls are placed periodically at distances lh = l id  on 
average. 

We want to know if the formulas of conformal invariance hold. Space 
is clearly anisotropic, since the domain walls always run vertically on 
average. Isotropy must be regained by a simple anisotropy factor if 
Eqs. (1)-(3) are to hold. Scale invariance requires that there be no significant 
length scale in a system except for the correlation length, which must be 
infinite. The microscopic lattice constant, for example, is usually an irrelevant 
length. In incommensurate systems there is a third length, the domain wall 
separation lh, to be concerned with. This length must be irrelevant in some 
sense for conformal invariance to hold. Thus, there is a significant reason 
to question whether Eqs. (1)-(3) apply to incommensurate phases. (9'1~ 

The principal result of this paper is that these equations do hold in the 

Fig. 1. A domain-wall configuration of a striped-incommensurate phase. Domain walls are 
denoted by vertical wiggly lines. The horizontal length scale lh represents the average domain 
wall separation and the vertical length scale lo represents the average vertical distance between 
collisions of domain walls. 
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incommensurate phase if one takes into account an electric defect 
generated by competition between the domain wall separation l h and the 
system size N. Physically, this defect arises because the bulk domain wall 
density d is incompatible in general with any finite system size. That is, the 
number of domain walls expected to occur in a system of width N is Nd. 
This value is usually not an integer, but periodic boundary conditions 
allow only integral numbers of domain walls to be present. So the system 
is forced out of its normal ground state by the conservation of domain wall 
number. The magnitude (charge) of the defect is the number of missing 
domain walls. Because of this defect, care must be taken in extrapolating 
finite-size data to bulk values and extracting finite-size behavior of the free 
energy. We also show that the twist angle in twisted boundary conditions 
generates a magnetic defect line. The electric and magnetic defects are dual 
to each other. 

Our results follow from calculating the exact finite-size-scaling (FSS) 
amplitudes of the free fermion model on a torus using an asymptotic 
expansion method. These amplitudes are universal. That is, they do not 
depend on details of the free-fermion dispersion relation. In fact, we find 
they are equivalent to those of the six-vertex model (or the Coulomb 
gas (H)) with electric and magnetic defect lines. In the infinite-cylinder limits 
(s ~ oe and s -~ 0), we show that Eqs. (2) and (3) hold and the conformal 
charge c -- 1. But the presence of the defects leads to an effective c < 1 in 
the s ~ oe limit. With fixed boundary conditions we confirm that Eq. (1) 
holds. 

Next, we extend our results to an interacting-fermion model. The 
symmetric six-vertex model is equivalent to an interacting fermion model at 
the half-filling in the time-continuum limit. The FSS amplitudes of this 
vertex model are known exactly on a torus. ~12'a3) The incommensurate 
phase of the free-fermion model has a continuously varying domain walt 
density. Comparing these amplitudes of the free-fermion model and the 
half-filled interacting-fermion model, we conjecture the exact form of the 
FSS amplitudes of the non-half-filled interacting-fermion model on a torus 
(the incommensurate phase with interacting domain walls). Employing the 
Bethe Ansatz, we confirm our conjecture numerically in the infinite-cylinder 
limit. Analytic perturbation calculations in certain limits also confirm our 
conjecture. Some of our results have been published elsewhere (14) and this 
paper provides details and complete results. 

The remainder of the paper is organized as follows. In Section 2, we 
introduce the free-fermion model and solve it on toroidal lattices of finite 
size. Then the solution is used to compute the finite-size corrections to the 
free energy in Section 3. In Section 4, we extend our results to an interacting- 
fermion model. Finally, we discuss our results. 
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2. T H E  FREE F E R M I O N  M O D E L  

Consider a two-dimensional statistical model on a square lattice with 
horizontal width N and vertical height M. Let sin(n) be a statistical variable 
defined at site (n,m) where n =  1,2,. . . ,N and m =  1,2,...,M. The 
Hamiltonian of the system H is written as the sum of interaction 
Hamiltonians between statistical variables of neighboring rows, i.e., 
H=Zm H(sm, Sm+x), where Sm = {Sin(l) ..... s,~(N)}. For  simplicity, only 
nearest-neighbor interactions are considered. In the vertical direction, 
periodic boundary conditions are taken throughout this paper, sM+l = Sl. 
Then the partition function is 

~ =  ~ exp - H(sm, Sm+l) 
S1,S2,... 1 

= Tr J-M (4) 

where the transfer matrix Y is defined as ( s lJ Is ' )=  e x p [ - H ( s ,  s ')]. 
Two-dimensional statistical models can be described by one- 

dimensional quantum field theories. By defining the quantum Hamiltonian 
as Yf = - l n ( J ) ,  we obtain for the partition function 

~ =  T r e x p ( - M ~ )  (5) 

The transfer matrix 3- can be interpreted as a time-evolution operator of 
a one-dimensional quantum mechanical system by viewing the vertical axis 
as the time direction. It is generally difficult to find exact quantum 
Hamiltonians corresponding to well-known classical statistical models, 
because of noncommutativity between operators in transfer matrices. 
Instead they are obtained only in the anisotropic limit (time-continuum 
limit). However, these Hamiltonians in the time-continuum limit usually 
sustain universal features of the nature of phases and phase transitions, 
including finite-size scaling. 

Consider the simple quantum Hamiltonian 

J f  = m  a+ a~--~ (a~+ a,,+l +Cr~a,++l) 
n = l  n = l  

(6) 

where a~  are the Pauli-spin raising/lowering operators at site n. This 
Hamiltonian describes a simple domain wall model on a two-dimensional 
square lattice. The spin-up state (o -z = +1) is identified with presence of a 
domain wall at site n and the spin-down state (o- ,~=-1)  with vacancy. 
Then a~ serve as the creation/annihilation operators of a domain wall at 
site n. Here m is the energy (or mass) of the domain wall and t the nearest- 
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neighbor hopping probability. The Pauli exclusion principle guarantees no 
meetings of domain walls. This quantum Hamiltonian does not allow pair- 
creation/annihilation of domain walls or back bendings (no dislocations). 
Domain walls must extend from the bottom edge to the top in the vertical 
direction, so the number of domain walls is conserved. Domain walls may 
hop to further-neighboring sites as well as nearest neighbors with probability 
of order t dh (dh is the hopping distance). The partition function ~ [Eq. (5)] 
includes these multiple-hoppin terms from the expansion of exp(-J((~). 
Notice that the domain-wall quantum Hamiltonian at m---0 is identical to 
that of the six-vertex model at the so-called free-fermion point, i.e., the 
Hamiltonian of the XXZ quantum chain at A = 0. (15) 

The Pauli spin operators a,~ satisfy the fermion-anticommutation 
relation at the same site, {a,, + , ~r,~-} = 1, but commute at different sites. 
Genuine fermions which anticommute at different sites can be generated by 
the Jordan-Wigner transformation 

a~ = ~r + exp ir~ o- m a (7) 
m = l  

for n = 1, 2,..., N. The phase factor counts the number of domain walls to 
the left of the site n and ensures the anticommutativity of fermions at 
different sites, {a= + , a m } = 6~m. We assign an additional minus sign to the 

+ 
definition of ag+ 1, i.e., 

+ + a~+ 1 = -~r~+ 1( - -  1 )nd ( 8 )  

where na is the number of domain walls in the system. Recall that the 
number of domain walls is conserved and therefore serves as a good 
quantum number. With these transformations, the quantum Hamiltonian, 
Eq. (6), may be rewritten as 

= ,{ 
~ = m  ~ a,+, a2--~ (a+ a2+l-a2a+=+t) (9) 

n = l  n = l  

We now compute the free energy of this system with periodic, twisted, 
and fixed boundary conditions. First, we consider periodic boundary 
conditions in terms of domain walls in the horizontal direction, i.e., 

+ a ~ + l =  a~.  From Eq. (8), the fermion operators satisfy 

+ = - a ? ( - 1 )  "a (10) a~+ 1 

The eigenstates of this Hamiltonian are plane waves, 

1 N 
a[ -- ~ a+~ exp(+_ikn) ( l l )  
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and the Hamiltonian becomes 

N 

= y, #(kj)  a+k~ akj- (12) 
j = l  

where the dispersion relation is given as # ( k ) = m - t c o s ( k ) .  From the 
boundary conditions, Eq. (10), the wavevector k takes N discrete values 
between - n  and ~ satisfying 

exp( ik jN)= { i if nd=odd integer (13) 
- if n d=even integer 

In case of N even, kj = (~/N)(2j - N) for odd na and k) = (zt/N)(2j - 1 - N) 
for even nd ( j =  I,..., N). For convenience, we denote k =  {kj} and 
k ' =  {kj}. 

The partition function on a square lattice with periodic boundary 
conditions in both directions (a toms) splits into two sectors (odd and 
e v e n  rid) ~ 

n k = O, 1 n k '  = O, 1 
"Y:'k n k  = o d d  ~-.k '  n k '  = e v e n  

(14) 

where nk (=0, 1) is the eigenvalue of the number operator a~a~  (i.e., the 
occupation number of the state with wavevector k). It can be shown that 
the above partition function Y' is equivalent to the following: 

where 

' i  
~ = ~  p,~0~i (p l=  --1, p z = p 3 = P 4 = l )  (15) 

i = 1  

N 

 =lq 
j = l  

N 

 2=lq 
j = l  

N 

 3=lq 
j ~ l  

N 

zr4 = l q  
j = l  

[1 - exp( -M#(k j ) ) ]  

[1 + exp( - M # ( k j ) ) ]  

[1 + exp( -M#(k j ) ) ]  

[1 - e x p ( - M C ( k j ) ) ]  

(16) 
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+ Next, consider twisted boundary conditions defined as aN+ ~ = ~  
exp(+i2n~b). These boundary conditions do not produce any surface free 
energy and change only phase factors of wavefunctions (gauge-invariant 
boundary conditions). Without loss of generality, one may restrict the 
value of ~b to lie between - 1/2 and 1/2. The fermion operators satisfy 

a~+~ + = - a + ( -  1) ndexp(_+i27c~b) (17) 

and the wavevectors are shifted to 

I ~  (2~b ~ + 2 j -  N) if nd = odd integer 

k,- (18) 

( ~ (2~b + 2j - 1 - N) if nd= even integer 

for N even. Note that the twist angle shifts the wavevectors uniformly. The 
partition function can be written as in Eqs. (15) and (16) with the shifted 
wavevectors. 

+ Finally, consider boundary conditions which require a ~ + l =  0. These 
boundary conditions are conventionally called free boundary conditions 
because the quantum chain has free ends. (16) However, in this paper we call 
them fixed boundary conditions because domain walls cannot cross over 
the boundary and therefore must remain inside of the system. Once a 
domain wall reaches the boundary, it reflects back to the interior. The 
boundary plays the role of an infinite energy barrier and particle (domain- 
wall) wavefunctions vanish at the boundary. These boundary properties are 
essentially the same as properties of so-called fixed boundary conditions in 
spin systems and quantum mechanical problems. 

With fixed boundary conditions the Hamiltonian (6) becomes 

N t N~I  
~Vf =m ~ a+ a~--~  (a+ an+~ +a;a++t) (19) 

n~ l  n= l  

The number of domain walls is still conserved. The eigenstates are standing 
waves, 

___=( 2 ~ 1/2 N 
ak \ ~ - ~ ]  Z a+ sin(kn) (20) 

+ The boundary conditions a~+x= 0 require that wavevectors take discrete 
values 

rq 
kJ=u~_ l (21) 
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where j =  1,..., N. The partition function with fixed (periodic) boundary 
conditions in the horizontal (vertical) direction is 5e=~e2 [see Eq. (16)] 
with the new k-states as above. 

One may consider the system where particles (domain walls) can cross 
over the boundary, so the number of domain walls is not conserved. The 
particle wavefunctions spread beyond the boundary. We call these boundary 
conditions free boundary conditions. The Hamiltonian can be written as 

N tN- - I  7 
~f'=m Z a+a2---~ Z (a+an-+l+a;a~++t)--~(a~v+au+a~+a;) 

n = l  n = l  

(22) 

where the third term represents the creation/annihilation of domain walls 
at the boundary and 7 is the probability of such processes. The number of 
domain walls is no longer conserved and a continuous k spectrum is 
expected. The Hamiltonian is not diagonalized simply in the k space. 
We have studied these free boundary conditions through a random tiling 
model numerically using the transfer matrix method and the results appear 
elsewhere.(17 

One can generalize our discussion to systems with more general 
Hamiltonians than Eq. (6). Most of our results in the following sections 
describe universal features of free-fermion models. They do not depend on 
details of the Hamiltonian, but only on a few of the general properties of 
the dispersion relation. We need only assume that the dispersion relation 
g(k) satisfies the following conditions: 

1. g(k)=g(-k) .  
2. A monotonically increasing analytic function as Jk] is larger, i.e., 

d~ > 0 for k > 0 .  

3. A quadratic shape near k = 0 ,  i.e., g ' ( 0 ) = 0 ,  g " ( 0 ) > 0 .  

4. The density of state is a constant (the distribution of wavevectors 
k is uniform). 

Before studying finite-size effects in the free-fermion model, we review 
briefly some known properties of this model in the bulk (for a more 
complete review, see Ref. 8). In the thermodynamic limit, boundary 
conditions do not matter and the free energy density becomes 

fo~ - In Y 1 fk~ dk g(k) (23) 
NM 2~ -k~ 

where the Fermi wavevector k F is defined by g (kF)=  0, i.e., cos(kF)= m/t. 
When m/t > 1, the free energy density is zero and this phase is called the 
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commensurate-solid phase. In this phase, the domain wall density 
d= df/dm also vanishes. When m/t < -1 ,  all states are occupied (d=  1) 
and f ~  = -m .  This phase is called the closed-packed commensurate-solid 
phase. When - l < m / t <  1, the states below the Fermi surface are 
occupied. The free energy is given in Eq. (23) with the domain wall density 
d= kF/rC. This phase is called the striped-incommensurate floating-solid 
phase. This phase is a critical phase in the sense that correlation functions 
decay algebraically. The critical index of the domain wall density x -- 1. The 
modulation in the density-density correlation function implies that domain 
walls are placed periodically at distances lh----- 1/d on average. 

The transition between the commensurate and incommensurate phases 
at m-= t (kF= 0) is known as the Pokrovsky-Talapov transition. (18) Near 
the transition from the critical phase (small kF), the domain wall density 
behaves like 

d = kF~ ]~1/2 (24) 
7~ 

where # = -g(O)/g"(O) (=  1 - m / t )  is the reduced coupling constant. The 
free energy behaves like 

f ~  ~ kF g ( o ) ~  _#3/2 (25) 
n 

Notice that the free energy has a singular term with the 3/2 power of the 
reduced variable /~, which is the signature of the Pokrovsky-Talapov 
transition. The second derivative of the free energy, the specific heat, 
diverges near the transition from the side of the incommensurate phase 
with exponent ~ = -1/2.  

The free-fermion model is an anisotropic model and domain walls 
follow the temporal (vertical) direction. This anisotropy shows up in the 
density-density correlation function when one includes the time (vertical 
distance) dependence. The anisotropy factor ~, the ratio of the length scale 
in the horizontal direction compared to that in the vertical direction, is 

= lh/l v = t sin(kF). The horizontal length scale lh represents the average 
domain wall separation. The vertical length scale lv represents the average 
vertical distance between collisions of domain walls. The anisotropy factor 
can be interpreted as the velocity of the particle at the Fermi surface, 

=g ' (kF) ,  which is the proper definition of the anisotropy factor in the 
conformal theory. Near the Pokrovsky-Talapov transition this factor 
becomes very small, i.e., the system becomes very anisotropic; ~--~ k v ~  #1/2. 
The length scale in the vertical direction lv goes to infinity much faster than 
that in the horizontal direction lb. In fact, lh = 1/d..~ #-1/2 and l~ ~ #-1. 
This is the nature of the anisotropic scaling at the Pokrovsky Talapov 
transition. 
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3. FINITE-SIZE CORRECTIONS TO FREE ENERGIES 
IN THE I N C O M M E N S U R A T E  PHASE 

In this section we derive the finite-size-scaling amplitudes of the free 
energy inside the incommensurate (critical) phase of the free-fermion 
model. We consider M x Nlattices with periodic, twisted, and fixed boundary 
conditions. The aspect ratio s = M/N is held constant in the thermodynamic 
limit. We analyze the partition function by an asymptotic expansion method 
used by several authors for Ising and dimer models.~t9'2~ 

The partition function of the free-fermion model on a torus with periodic 
boundary conditions in both directions consists of four terms as shown in 
Eqs. (15) and (16). For each of the four terms we now obtain the leading 
finite-size corrections. That is, we extract terms of (9(1) multiplying the 
bulk partition function. For simplicity we only discuss the case in which the 
number of sites in the horizontal direction N is an even integer (however, 
final results do not change for odd N). First consider ~3, 

~3 - + exp 

j = l  

Define e by 

d~ --- 0 (27) 

i.e., c~ = Nkr/(2r 0 is of (9(N). The integer closest to e is denoted by p, 

c~ = p + ~ (28) 

where - 1/2 < ff ~< 1/2. Then, 8(~(2j - 1 )/N) is negative for j = 1,..., p and is 
positive for j = p + 1,..., N/2. So the number of domain walls of the ground 
state in this even sector is nd= 2p. We factor Y'3 into three products 

,-~3 = ,~1 ,~2 ~.~3 (29) 
where 

~1 = j__l~ exp I--2Mo~ ( ~ ( 2 ~  1) ) ]  

~3 = 1~ 1 + exp - M N  2JN_ff- 1) ; 
j = p + l  

(30) 
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The exponential terms in two products ~2 and ~3 become small compared 
to unity as M goes to infinity. 

First consider the logarithm of ~ , ,  

P 
In N1 = - 2 M  ~ g[=(2j-- 1)/N] (31) 

j = l  

Using the Euler-Maclaurin formula, with the aspect ratio s = M/N fixed in 
the thermodynamic limit, we find 

l n ~ l -  ~ Jo d k g ( k ) + g s g '  

_ M-Nfkedkg,k)+(6-2rtk2)s~n ~ (32) 

where the anisotropy factor ~ = ~ ' (kF)  is the Fermi velocity. 
~2  and ~3 are analyzed by an asymptotic expansion method. (19'2~ 

Here we do not go into details of the rigorous derivation of our results, but 
give a heuristic derivation. Readers interested in the rigorous proof of our 
results should refer to refs. 19 and 20. The logarithm of ~2 becomes 

l n ~ 2 = 2  ~ l l n { l + e x p I M C ( T Z ( 2 N l ! ) J  } . . =  

= 2  ~ .= l ln{ l+expIMg( rc (2p -2 j+ l ! ) l } -N  

=2;~.~lIn l + e x p  Mg k~ -~ 

2 2  ~ ln{1 +exp[ -Tts~(2 j -  1 +2k)]}  
j = l  

(33) 

where we expanded g(k) near the Fermi surface k = k F. Similarly, 

ln~3~-2 ~ In {1 + e x p [ - l t s ~ ( 2 j -  1 - 2 k ) ] }  
j = l  

(34) 

Defining the variables q and z by 

q = exp( - rcs~) 

z = iTzs~ (35) 
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we can write the product of ~f2 and ~3 as 

~2~3 ~ f-[ [l + 2cos(2z) qZj-l +q4j 2]2 
j = l  

-~ q l / 6 [  O3(Z, q)/q( q) ]2 (36) 

where 03(z, q) is the Jacobi theta function of the third kind and ~/(q) is the 
Dedekind eta function. (2~'22) Gathering all three products yields 

(37) 

where foo is the bulk free energy density defined in Section 2. The calculation 
of Y'4 follows the steps of Eqs. (29)-(37) with the result 

K Y , 4 ~ - e x p ( - M N f ~ ) q 2 ~ 2 [ ~ ]  2 (38) 

where 04(Z , q) is the Jacobi theta function of the fourth kind. (22) 
Now consider ~2. For ~ > 0 (~ < 0), o~(21tj/N) is negative for j = 1,..., p 

( j =  1 ..... p - 1 )  and is positive otherwise [see Eqs. (27) and (28)]. The 
number of domain walls of the ground state in this odd sector is na = 2p + 1 
(2p - 1), respectively. Let us consider the case of ff > 0 first. We factor Y'2 
into five products, 

~2 = ~)0~1~'~2~3 ~4 (39) 

where 

~?o = 1 + exp l - -Mg(0 ) ]  

p 
~ = [-[ e x p [ -  2Mg(2zcj/N) ] 

.1= 1 

P 
~ 2 =  ]--1 {1 +exp[Mg(2zrj/U)]} 2 

j = t  

N/2-- 1 

~'3 = l~ {1 +exp[-Mo~(Zrcj/U)]} 2 
j = p + l  

(40) 

~4 = 1 + exp[ -Mo~(zt)] 

822/61/1-2-5 
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Applying the Euler-Maclaurin formula as in Eq. (32), we find 

l n ~ = - 2 M ~  g ( - ~ )  
j = l  

~--MN~2=P/Ndkg(k)-M[g(~-)-g(O)l-;sg ' (~ Jo (41) 

Using the relation 2rcp/N=kF-2~ff/N from Eqs. (27) and (28), we find 
that In(NoN1) becomes 

ln(NoN1) --- -MNfo~-I;-2rc~(1-t?)] s~ (42) 

Dominant contributions from N2 and ~3 are 

ln~2---2 ~ ln{1 + e x p [ - ~ s ~ ( 2 j - 2 + 2 ~ ) ] }  (43) 
j = l  

and 

In ~3 ~ 2 ~ ln{1 + exp[ -~s~(2 j -  2~)] } (44) 
j = l  

In terms of q and z defined in Eq. (35), the product of ~2 and ~3 is 

~2.~3 ~- exp(2iz)(2 cos z) 2 l~I [1 + 2 cos(2z) q2j + q4j]2 
j = l  

= exp(2iz) q-1/3 [02( z, q)]2 
L tt(q) J (45) 

where 02(z, q) is the Jacobi theta function of the second kind. (221 
The last term ~4 = 1 + (9(e-M). Therefore 

~2~exp(-MNfo~)q2~2[~12 (46) 

We also find 

ex- '  MNf " ~g2[01(z,q)32 ~1~- pt- Jo~)q [ ~f--J (47) 

where 01(z, q) is the Jacobi theta function of the first kind. (22) When ~ < 0, 
we find the same results for ~e 1 and ~2 as above. 
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Finally, from Eq. (15), the full partition function on a torus is 

2~ 2 4 

~e(~)_ e x p ( -  M U f f ) ~  i~=1 piO~(z, q) (48) 

This result does not change when N is an odd integer. Note that 
e x p ( -  MNfoo) is the bulk term in the partition function, while its coefficient 
is the (_9(1) term, ~o(1). The form of y,o(1) in the partition function is 
universal. The only model dependence enters through the anisotropy factor 
if, which modifies the aspect ratio by s --* s~ as usual for anisotropic systems 
in the conformal theory. The same formula has been obtained by 
Bhattacharjee (2~ for the generalized dimer model on a square lattice where 
horizontal dimers have activity x while vertical dimers have activities 1 and 
y alternately. This dimer model can be identified as one special case when 
the dispersion relation is given by 

g(k) = 2 ln{x cos(k/2) + [y  + x 2 cos2(k/2)] 1/2} 

This dispersion relation satisfies the general properties of g(k) 
( - r ~ < k < r 0  assumed in Section 2. 

The parameter ~ is related to mismatch between the domain wall 
separation lh = lid and the system size N. In terms of the bulk domain wall 
density d=kF/rc [Eq. (24)], Eq. (28) becomes Nd=2p+2~. For 
convenience, we define a new parameter x as 

Nd = n + tc (49) 

where n is the integer closest to Nd and - 1/2 < ~c ~< 1/2. The value of the 
parameter ~c indicates how well the system size N matches an integral 
multiple of the domain wall separation la = lid. We call ~c the mismatch 
parameter. The relations between parameters are given as (a) n = 2 p -  1, 
x = 2 ~ + l  for - 1 < 2 t ~ < - 1 / 2 ,  (b) n=2p, x=2f f  for -1/2<2ff~<1/2,  
(c) n = 2 p +  1, K = 2 ~ - I  for 1 / 2 < 2 ~ <  1. 

The integer n is now shown to be equal to the number of domain walls 
nd in the ground state of the quantum Hamiltonian in a finite system. The 
ground state of the quantum Hamiltonian corresponds to the state of the 
two-dimensional system with the lowest free energy in the infinite-cylinder 
limit M--* oo. Two sectors of na= even (~3) and odd (~'2) compete for the 
ground state. Equations (32) and (42) represent the negative of the total 
free energy for the even and odd sector, respectively, for t? > 0. Comparing 
these free energies, we find that the number of domain walls in the ground 
state is nd = 2p (even sector) for 0 < 2~ ~< 1/2 and na = 2p + 1 (odd sector) 
for 2~ > 1/2. Using the relations between n and p in (b) and (c) above, we 
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identify n = nd. The same result follows for ~ < 0. The domain wall density 
in finite systems, na/N, rarely matches the bulk density d exactly. Thus, 
there is almost always a deficit (or excess) of a fraction of a domain wall 
in a finite system. The mismatch parameter x represents the deficit of 
domain walls in finite systems. Therefore the free energy difference between 
the two situations x = 0  and x r  represents the free energy of the 
missing domain walls. 

Using theta function properties, (22) one can easily show that the 
partition function (48) is invariant under the transformation ~ - - , - ~  
( z ~ - z )  and also invariant under the transformation ~ f f - 1 / 2  
(z--*z-�89 So the (9(1) term of the partition function is rewritten in 
terms of the new parameter ~: as 

) ~ee(1)(~:) = 2q2(q) i=1 2-' q (50) 

where z~ = 2z = iTts~x..~g~(1) is invariant under the transformation ~c --* -~c. 
For a given bulk density d [i.e., given m and t in the quantum 

Hamiltonian. (6)], there is a unique value of ~c for each system width N. 
The dependence of K on N is periodic with period Q when d is a rational 
P/Q. Otherwise x is a quasiperiodic function of N. For example, when 
d =  1/4, we have x = 0 ,  1/4, 1/2, - 1 / 4  corresponding to N = 0 ,  1, 2, 3 
(mod 4). So the partition function has different finite-size amplitudes for 
each N. The thermodynamic limit of the finite-size correction term is not 
well defined mathematically for irrational d. In Fig. 2, we show how finite- 
size corrections vary with system size N when (a) d = 2 / 7  and (b) 
d =  1/(1 + x/-5). 

We generalize the above results to twisted (gauge-invariant) boundary 
conditions. After algebraic manipulations as before, we find 

~e~ ~ ) =  2t/Z(q ) ,'=1 p~O~ -~+z~, q O~ -z~ ,  q (51) 

where z o  = izts~(z Remarkably, this equation can be rewritten in a simpler 
form 

~"~(~:, ~)= ,72(q------~ o3 ,ql/2 o3(2z~, q2) (52) 

We checked numerically that the coefficients of the expansion in powers of 
ql/2 in these two equations are identical. We leave it to the interested reader 
to find an analytical proof of the equivalence. This equivalence plays a 
crucial role in relating finite-size corrections of the incommensurate phase 
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Fig. 2. (a) Numerical data for the FSS amplitudes of the free-fermion model for the domain 
wall density d =  2/7 on an infinite cylinder (s ~ m) of width N with periodic boundary 
conditions, cu is proportional to the FSS amplitudes; eu = (6/n() NZ(f~ --fN), where ( is the 
anisotropy factor [2 sin(rid)I, fu is the free energy for finite systems, and f ~  is the bulk free 
energy. Numerical data with the same value of the mismatch parameter ~c are linked by lines. 
Arrows indicate the exact values of the effective conformal charge c~ obtained from Eq. (55). 
(b) Numerical da ta  for an irrational value of the domain wall density, d =  1/(1 + x/'5). There 
are no data points which share the same value of re. 
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and the six-vertex model. The expression in (52) is similar to ~s of the 
six-vertex model (or the Coulomb gas). (12'13'21) In fact, when z=~b=0 ,  
Eq. (52) becomes identical to ~eo(l) of the six-vertex model at the free 
fermion point with periodic boundary conditions, aspect ratio s~, and an 
even number of sites. (13'211 In the next section we explore the relation 
between Eq. (52) and ~o(1) of the six-vertex model with nonzero ~: and ~b. 

Next consider fixed boundary conditions in the horizontal direction. 
The allowed wavevectors are kj = nj/N' (j = 1,..., N), where N' = N + 1 (see 
Section 2). As in Eq. (27), we define e ' =  N'kv/rC so that g(rca'/N')=O. 
Let n be the integral part of c( and define 6 by c ( = n +  1/2+6 
( - 1 / 2 , , < 6 <  1/2). The energy g(rcj/N') is negative for j =  l,...,n and is 
positive otherwise, so the number of domain walls in the ground state is 
na= n. In terms of the bulk domain wall density d =  kF/rC, we find the 
relation Nd =nd + 1/2 - d + 6. Following similar procedures to the case of 
periodic boundary conditions, we find for the partition function 

~ n x e d ' ~ e x p I - m N ' f ~ + - ~ l  q'62~O3(z''q')~[_ -~--~'-) _] (53) 

where q' =exp(-rcs '~/2),  z ' =  irts'~6/2, and s ' =  M/N' =M/(N+ 1). The 
surface free energy of two surfaces is fs = f ~  - g(0)/2. 

Now examine the partition function (52) in the infinite-cylinder limit 
(s ~ m) with the domain wall direction parallel to the infinite-cylinder 
direction. For large s, theta functions in Eq. (52) may be expanded in terms 
of small q. Then the free energy 

f(~c, ~b) = f ~  - (=/6) {c/N 2 + ... (54) 

where c, the effective conformal charge, is given by 

e = 1 - (3~c 2 + 12~b 2) (55) 

As discussed before, tc = 0 is special. At x = 0 the exact ground states are 
realized even in finite systems, i.e., no excess (or deficit) of domain walls is 
present. The x-dependent term is interpreted as the excess free energy due 
to the x missing domain walls. So x plays the same role as steps in step 
boundary conditions in the BCSOS or the Gaussian model, where the 
height at site N +  1 is lower by ~: than at site 1. The Gaussian coupling 
constant  Kg takes the free fermion value, Kg= n. (15) Extensions of our 
results to general values of Kg will be described in the next section. 

Notice that, by replacing the domain wall density d by d -  x/N in the 
bulk free energy f ~  in Eq. (23), one can obtain precisely the same correction 
as in the above equation. The finite-size-scaling amplitude All for this 
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cylinder is defined as the coefficient of the (9(1/N 2) term, i.e., 
All = ( r e /6 )~ [1 -  (3~:e + 12~b2)]. When ~c = 0  and ~b = 0  (periodic boundary 
conditions), it implies that the conformal charge is c = 1 with the anisotropy 
factor ~. In general, the FSS amplitude is modified by x and ~b as above. 

The free energy for fixed boundary conditions, expanded for small q, 
is 

fr~xed =f~o +f~ . /N- -  (rt/24) ~(1 -- 1262)/N 2 + .-- (56) 

where 6 is given as N d = n + l / 2 - d + 6  (n is an integer and -1/2~< 
6 < 1/2). Notice that the correction to the free energy due to nonzero 6 is 
precisely the same as the correction in Eqs. (54) and (55) due to nonzero ~:. 
At d = 1/2, 6 represents the deficit of domain walls in finite systems. Elsewhere 
there exist the extra d - 1 / 2  domain walls in finite systems besides the 6 
missing domain walls. When d = 1/2 and N is even, then x = 6 = 0 and the 
FSS amplitude for fixed boundary conditions is exactly one-quarter of that 
for periodic boundary conditions as is true in conformally invariant 
systems.~4) 

It is interesting to perform inversion transformations of Eqs. (51) and 
(52), using the inversion transformation formulas for theta functions. ~22) 
Then the partition function becomes 

5~ 
~e'O(1)(K'  q~) = 2t/2(0) i = 1  

1 
- q2(0 ) 03(Co, 01/2) 0,(eK, c~ 2) (57) 

where ~ = exp( - z/s~), 5~ = r~x, and 2~ = rt~b. Notice that the first arguments 
of theta functions, 5~ and fro, are now real, in contrast to pure imaginary 
z~ and zr in Eqs. (51) and (52). In the s ~ 0  infinite-cylinder limit (the 
domain wall direction is perpendicular to the infinite-cylinder direction), 
the free energy is expanded for small 0 as 

f(~:, fk) = f ~  - (rc/6~)/M 2 + . . .  (58) 

The FSS amplitude for this cylinder is A• =~z/(6~). 
There is no discreteness in the domain wall density in this geometry 

because the domain walls lie perpendicular to the infinite-cylinder direc- 
tion. Therefore the x-dependent term disappears. The twisted boundary 
conditions in the infinite-cylinder direction also do not contribute to the 
finite-size corrections of the free energy. As usual in conformally invariant 
systems, the anisotropy factor ~ in the FSS amplitude is placed in 
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the denominator, in contrast to the orthogonal cylinder geometry in 
which ff appears in the numerator. At ~c = ~b = 0, the conformal charge 
c= (6/7c)(AIIA• 1/2 is again found to be 1. 

4. E X T E N S I O N  TO AN I N T E R A C T I N G  F E R M I O N  M O D E L  

In this section we compare the finite-size corrections to the free energy 
of the free fermion model and the six-vertex model. The mismatch 
parameter • and the twist angle ~b are interpreted in the language of the 
six-vertex model (or the Coulomb gas). Based on the correspondence 
between two models, we conjecture an explicit formula for finite-size 
corrections to the free energy of an interacting fermion model on a torus 
with a general value of the aspect ratio s. Through Bethe-Ansatz calcula- 
tions we confirm our conjecture in the infinite-cylinder limit (s ~ ~ ) .  

Consider the symmetric six-vertex model (or the F model). Boltzmann 
weights of vertices are given by o) i = a (i = 1, 2, 3, 4) and c0i = 1 (i = 5, 6) 
(see Fig. 3). The conventional six-vertex parameter A is defined by 
A = 1 -- 1/(2a2). Configurations of this model are classified by two polariza- 
tions, P1 and P2. The (9(1) part of the partition function of the six-vertex 
model with periodic boundary conditions and fixed values of polarizations 
is the same as in the Gaussian model with step boundary conditions. The 
relation between the Gaussian coupling constant Kg and the six-vertex 
parameter A is given by (15'23) 

A = -cos (# )  and Kg = 2(re - p) (59) 

Define polarizations P1 (P2) by subtracting the number of down- 
pointing (or left-pointing) arrows from the number of up-pointing (right- 
pointing) arrows and dividing by 2 (see Section 4 of Ref. 21). We assume 
that the numbers of vertices in both horizontal and vertical directions N 
and M are even. Then P1 and P2 can take all possible integer values in the 
thermodynamic limit. So the leading finite-size correction to the partition 
function of the six-vertex model with periodic boundary condition is 

~e~v(1)= ~ ~eg~(')(el, e2) (60) 
PI ,P2~  Z 

+ + 
+ - _ .  

CO 1 cad 2 O) 3 0.) 4 09 5 0-) 6 

Fig. 3. Vertex configurations of the six-vertex model. 
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where ~g(II(Pj,P2) is the (9(l) part of the partition funtion of the 
Gaussian model with step boundary conditions of P1 horizontal steps and 
P2 vertical steps. ~(1) (P1 ,  P2) is easily evaluated (see ref. 21). Using the 
Poisson summation over P2, we find that the above equation becomes 

1 
~6%l)=r/~(q) ~ q ~Ke/z'~ (61) 

e, m E Z  

where q=exp(-Trs) .  Note that the anisotropy factor is ~= 1 for the 
isotropic six-vertex model. The summation variables e and m are integers 
and are called the electric and magnetic charge, respectively, in the 
Coulomb gas language. ~H'13) The electric charge e is simply the horizontal 
polarization P1. 

The quantum mechanical version of the six-vertex model is spin-l/2 
XXZ Heisenberg chain with the Hamiltonian ~15) 

1 u 
1 "~- O'n O'n + 1 "~ ~O 'nO 'n  + 1) (62) 

n = l  

where a~, o y, and o~, are the spin-l/2 Pauli matrices at site n. In terms of 
the raising/lowering operators a -+ = (a~+ i~rY)/2, the Hamiltonian becomes 

n = l  

(63) 

where the third term represents the interaction between domain walls. At 
A = 0 (free-fermion point), the XXZ Hamiltonian becomes identical to the 
free-fermion Hamiltonian (6) with m = 0 and t = 2. Notice that, at these 
values of m and t, the bulk domain wall density is d = 1/2. The Gaussian 
coupling constant K~ takes the free-fermion value ~c at A = 0; see Eq. (59). 

Using the definition of the theta function, we rewrite the (9(1) part of 
the partition function of the free-fermion model, Eq. (52), as 

1 
~e ~(va ) -- q 2 ( q )  e,m~ z q(e - rr + 2(m - ~b) 2 (64) 

In the Coulomb gas language, x and ~b represent eletric and magnetic defect 
charges. With periodic boundary conditions, the twist angle is ~b = 0 by 
definition. When the domain wall density is d =  1/2 (the value for the 
symmetric six-vertex model), the mismatch parameter ~c takes the value of 
0 or 1/2 for N even or odd, respectively. Indeed, we recover the result for 
the six-vertex model at the free-fermion point (Kg = re) for N even, Eq. (61), 
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when ~c=~b=0. For N odd, the polarization P1 (=e)  takes half-integer 
values in Eqs. (60) and (61) and we find the equivalence of 5 e~ at 
~c = 1/2. 

For the six-vertex model, the exact result for ~o(~) is known for 
nonzero A (Kg v a n), but the domain wall density is always d =  1/2. For the 
free-fermion model, the effect of general values of domain wall density 
( d #  1/2) on Z ~ was explored in the previous section at A =0. So it is 
natural to study generalized models with both continuously varying 
domain wall density and domain wall interactions (nonzero A ). For example, 
the XXZ  chain with domain-wall chemical potential m (or magnetic field) 
contains both features, 

N 

~t '=~fxxz+m ~ G+a,, (65) 
n = l  

The chemial potential m controls the domain wall density. This model is a 
quantum mechanical prototype for physically relevant incommensurate 
solid phases such as occur in the chiral three-state Potts model and the 
ANNNI model in two dimensions with a proviso that dislocations are 
excluded (for a review, see ref. 8). 

By comparing the results for the free-fermion model and the six-vertex 
model in Eqs. (61) and (64), we conjecture the form of the (9(1) partition 
function for the generalized model 

tl2(q----~) ~ q (K~/2~)(e-'~)2 +(2~/Ke)(m-O)2 (66) 
e , m ~ Z  

At Kg=rc we recover our free-fermion result in Eq. (64). The above 
conjecture implies that in the interacting-fermion model ~c and ~b still play 
exactly the same roles as in free-fermion models, i.e., they are electric and 
magnetic defect charges. There is no interplay between these two defects. 
The Gaussian coupling constant Kg is related to the correlation function 
exponent x by Kg = 7tx. (8) In free-fermion models, x is always 1, independent 
of the value of the domain wall density d. In the six-vertex model, x is given 
by Eq. (59) and d is always 1/2. In the generalized model, Kg is still given 
by ~x, but x now depends both on A and d,  (9'24) 

In the infinite-cylinder limit (s ~ oe ), the free energy takes the form of 
Eq. (54) and the effective conformal charge is 

2re 2 

Both ~c and ~b modify the effective conformal charge to c =  1-12x~,~, 
where Xn, m = n2Kg/(4~r) + m2~/Kg is the scaling dimension of the operator 
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with the spin-wave excitation index n and the vortex excitation index m. (25) 

This formula has been shown to be correct for the XXZ chain at d =  1/2 
(~c = 0 and 1/2) numerically (26/and analytically. (27) 

Interestingly, the conjectured form of the finite-size correction for the 
generalized model, ~e(1) in Eq. (66), can be obtained precisely from the 
~e(1) terms of the six-vertex model [Eqs. (60)] by assuming that the 
possible values of the horizontal polarization are not integers, but rather 
are shifted by ~c from integer values. That is, P1 = n-~c (n is an integer). 
Up-pointing arrows in six-vertex configurations can be interpreted as 
domain walls, so  P 1  = n T - -  N / 2  = na- N/2, where n T is the number of 
up-pointing arrows in a row of a vertex configuration. As discussed before 
in the previous section, • (the shift in P1) is identified as the (fractional) 
number of missing domain walls in finite systems. As P1 corresponds to the 
electric charge in the Coulomb gas formalism, this shift in P1 is identical 
to the electric defect in the Coulomb gas system. Hamer and Batchelor (28~ 
recently observed this effect in the XXZ chain. By investigating the energy 
spectrum of the d = 1/2 sector with extra domain walls, they found that the 
free energy with n extra domain walls is given by Eq. (67) after replacing 
~c by n. 

The twist angle ~b can be also interpreted in the six-vertex model 
language. The presence of the nonzero twist angle does not change the total 
number of domain walls in the system, but does change the hopping 
probability of domain walls at the boundary (the seam). That is, the 
hopping from site n = N to n = 1 (or vice versa) collects an extra phase 
factor exp(i27r~) [ e x p ( -  i2rc~b)]; see Eq. (17). In the Coulomb gas formula- 
tion, these phase factors correspond to boundary charges 2~ql and -2rt~b 
at the top and bottom of the infinite cylinder (s = oc). The energy density 
of this condenser contributes to the finite-size-saling amplitude of the free 
energy and modifies the effective conformal charge accordingly. Substituting 
2~ for c~ in Eq. (3.16) of ref. 21, we recover our Eq. (67) at ~c= 0. On a 
torus it can be derived from Eq. (4.9) of ref. 21 that the leading finite-size 
correction to the partition function is 

P2) cos(2  P2) 
PI, P2 

This is an equivalent expression to our Eq. (66) at tc = 0. 
We tested our conjecture through Bethe-Ansatz calculations for the 

model Hamiltonian in Eq. (65) in the infinite-cylinder limit ( s ~  oe). The 
extra mass term (magnetic-field term) does not alter the Bethe-Ansatz 
equations for allowed w a v e v e c t o r s  k, (26'27) 

Nkj= 2n(Ij+(~)- ~ O(kj, k,) (68) 
l ~ 1  
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where 

V A_ s i n [ ( k z k ' ) / 2 ]  ] 
O(k, k') = 2 tan 1 / cos [ (k  + k') /2] - A c o s [ ( k -  k ' ) / 2 ] j  (69) 

n is the number of up-pointing arrows (domain walls), and 11,/2 ..... I .  = 
- ( n -  1)/2, - ( n -  1)/2 + 1 ..... ( n -  1)/2. These equations are valid when the 
total number of sites N is even and can easily be altered for odd N. The 
energy density is 

A 1 ~ 
e=-~-+-~j2. , l~  ~, = [ 2 A + m - 2 c o s ( k j ) ]  (70) 

We find the ground-state energy for a given A and rn by minimizing the 
energy e with respect to integer n. The ground-state energy of the quantum 
chain is exactly the same (up to finite-size corrections) as the free energy 
of the two-dimensional system in the infinite-cylinder geometry (s ~ oe). 

We solve the above equations numerically for different system sizes N 
and twist angles ~b. The form of the FSS amplitudes in Eqs. (54) and (67) 
agrees with our numerical calculations for different values of A and m. In 
particular, the FSS amplitudes contain no dependence on ~: or ~b other than 
quadratic terms, there are no cross terms (no interplay between two 
different defects), and the coefficients of ~: and ql have an inverse relation. 
Tables I and II list a sampling of numerical values of x = Kg/rC and 
obtained from our calculations. Notice that x takes the free-fermion value 
1 in the d - - 0  limit in addition to the obvious A = 0 limit. 

Table I. Numerical  Values of Corre lat ion-Funct ion Critical Exponent x=Kz/n 
for  Several D i f ferent  Values of p=cos-l(--A) and Domain Wall  Density d a 

x(., d) 

# d=l/2 d=l/3 d=l/4 d=l/5 d=0 

2~/3 2/3 0.6875 0.7178 0,7460 1 
rt/2 1 1 1 1 1 
n/3 4/3 1.2474 1.1839 1.1451 1 
)z/6 5/3 1.3938 1.2780 1,2143 1 
0 2 1.4404 1.3062 1.2346 1 

a Fo r  d = 1/2, the chemical potential is m = 0. In general, m depends on both  /~ and d. Fo r  
example, the value of the chemical potential corresponding to the domain  wall density 

d =  1/5 is m = 2.542609740... for # = 7r/3 and m = 3.238555355... for # = ~/6. 
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Table  II, Numer ica l  Va lues of  An isot ropy  Factors l; 
for  Several  D i f f e r e n t  Values of  p and d a 

75 

~(~, d) 

# d=l /2  d=l /3  d= 1/4 d=l /5  d=O 

2n/3 3x/3/4 1.167169 1.001707 0.869107 0 
~/2 2 x/3 x/2 2sin(~/5) 0 
~/3 3~f3/2 2.136533 1.665800 1.342585 0 
~/6 3 2.348867 1.787000 1.419378 0 
0 ~ 2.411585 1.822242 1.441474 0 

a See footnote to Table I. 

We also study the above Bethe-Ansatz  equat ions per turbat ively  in two 
simple limits, i.e., the d =  0 limit and A = 0 limit. At d =  0 or A----0, the 
wavevectors  k have a uniform distr ibution of the free-fermion type. So one 
can investigate the Bethe-Ansatz  equat ions analytically near  these limits. 
After lengthy but  s t ra ightforward algebra,  it is found again that  the 
conjectured fo rm of the FSS ampli tudes  is correct. Near  A = 0 we obta in  

m = 2  cos(~d)  - 23 [ 1 -  2d + -~1 s in(2~d)]  + . . .  

4A 2 
= 2 sin(Ttd) -- - -  sin (red) + . . .  (71) 

7~ 

2A 
x = 1 - - -  sin(red) + .-- 

for a rb i t ra ry  d. Near  d =  0 we obtain  

2d 2 8~ 2 d3 d m = 2 ( 1  - A ) - - ~  + - ~ -  i - - ~ +  .-- 

= 27zd-  4red 2 1 - ~  + "'" 

A 
x =  1 - 2 d - i - ~ +  . . .  

(72) 

for a rb i t ra ry  d. The  bulk free energy is given by the equat ion m = 
-(df~)/(c3d). At m = 2 ( 1 -  A), the domain  wall density vanishes and the 
c o m m e n s u r a t e - i n c o m m e n s u r a t e  transi t ion occurs. 
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5. D I S C U S S I O N S  

In summary, we derived the FSS amplitudes of incommensurate phases 
and found that they obey laws of conformal invariance, but competition 
between system size and domain wall separation generates some defects 
(missing domain walls) for finite systems with periodic boundary conditions. 
Due to these defects, numerical data for the FSS amplitudes in incommen- 
surates phases appear superficially as if they do not converge in the thermo- 
dynamic limit. This work explains why the FSS amplitudes are scattered, and 
leads to a systematic way of analyzing data. 

Our theory applies to a wide class of systems describable in terms of 
noninteracting domain walls, e.g., certain dimer models (2~ and tiling models 
of quasicrystals. (17~ A set of general assumptions regarding the form of the 
domain wall dispersion relation appears to guarantee universality, and we 
also extend our theory to systems of interacting domain walls. Our results 
may be useful for analyzing numerical data from transfer matrix and Monte 
Carlo calculations for these systems. For instance, in systems for which the 
bulk density is rational, d =  P/Q, it is conventional to study only lattices 
whose widths N are integral multiples of the denominator Q to ensure 
smooth convergence to the thermodynamic limit. Our formula (66) allows 
data for all lattice sizes to be systematically included. This is especially impor- 
tant when the domain wall density d is a high-order rational or is irrational, 
since in these cases it may not be practical to study systems of size propor- 
tional to the denominator Q. Unfortunately, knowledge of the exact bulk 
density may not be available for an incommensurate system at an arbitrary 
chemical potential. In this case the density (which determines ~) must be 
included as an extra fitting parameter which would not be needed in ordinary 
commensurate systems. 

Another possible approach is to utilize free boundary conditions and 
thereby avoid the ~ effect. The ~c effect arises because conservation of domain 
walls by periodic (or gauge-invariant) boundary conditions forces the 
number of domain walls in the ground state to be an integer. In systems with 
free boundaries, domain walls can pass into or out of the system, so the 
average number of domain walls in the ground state need not be an integer. 
Thus, we expect that c = 1 exactly without any ~ effect in terms of order 1IN 2 
in the free energy density. But one must endure the appearance of nonuniver- 
sal surface terms in the free energy. Nevertheless, this may not cause as much 
trouble as the ~c effect does. We suggest that free boundary conditions may be 
an especially suitable choice for studies of incommensurate systems. Our 
study of these free boundary conditions in a random tiling model has been 
published elsewhere. (17~ 

In this work we did not include dislocations at all. Dislocations are 
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present in the chiral three-state Potts model and the ANNNI model in two 
dimensions. An important generalization of this work is to study how the 
FSS amplitudes change in the presence of dislocations. The main question is 
whether the ~c effect disappears or not. Dislocations can break the conserva- 
tion law on the number of domain walls and so may remove the ~: effect. 
However, there can be some conservation laws left which are not broken by 
the presence of special types of dislocations, so the • effect might survive. 
Another aspect which we did not address in this paper is the FSS behavior 
near the commensurate-incommensurate transition where anisotropic 
scaling sets in (the anisotropy factor ~ ~ 0 )  and conformal invariance 
disappears. This anisotropic FSS behavior was studied extensively by 
Bhattacharjee and Nagle for generalized dimer models.(2~ Surface effects on 
the anisotropic finite-size scaling are currently under investigation and the 
results will appear elsewhere. ~29) 
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