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Thermodynamic Limit for Dipolar Media
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We prove existence of a shape- and boundary-condition-independent ther-
modynamic limit for fluids and solids of identical particles with electric or
magnetic dipole moments. Our result applies to fluids of hard-core particles, to
dipolar soft spheres and Stockmayer fluids, to disordered solid composites, and
to regular crystal lattices. In addition to their permanent dipole moments, par-
ticles may further polarize each other. Classical and quantum models are
treated. Shape independence depends on the reduction in free energy accom-
plished by domain formation, so our proof applies only in the case of zero
applied field. Existence of a thermodynamic limit implies texture formation in
spontaneously magnetized liquids and disordered solids analogous to domain
formation in crystalline solids.

I. INTRODUCTION

Thermodynamics normally assumes a free energy density F/ V exists and is
independent of system volume V and shape. Verification of these properties
is impeded by the explicit dependence of the partition function Z =
exp( — F / k B T ) on these very quantities. Ruelle(1) and Fisher(2) proved the
existence of thermodynamic limits for a large class of fluids and solids with
interactions that fall off faster than r-3 at large separation. For such
systems the free energy contains a boundary independent, extensive
(proportional to system volume) component and a boundary dependent,
sub-extensive (less than proportional to system volume) remainder. Conse-
quently, in the limit of infinite volume the free energy density approaches
a finite, boundary independent, limit.
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The interaction energy between dipoles falls off precisely as r 3,
seriously complicating the thermodynamic limit. Volume integrals of this
interaction (required to calculate the total interaction energy ,H) converge
only conditionally because the power of r with which the interaction decays
matches the dimensionality of space. This paper considers systems with
electric or magnetic dipole interactions. The electric and magnetic cases
resemble each other closely. For convenience we carry out our discussion
in the context of magnetism, then address electric analogues near the end
of the paper.

Long-ranged dipole interactions may create shape dependent internal
demagnetizing fields that increase the system free energy. Boundary condi-
tions on the surfaces may influence the strength of these demagnetizing
fields. The reduction in demagnetization energy when uniformly magnetized
regions break into smaller domains is the key to the very existence of a
thermodynamic limit in zero magnetic field. Griffiths(3) used the reversal of
magnetization in a domain to prove existence of a thermodynamic limit
independent of shape for dipolar lattices. We generalize that proof to
include fluids and disordered solids. Certain conditions are required on the
"residual interaction" HR, defined as the total interaction energy H minus
the magnetic interaction energy HM. Our proof, like Griffiths' original one,
is valid only for zero applied field because of its reliance on magnetization
reversal in domains.

The following section of our paper describes the origin of demagnetizing
fields, leading to a shape dependent free energy in the presence of an
applied field. In Section IIA we conjecture a simple functional form of the
free energy, absorbing all shape dependence into a demagnetizing energy,
implying a conventional thermodynamic limit for the remaining part of the
free energy. Section IIB describes how the system achieves a thermo-
dynamic limit in zero field. Then, in Section III, we outline the formal
thermodynamic limit proof, which relies on upper and lower bounds on the
free energy. We illustrate these bounds for stable and tempered systems in
Section IIIB. Section IIIC discusses the difficulty dipolar interactions cause
due to their lack of tempering, and how that difficulty may be overcome.
Section IV extends the proof to a variety of interesting specific models,
starting with identical hard core particles, then treating dipolar soft
spheres, the Stockmayer fluid and polarizable particles. We treat both
classical and quantum versions of all these models. Section V addresses the
analogous problems for electric dipoles. Finally, in Section VI we sum-
marize our results, discuss some observations about the implications of a
thermodynamic limit for spontaneously polarized liquids, and conclude
with some interesting dipolar systems which lack a thermodynamic limit.
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Fig. 1. (a) Surface poles due to uniform magnetization, (b) Magnetic domains separated by
a domain wall, (c) Continuous magnetization texture with vortex.

where n(r') is the outward normal at any point on the surface. The spatial
arrangement of surface charges depends on sample shape, and the
divergence of M(r) in the interior depends on the magnetization texture, so
HD(r) is a function of sample shape and magnetization texture. The
demagnetizing energy(4)

II. DEMAGNETIZING FIELDS

Long range dipole interactions create demagnetizing fields that cause
shape and boundary condition dependence of free energy in the presence of
an applied field. In zero applied field the demagnetizing field must be
handled with care to prove the shape and boundary condition independence
of free energy. This section describes qualitatively why materials lack a
shape independent thermodynamic limit in an applied field, and how the
limit is restored in the absence of applied fields. We conjecture a modified
form of thermodynamic limit that may hold in an applied field, with all the
shape dependence restricted to an effective internal field plus an explicit
demagnetizing energy term.

Volume and surface distributions of magnetic poles cause demagnetiz-
ing fields. Consider a sample of magnetic material contained in a region of
space of volume V. Let M(r) be the spatially varying magnetization in the
sample. Poles arise at surfaces wherever the magnetization has a compo-
nent normal to the surface S, as indicated in Figs, 1a and 1b. A magnetiza-
tion with non-zero divergence produces a charge density in the bulk. The
demagnetizing field takes the form
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For highly elongated sample shapes, in the absence of demagnetizing
effects, we expect a thermodynamic limit for the free energy. Define fint(H0)
as the free energy per unit volume of a system in the limit as total volume
F-> oo. The limit must be taken within ellipsoidal shapes for which the
length parallel to the field H0 grows faster than the orthogonal directions.
Because there are no demagnetizing effects present, we call this free energy
density the intrinsic free energy density in a field.

A. Shape Dependence in a Field

When a system is placed in an external field H0, surface poles arise
because the internal magnetization tends to align with the applied field.
There are two important contributions to the resulting shape dependence
of the free energy. One is the explicit shape dependent energy (2), the other
is due to the shape dependence of the internal field

where the tensor D is the demagnetizing factor of the ellipsoid.(4) D is non-
negative definite, and its trace equals 1. When the magnetization lies along
a principal axis of the ellipsoid, D is simply replaced by one of its eigen-
values 0 < D < 1. For a magnetization parallel to a highly elongated needle
shape, the demagnetizing factor D = 0 because the surface poles appear
only on the tips which are small and far removed from the bulk. Another
special limit is that of magnetization normal to a flat pancake shape. This
yields the maximum demagnetizing effect, since the surface poles appear on
a large surface close to the bulk, so D = 1 in this case.

depends explicitly on the shape and magnetization texture of the system
through the demagnetizing field HD(r) .

In the special case of magnetization uniform throughout the sample,
the demagnetizing field HD(r) comes only from the surface, because the
divergence term in Eq. (1) vanishes. However, HD(r) does not vanish as
volume increases at fixed shape. This is because the 1/r2 fall-off of the field
from each surface charge is exactly offset by the r2 growth of surface area,
and hence the number of surface charges. As a result, HD(r) is independent
of the volume and the demagnetizing energy ED is extensive.

For the special case of a uniformly magnetized ellipsoid, HD, is con-
stant within the ellipsoid and equals
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Note that the measured xshape has a maximum value equal to xint when H0

is parallel to the long axis of a highly prolate needle-shaped ellipsoid. For
any other geometry the demagnetizing effect reduces the measured suscep-
tibility.

B. Shape Independence in Zero Field

Now consider a ferromagnetic material in zero applied field. If the
magnetization were constant (Fig.1a), surface poles would create shape
dependent demagnetizing fields and raise the energy as described in Eq. (2).
A uniformly magnetized body lacks a shape independent thermodynamic
limit!

Alternative magnetization configurations reduce the demagnetizing
energy. One possibility (Fig. 1b) reverses magnetization in subregions so
that the fields from surface poles tend to cancel. Another possibility

where

Consider applying an external field H0 parallel to a principal axis of an
ellipsoidal sample. Because of the demagnetizing effect, the internal field H
is weaker than the applied field. Eliminating HD and H between Eqs. (3),
(4), and (6) yields the shape dependent measured susceptibility

up to corrections that grow less rapidly than the volume. Equation (4)
gives the internal field H and Eq. (2) gives ED.

Shape dependence of the free energy implies shape dependence of the
measured paramagnetic susceptibility. Assume that the magnetization M is
related to the internal field H by an intrinsic (volume and shape indepen-
dent) linear susceptibility xint according to

For more general shapes HD is non-zero, and may vary in space. We
conjecture that the shape dependent free energy Fshape may be expressed in
terms of the intrinsic free energy density as
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(Fig. 1c) rotates the magnetization so that it is always tangent to the sur-
face. In each case, the reduction in energy is proportional to the system
volume L3, where L is a typical linear dimension. The energy increase arising
at a sharp domain wall (Fig. 1b) should be proportional to the domain
wall area L2. The energy of a vortex line (Fig. 1c) should be proportional
to L l o g ( L / a ) , with a related to the vortex core size. The magnetization
texture may avoid a vortex by escaping into the the third dimension(5) near
the core. Such textures contain either surface poles(6) or point defects.(7)

For sufficiently large systems, the extensive L3 reduction in the demagnetiz-
ing energy dominates the sub-extensive defect energies, and domain wall,
vortex, surface pole or point defect formation is favored in that it lowers
the free energy.

As we take the V going to infinity limit, the demagnetizing energy den-
sity ED/V approaches zero for the most favorable magnetization, i.e., the
one which minimizes the energy. Such a magnetization permits a shape
independent thermodynamic limit for a ferromagnet. The free energy den-
sity for an arbitrary shape with its nonuniform equilibrium magnetization
texture equals the free energy density of a highly elongated needle-shaped
ellipsoid with uniform magnetization parallel to the long axis, because D
tends to zero for the needle shape. When calculating magnetic energies or
free energies it may be convenient to impose the needle-shape and assume
uniform polarization. Alternatively, "tin foil" boundary conditions(8) may
be used to neutralize the surface poles.

Why is zero applied magnetic field essential for a thermodynamic
limit? In an applied magnetic field the energy cost for flipping a domain
becomes proportional to the domain volume (and grows proportionally to
L3) rather than the smaller domain wall, vortex or other defect energy. The
most favorable magnetization texture now has a demagnetizing field, and
the free energy re-acquires a shape dependence.

The above discussion explains how domain formation removes the
demagnetizing energy density ED/V, permitting a shape independent free
energy for zero field ferromagnets. This argument does not apply to the
zero field susceptibility of a paramagnet. The shape dependent susceptibility
/shape governs fluctuations in the average magnetization of the entire sam-
ple. When this average fluctuates from zero, demagnetizing fields increase
the free energy and oppose the fluctuation. Reduced fluctuations imply a
reduced susceptibility that depends explicitly on shape through Eq. (8).

Still, we expect shape independent values of magnetic permeability
u = 1 +4nxint (or dielectric constant e in the case of electric polarizability).
This can be understood by expressing the permeability in terms of spatial
integrals of correlation functions.(9,10) These correlation functions contain
short-ranged, shape independent, components, and long-ranged, shape
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for N/V<pc where fL(p) is some finite valued function.

(2) Consider a system composed of two subsystems, 1 and 2, con-
taining N1 and N2 particles, respectively. The particles in subsystem 1 are
confined in a region R1 with volume V1 and those in subsystem 2 are con-
fined in a region R2 with volume V2. The two regions R1 and R2 are
separated by a distance of at least d from each other. Provided that d > d 0 ,
for some fixed distance d0, the free energy of the system should satisfy an
upper bound

A. Conditions on the Free Energy

Consider an N particle system contained in a region R of volume V.
Taking the thermodynamic limit for the free energy means constructing a
sequence of sufficiently regular regions,(2) with increasing volume, so that
the number of particles N divided by V approaches a definite value p as the
volume V tends to infinity. A limit is said to exist for the free energy density
if the free energy F divided by the system volume V approaches a limiting
value F as the volume tends to infinity. The requirement of regularity(2)

prevents the regions R from getting too thin or constricted. We also intro-
duce a model-dependent density pc that ensures the particles can fit into
the available volume when N/V is less than pc for sufficiently large finite N.

Two conditions on F suffice to prove the thermodynamic limit.

(1) The free energy F should satisfy the lower bound

dependent components. The permeability depends only on the short-
ranged, shape independent, part of the correlation functions.

III. PROOF OF THE THERMODYNAMIC LIMIT

This section explains how we prove thermodynamic limits. First, we
state required bounds on the free energy and explain how these bounds are
used to prove the existence of a thermodynamic limit. Then, we show how
to prove the necessary bounds on the free energy for classical systems which
are stable and tempered. These sections are rather brief and formal, and
simply review methods introduced previously.(1,2) Then, in Section IIIC we
show how to treat systems which include unstable and non-tempered dipole
interactions.
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The energy H is a function of particle center of mass positions ri, and
internal coordinates Qi. In the expression for Z, Q is the integral of dQi,
over all its possible values. Internal coordinates depend on the type of par-
ticle and may include orientation of the particle and direction of
magnetization. For solids, particle center of mass positions and particle
orientations are fixed, and the principal remaining variable is direction of
magnetization.

We distinguish between two types of particle: superparamagnetic par-
ticles,(12) for which the direction of magnetization rotates independently of
the particle axes; normal particles, for which the direction of magnetization
is fixed relative to the particle axes. For normal particles, we do not include
direction of magnetization as an independent internal variable, because it
is a function of particle orientation. In practice, superparamagnetic par-
ticles exhibit a "blocking temperature" below which the direction of
magnetization becomes locked to the particle axes, and the particles
become normal. In the specific models discussed below, we assume we are
below the blocking temperature except where we explicitly invoke super-
paramagnetism.

witn constants wB< oo and c > U .

These bounds suffice for proving the existence and shape independence
of the thermodynamic limit. Break an arbitrarily shaped system into many
smaller subsystems. The upper bound (10) bounds the total free energy in
terms of the subsystem free energies. Because the upper bound applies
regardless of the relative positions of the subsystems, provided d > d 0 , the
original system shape does not enter this bound on total free energy. The
lower bound (9) guarantees that the free energy density F/V reaches a finite
limit as the total volume K-> co with N/V- p. Because Fisher(2) explains
this method in great generality, we need not reproduce his effort here.

B. Classical Stable and Tempered Systems

The free energy of a classical system of N identical particles in a
volume V is F = — k3 T log Z, where Z is the partition function

where F1 and F2 are the free energies of subsystems 1 and 2 in isolation
and(11)
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with A12 as defined in Eq. (11) , for d larger than some constant d0. Sub-
stitute A12 for H2 in the total interaction energy (15) and evaluate the
partition function (12) to derive the upper bound (10) on F.

C. Dipolar Systems

The remainder of this paper considers systems whose Hamiltonians
include dipolar interactions in addition to stable, tempered interactions of
the type described above. The dipole interaction, by itself, is neither stable
nor tempered. In this section we explain how additional repulsive inter-
actions may stabilize the system, and how the upper bound (10) may be
proven despite the lack of tempering. The ideas introduced here are applied
to a wide variety of specific models in Section IV.

where H1 and H2 denote the energies of each system by itself, and H2 is
the interaction energy between the two subsystems. The upper bound holds
if the interaction H2 satisfies the weak tempering condition(11)

with COA < co a constant. Just substitute the lower bound (13) for H into
the partition function (12) to obtain the lower bound (9) on F, with the
function

To prove the upper bound (10), consider the interaction of two sub-
systems separated by distance d as described in Section IIIA. Write the
total energy H in the form

Note the explicit dependence of Z on the system shape through the
limits of integration for the r, in Eq. (12). The free energy F inherits this
shape dependence. The conditions on F stated in Section IIIA guarantee
that the shape dependence is contained entirely in a sub-extensive term.
Achieving the desired lower and upper bounds on free energy depends on
properties of the interaction energy jf. This section describes sufficient
conditions to prove each bound.

The lower bound (9) holds for potentials that are stable in the sense
that
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where vi and Vj are the regions of space occupied by the magnetic material
of particle i and j The magnetization distribution of the ith particle is M(r)
for r inside vi, and for the jth particle is M(r') for r' inside Vj. Implicitly,
HM depends on the particle center of mass positions and the particle
orientations through vi and vj, the regions of space occupied by the par-
ticles. For superparamagnetic particles, the direction of magnetization is an
internal coordinate for each particle, while for normal particles, the
magnetization is determined by the particle orientation. Thus, HM is a
function of particle positions {r i} and internal coordinates {£ j}.

For the moment we consider only permanent magnetization
(polarizable particles are discussed in Section IVC), and we assume the
magnetized volumes of the particles are non-overlapping. The 1/r3

dependence of the magnetic interaction HM violates tempering because of
its slow decay at long range, and risks violating stability because of its
divergence at short range.

We demand stability of the total interaction H to enforce the lower
bound (9) on the free energy. Because of the diverging short-range
magnetic attraction, we need residual interactions that are sufficiently
repulsive at short range to overcome the magnetic attraction. Hard-core
particles, and soft-core particles with energies that diverge faster than 1/r3,
satisfy this requirement, as we prove later in Section IV.

To achieve the upper bound (10) on the free energy we demand that
the residual interaction HR be tempered and we exploit symmetries (if pre-
sent) to handle the non-tempered magnetic interaction HM. Our strategy
limits our proof to models possessing the required symmetries and temper-
ing of residual interactions. Models lacking these characteristics may still
possess a thermodynamic limit even though we cannot prove it. The sym-
metries we require are broken by applied magnetic fields.

Consider two subsystems such that the N1 particles in region R1 are
separated by at least a distance d>d 0 >0 from the N2 particles in region R2.

The non-magnetic part of the interaction, HR, we call the residual inter-
action. The magnetic interaction between the N particles takes the form(4)

Split the interaction energy H into two components:
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Combining the bound (21) with the ensemble averages (23) and (24)
proves the upper bound (10) on the fully interacting free energy F ( l ) .

To establish (24) we employ what we call a 9 operator, a map of the
coordinates of a system onto themselves in a one-to-one manner satisfying
the following conditions. It leaves the center of mass position r, of each
particle unchanged, it maps the internal coordinates i2i, onto themselves in
a way which leaves the integration measure Oi=1 dui unchanged, and it
leaves the Hamiltonian ,W invariant. In addition, when a system consists of
two subsystems and 9 is applied to one but not the other, it reverses the

We will show that

Because the residual interaction HR is tempered, H 1 2 < z 1 2 . Its ensemble
average, likewise, is bounded above:

where F(0) = F1+F2 is the free energy of the non-interacting subsystems,
and the classical ensemble average of any quantity 3. takes the form

where the right side is a line tangent to the graph of F(A) at A = 0; here
F'(A) and F"(A) are the first and second derivatives. As a consequence, the
free energy F(1) of the fully interacting system satisfies the Gibbs
inequality(31)

Let F(A) be the free energy of the combined system when the Hamiltonian
is H1 + H2 plus a scaled interaction AH12. Because F(A) is a concave func-
tion (that is, F"(A)<0), it is bounded above by

Let H1 and H2 be their respective Hamiltonians. Define the interaction
energy between the two subsystems by
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The hard core interaction,

sign of the magnetic interaction H12Mbetween them. Specific models may or
may not possess such an operator. When a system is stable and possesses
a 0 operator, we can obtain the desired upper and lower bounds on F to
prove a thermodynamic limit.

If a 8 operator exists, it can be used to establish (24) in the following
way. Set J = H12 in (22), and consider the change of variables produced
by applying the 9 operator to subsystem 1 but not subsystem 2. This
change preserves the integration measure, but reverses the sign of the
integrand, since H1 and H2 are unaltered, but H12 changes sign. Conse-
quently, the integral is equal to its negative, so it is zero.

IV. MODELS

Section III introduced a general strategy for proving thermodynamic
limits of permanently magnetized classical particles. The following section
applies that strategy to a variety of models. We start with identical hard
core particles, then treat dipolar soft spheres such as Stockmayer fluids. We
then modify the proof to cover polarizable particles, and then treat quan-
tum systems. Depending on the particular system, the greater challenge
may lie in demonstrating the lower, or the upper, bound on F.

A. Identical Hard Core Particles

Consider a collection of TV identical, uniformly magnetized, hard core
normal particles of volume v, and fully contained within a region of space
R of volume V. The magnetization M(r) is constant in magnitude for r in
volume vt of particle i and vanishes when r is not inside a particle. Inside
particle i the direction of M(r) = M, depends on the orientation Qi of the
particle. We require that the region M have a regular shape(2) and be large
enough so that all particles fit inside the region without overlapping. Thus,
we restrict the number of particles so that the packing fraction 0 = Nv/V is
not too large. In particular, we assume a packing fraction <j>* >0 exists for
which particles may be packed with any 0 < 0 < 0 * into any sufficiently
large and regular volume.

Write the Hamiltonian as
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where H i D ( r ) is the field from magnetization M, of particle i with volume vi,
obtained by substituting M,- for M(r) in Eq. (1) and integrating over the
surface and volume of particle i.

We use Eq. (29) to placer a lower bound on HM by a method similar
to that of Griffiths.(3) For any magnetization distribution M(r) and the
field HD ( r ) caused by it

Here HD(t) is the field, due to all particles, defined in Eq. (1) and

for non-overlapping dipolar spheres with radius R, and dipole moment u,
regardless of their positions and orientations. Because of the hard core
repulsion (26) we achieve stability (13) with wA=n2/2R3 for dipolar hard
spheres (25). The lower bound on F follows as discussed in Section IIIB.
We now generalize the proof of stability (13), and thus a lower bound on F,
to particles of all shapes.

To prove stability we make use of the positivity of field energy. Adding
the magnetic self energy of each particle to HM gives the total energy of
the whole system, considered as one magnetization distribution,

where ui, and ri are the dipole moment and position of the ith particle; ui,
is the integral of M(r) over the volume of the ith particle; rij = ti, — Tj, and
rij is the unit vector along rij.

The hard core interaction (26) by itself provides an example of a stable
and tempered interaction. Since H H C > 0 , it obeys the stability condition
(13) with wA = 0. Griffiths(3) proved the lower bound

prevents any overlap between particles. For non-overlapping configura-
tions the magnetic interaction HM is as in (18). For the special case of
hard core spheres the expression (18) reduces to the simpler form
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Hence
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Brown(4) rewrites the self energy in (30) as

where D,. is the demagnetizing tensor of an "equivalent ellipsoid;" it exists
for a particle of any shape, and k and / index the components of Di,- and M.
Since Di is positive definite, with trace equal to 1,

Since all particles are identical, the magnetic interaction satisfies the lower
bound

Thus we confirm stability (13). The lower bound (9) on the free energy
follows with COA = 2nM2v.

For proving an upper bound on the free energy, notice that the hard
core interaction (26) is tempered, Eq. (16), with any d0>0. We identify the
hard core interaction (26) as a residual interaction HR. The key to our
proof of an upper bound in Section IIIC was reversing the sign of the
magnetic interaction energy H12, without changing H1, by applying an
operator 6 on subsystem 1. For particles with permanent magnetization
fixed relative to the particle, a rotation of each particle can reverse the
direction of magnetization. Such a rotation keeps the residual interactions
unchanged only if the particle shape has an axis of 2-fold symmetry per-
pendicular to its magnetization. Hence at least one operator 9 exists, and
our proof applies, for systems of identical particles with the required rota-
tional symmetry in shape.

Some kinds of small particles, including many used in ferrofluids,(14)

exhibit superparamagnetism. Dipole moments rotate by Neel relaxation,(15)

or possibly quantum tunneling(16) without requiring rotation of the par-
ticle itself. To describe the superparamagnetic classical particles, one
includes in Qi, in addition to the Euler angles, a discrete variable Oi= ± 1
specifying that the magnetization is parallel ( +1) or opposite ( — 1) to a
direction fixed in the particle, and j dQi includes a sum over Oi. The 0
operator is the map 0i,-> —O i , applied to every particle. For a quantum



Define a generalized mean

is a repulsive interaction with A > 0 and n > 3, and Hcoentral is any stable
(13) and tempered (16) potential that is spherically symmetric. Define
H(n)

 + Hcentral to be the residual interaction HR. The upper bound (10)
follows exactly as in Section IIIC because H(n) and Hcentral are both tem-
pered and rotationally invariant. The proof of a lower bound (9) for such
systems is more complicated than for hard core particles because there is
no minimum distance of separation between the point dipoles.

To prove stability (13) and hence a lower bound (9), it suffices to
prove that HM + H ( n ) is stable, since Hcentral is stable by assumption.
Consider some configuration of a finite system of N particles. Let 2Ri be
the distance from the ith particle to its nearest neighbor. The magnetic
interaction energy remains unchanged if each particle is replaced by a
sphere of radius Ri with uniform magnetization and the same dipole
moment \i. The self energy of such a sphere is [i2/2R3 . Since
HM + (ju2/2) En

=1 . R - 3 > 0 by positivity of field energy (see discussion in
Section IVA), and H ( n ) > ( A / 2 } £n

=1 (2R i)
- n , we write

where HM is the point dipole interaction (21),

particle, the corresponding operation is time reversal applied to the par-
ticle's magnetization. In either case, the 6 operator has the properties
specified in Section IIIC, so the argument given there shows that any
system of hard core superparamagnetic particles, with any shape of par-
ticle, has a thermodynamic limit.

B. Dipolar Systems with Central Forces

Consider a system of particles interacting with Hamiltonian

Thermodynamic Limit for Dipolar Media 123



The Hamiltonian in (45) is special case of our model (36). The Stockmayer
fluid(18) is the case with n = 12, w = 6, and hence will also have a shape
independent thermodynamic limit. Dipolar soft spheres(19) are the trivial
case C = 0 and .Wcentral = 0.

Ruelle(1) showed that generalized Lennard-Jones potentials with B, C>0
and n>m>3 are stable. To demonstrate stability including the dipole
interaction, divide the repulsive term into two positive pieces, B = A + B'.
Attribute B' to a new (but still stable) Lennard-Jones potential and use the
remainder A to define the repulsive potential H(n),

where the Lennard-Jones potential is

Our model (36) is therefore stable.
Let's apply this general proof to some special cases. Our proof applies

to generalized Lennard-Jones particles with dipole interactions. The
Hamiltonian for such a system is

where X=(1/N)Ei=1 R-3. The bound (41) for HM + H(n) has a mini-
mum because n > 3 and A > 0. In particular

for n > 3. Combining Eq. (40) with Eq. (38) we write

Using the property that G(t) increases monotonically for positive t ( l 7 ) we
find
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The model fails because of its assumed induced point dipole. The point
dipole applies rigorously only to an infinitesimal volume. However, the
polarizability a necessarily vanishes in the limit of zero volume, due to the
self-induced demagnetizing field. Finite size particles can have oc^O.
However, the DID model omits multipole moments due to the spatial
variation of fields and magnetization inside the particles. Higher order mul-
tipole interactions between particles become important when the particles
approach each other,(21,22) and are required for stability.

Consequently, we work with a more physically realistic model.(20) By
incorporating the full magnetic interaction (dipole and higher moments)
and the spatial variation of fields within a particle, our model satisfies
stability in general. This model represents the polarizability of atoms and
molecules more accurately than the DID model. Each particle has a perma-
nent magnetization density which is constant in the interior of the particle,
but whose direction is determined by the orientation of the particle. (For
example, imagine that the particles are prolate ellipsoids with magnetiza-
tion along the long axis.) The particles are "hard," so that their volumes
cannot overlap. Consequently, the permanent magnetization is a vector
field Mp(r), equal to zero unless r is inside some particle, where it takes on
a value whose magnitude is independent of the particle but whose direction
is tied to the particle's orientation Q.

In addition, each particle contains linearly polarizable material giving
rise to an induced magnetization
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C. Polarizable Particles

Consider a system of identical hard core particles that contain perma-
nent magnetic moments but are further linearly (i.e., proportionally to the
local field) polarizable. The simplest model for such systems is the dipole-
induced-dipole (DID) model.(10,20) The model consists of spherical par-
ticles with a point dipole moment at the center, and with the induced
polarization an additional point dipole moment of strength aH. This model
lacks stability in general. For example, with two spherical particles of
polarizability a and hard core radius R, stability is lost when

where H(r) is the total magnetic field at r, and the susceptibility tensor x(r)
is zero unless r is inside some particle, where its value is independent of r
but tied to the orientation of the particle: that is the principal values of x,



equals the work done bringing initially isolated polarizable particles into
interaction with each other.

The stability (13) and hence the lower bound (9) for this system
follows from the positivity of field energy. Rewrite the magnetic energy in
Eq. (49) as (see Appendix A for details)

The first term is the demagnetization energy (2) of the permanent
magnetization distribution, and the second term represents the work done
in introducing linearly polarizable material into this permanent field.
Evaluating (49) for an isolated particle defines the self energy Ese l f per par-
ticle. The difference

where Hp(r) is the field from permanent magnetization density Mp, and is
given by (1) with M set equal to Mp, whereas H i(r) is due to the induced
magnetization: in (1) set M equal to Mi. Note that even an isolated particle
will have an induced magnetization because the demagnetizing effect will
give rise to a non-zero Hp, and the total H inside the particle must be
determined self-consistently, as it both induces a magnetization, (47), and
is partly (Hi) determined by that magnetization.

Because of this requirement of consistency between total field and
magnetization, the magnetic interaction of polarizable particles is a multi-
body interaction, and is much more complicated than the pairwise multipole
interactions of permanently magnetized particles discussed in Section IVA.
To write down the interaction energy HM of a configuration of polarizable
particles, it is convenient to calculate the work done assembling the con-
figuration, starting with the particles well separated from each other at
infinity. For any arrangement of particles, the total magnetic energy is

and the relationship of the principal axes of X to the orientation of the
particle, are same for every particle.

The total magnetic field H(r) in (47) is
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Here H = Z i=1 p2, /2m is the kinetic energy operator. The exchange inter-
action(23) is H E X = 1 Z i j J ( r i j ) S i - S j , where S,- is the spin operator for par-
ticle i, rij is the distance between particles i and j, the couplings J(rij) are
assumed to satisfy conditions consistent with stability, and the sum is over
all i=j . The dipole interaction HM is given by (27) with dipole moments
Hi= gS i . The residual interaction HR may be any stable and tempered

which is sufficient to prove the upper bound on F, as discussed in
Section IIIC.

D. Quantum Systems

Our proofs extend to quantum systems. Consider a system of N identi-
cal spin S particles in volume V, which may obey Boltzmann, Fermi-Dirac
or Bose-Einstein statistics. The Hamiltonian is

where C12 is odd under reversal of the permanent magnetization of par-
ticles in subsystem 1 by the 6 operator, and N12<0. Since 012 is odd, its
ensemble average vanishes. Then

where H1 and H2 are the magnetic interaction Hamiltonians for the sub-
systems by themselves; i.e., H1 is the energy of subsystem 1 with sub-
system 2 placed infinitely far away. We show in Appendix B that, for
positive-definite X,

The stability and lower bound then follow as in the case of identical hard
core particles.

To prove the upper bound (10), consider two subsystems 1 and 2
separated by a distance d>d 0 >0 as in Section III A. Write the interaction
Hamiltonian between these two subsystems as

Since 1 +4?rx is positive definite, Hrt>0, hence
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It will also be convenient to define a scaled Hamiltonian

To begin with, we assume that the N1 particles with labels in I1 are
confined to a region of space R1 c: R with volume V1, while the
N2 = N — N 1 particles with labels in I2 are confined to a region R2C R of
volume F2, and that the minimum separation of R1 and R2 is a distance

where H1includes all terms in (56) (one particle, two-particle, etc.) involv-
ing only particles in the set i1 with labels 1, 2,..., N1, $f2 includes the terms
involving only particles in the set L2 with labels N1 + 1, N1 +2,..., A1 + N2,
and H12 all the remaining terms. The interaction energy H12 is a sum of
magnetic dipole, exchange, and residual terms

where the trace Tr is carried out over states of appropriate symmetry with
respect to interchange of particles. For Boltzmann particles C = N! and for
fermions and bosons C= 1. The free energy F is —kBT log Z.

The stability of 3?, in the sense that its spectrum has a lower bound
proportional to N, see (13), follows from the positivity of Jf (no negative
eigenvalues) and the stability of JfM + 3fEX + 2fR. Lower bounds on
classical energies of the sort derived in Sections IVA and IVB are easily
extended to operator inequalities which demonstrate the stability of
3CM +2FR. That this stability is preserved upon adding 3fEX requires a
suitable choice of J(r). For example, in the case of hard core particles it
suffices that J(r) be bounded and decrease more rapidly than r~ 3 ~ 6 for
some e > 0.

We now address the upper bound on the free energy. Write the
Hamiltonian in the form

interaction that remains unchanged under simultaneous spin reversal of all
particles, such as the hard core or central force interactions discussed in
Sections IVA and IVB. Implicit in our definition of the Hamiltonian is the
confinement of particles in a region 8% of volume V with hard wall bound-
ary conditions. The partition function is
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where D = N1! N2! for Boltzmann particles and D = 1 for fermions and
bosons. If this partition function is evaluated using 3? with A = 0 in (60),
—k^T times its logarithm is the sum F 1+F 2 of free energies for the
separate systems of particles in regions R1, and R2, each evaluated as if the
other region did not exist, since the interactions between the two sets of
particles have been "turned off."

An upper bound on the free energy F of the full system of N particles
confined to region ffl, in the form of the Eq. (10) is obtained through the
following steps.

(1) "Turn on" the interaction between the particles in regions Rl and
R2 by letting A increase from 0 to 1. The resulting free energy is denoted
by FN1,N2. The superscript <& indicates that particles are confined to regions
R1 and R2.

(2) Remove the constraint that only particles in set u1 are found in
R1 and only those in set I2 are found in R2 . Any particle may be anywhere
in the union of R1 and R2, provided there are exactly Nr particles in R1

and N2 particles in R2. This involves introducing appropriately sym-
metrized wavefunctions.

(3) Relax the constraint that precisely N1 particles are in R1 and N2

in R2. We still require that there be a total of N particles in the union of
R1 and R2.

(4) Relax the constraint that the particles lie in either R1 or R2, so
that all particles can be anywhere in the larger region R.

Since steps 2, 3, and 4 do not require special attention to long range
interactions, they are discussed in Appendix C. Basically, each time a

where the integer arguments are particle labels. The {| < / > m > } form a com-
plete set of states for the N1 particles in R1, with appropriate symmetry
under interchange of particles and {|xn>>} is a similar set for the N2 par-
ticles in R2. The product states (61) have no symmetry for the interchange
of particles between the two sets R1 and R2, as indicated by the superscript
tfl. Due to this lack of symmetry the partition function is given by

d>d 0 . Note that (in general) R is larger than R1 u R2. The Hilbert space
of this system is spanned by product states of the form
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for 1 <i<N1, and HM12 is a sum of pairwise products of spin operators,
one from the collection L1 and one from L2. Thus <H12)/l = 0 is equal to
its negative and vanishes. The same argument applies to < H 1 2 > i = 0 .

Consequently, after following the remaining steps 2, 3, and 4 con-
tained in Appendix C, we have a bound corresponding to (10) in the classi-
cal case. This bound together with that in (9), which (as already noted)
follows from the stability of 3f, completes the proof of the existence of a
thermodynamic limit in the quantum case, see Section IIIA.

It is possible to treat the translation degrees of freedom classically and
the spin quantum mechanically. The proof of a thermodynamic limit for

because

The third term in (64) is bounded by the upper bound A12 on H12. The
first and second terms vanish for the following reason. Let 0 be the anti-
unitary spin reversal operator which reverses all the spins of the particles
in collection ,91. It is a symmetry of H1, because H1m and H1ex involve
products of two spin operators and H1Ris, by assumption, invariant under
the reversal of all spins. Consequently, if the { |<^m>} are the eigenstates of
H1, the states 0 \<j>my = |^m> are also eigenstates with the same eigenvalues.
In evaluating the trace in the numerator of (65) we can employ a complete
set {\<t>my !/„>}, where the {|xn>} are the eigenstates of H2, or, equiv-
alently, {|^m> |/n>}. However,

where the averages are with respect to Boltzmann weights with A = 0. For
example

which is known as the Bogoliubov inequality.(13) The first term on the right
is F1 + F2, and the second is

constraint is relaxed the free energy decreases, except for step 2, where it
remains constant. Thus the upper bound obtained for FN1,N2 applies to F.

For step 1 we use the fact that FN1,N2 is a concave function of A, and
therefore
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such a "semi quantum" model is similar to the "fully quantum" treatment.
The averages of H12M and H12EX involve sums over all spin states and
integrals over all particle positions. Using the spin reversal operator 9,
introduced earlier in this section, and doing the sums over all spin states
first, one sees that the average values of H12M and H12EX vanish. The residual
interactions H12R are bounded by d12, and therefore our proof goes
through.

One may define another "semi quantum" model of classical spins and
classical dipoles with center-of-mass motion of the particles treated quan-
tum mechanically. The averages of H12 and H12 contain integrals over all
spin orientations and sums over all spatial wavefunctions in this case. The
proof is similar to that of classical particles. Doing the integrals over par-
ticle spins first, gives zero for the average of H12 + H12, because they are
both odd with respect to spin reversal. The sum over the spatial wavefunc-
tions then yields the desired upper bound on < H 1 2 ) ^ = 0 and our proof goes
through. We can even include classical polarizability (Section IVC) in such
a model. In this case the average of H12 is non positive, and again we get
the required upper bound (10) on the free energy.

V. ELECTRIC POLARIZATION

So far we phrased our discussion entirely in terms of magnetic inter-
actions. However our proof applies to many electrically polarized or
polarizable materials as well. Electric fields E and D fields satisfy the same
Maxwell equations as magnetic fields H and B, respectively, provided no
free charges and currents are present. By replacing fields H, B and
magnetization M with fields E, D and polarization P, respectively, our
proofs run exactly as for magnetic materials. We assume stability, temper-
ing of the residual interactions, and the existence of a 9 operator. Thus we
prove the existence of a shape independent thermodynamic limit for the
electric analogue of each of the classical models discussed in Sections IV.

For ferroelectric identical hard core particles, use the Hamiltonian
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where dPp is the electric Interaction between particles. The proof follows
Section IVA with the replacement of fields discussed at the beginning of
this section. For electric dipolar systems with central forces the interaction
Hamiltonian is



between any two water molecules m, n, where / and j run over the charges
qt and qt, respectively, on molecule m and n, ry is the separation between
charges and r00 is the separation between oxygen ions. For the above
model there is no symmetry operation available which can reverse all the
electric interactions while keeping the residual (Lennard-Jones) interac-
tions unchanged. A 9 operator therefore does not exist for this model and
we cannot apply our proof. We suppose that our qualitative argument
(Section IIB) demonstrating existence of a shape independent thermo-

The proof goes through as in Section IVB, with the existence of a shape
independent thermodynamic limit for electric dipolar soft spheres and
Stockmayer fluids as special cases. For electrically polarizable hard core
particles, H = Hp + HHC where Hp, the electric interaction between
polarizable particles, is defined analogously with ,HM in Eq. (50). After the
replacements of fields and magnetization discussed at the beginning of this
section, the proof proceeds as in Section IVC. Quantum models can be
treated as discussed in Section IVD.

Adding another layer of complexity, we may define models combining
features of electric and magnetic models already discussed. The possible
variations are too numerous to describe individually. We simply note here
that stability including only magnetic or only electric interactions ensures
stability with the two added together. Finding a 0 operator may be more
difficult. For example, a 180° rotation axis must lie perpendicular to both
M and P.

For the crude dipolar particle models discussed above, the electric and
magnetic problems are fully equivalent. For applications to realistic models
of specific materials, however, it is generally harder to find a 0 operator in
the case of electric materials. The analogue of time reversal (which provides
a 0 operator for superparamagnetic particles) is charge conjugation. This
has the undesirable effect of turning matter into antimatter! Without a 0
operator we cannot apply our proof.

For an example of a model outside our proof, consider a fluid of H2O
molecules (water). Modeled as a dipolar hard sphere or a Stockmayer fluid
the thermodynamic limit follows from our discussions above using rotation
as the 6 operator. Real H2O molecules lack this rotational symmetry. For
example, the TIPS 3 site model of water'24' places positive charges on the
hydrogens and a negative charge on oxygen. Coulomb interactions between
all intermolecular pairs of charges, and a Lennard-Jones interaction
between the oxygen atoms, gives the interaction
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dynamic limit based on domain formation still holds, but for technical
reasons we cannot prove it.

Yet another example is provided by models of ferroelectric materials
with mobile charges. Charges transfer among dissimilar chemical elements,
so no d operator is likely to exist. Furthermore, the definition of polariza-
tion becomes ambiguous, depending on how the unit cell is defined in the
case of a crystal,(25) or on the surface charge for non-crystalline materials.
The question of appropriate thermodynamic limits for model ferroelectrics
with mobile charges remains under discussion.(26)

For models containing only bound charges, our qualitative argument
(Section IIB) suggests the equilibrium state has no depolarizing energy
density. When the microscopic coulomb charges are taken into account,
including the possibility of molecular dissociation and the Fermi statistics
of the constituent particles, the problem falls into the class of materials for
which Lieb(27) proved a thermodynamic limit. Free electric charges screen
the 1/r Coulomb potential, restoring the thermodynamic limit.

VI. CONCLUSIONS

We proved the existence and shape independence of the free energy
density for a variety of dipolar systems. Three essential conditions were
identified: stability, tempering of residual interactions, and the existence of
a 0 operator that commutes with H1,H2 and H12 while reversing the sign
of H12. Our proof covers systems of identical hard core particles with
uniform permanent magnetization. We also treat dipolar soft spheres and
Stockmayer fluids, systems with magnetizable or polarizable material, and
we consider electric as well as magnetic dipoles. Except for the case of
super-paramagnetic particles, the existence of a 0 operator requires sym-
metries such as a 2-fold axis of rotational symmetry perpendicular to the
magnetization/polarization of each particle.

Having proven shape independence of the free energy we now consider
some implications of the proof. For the systems covered by our proof, ther-
modynamic states and phase diagrams do not depend on size or shape.(28)

Intrinsic thermodynamic quantities such as pressure and chemical potential
are independent of sample shape and position within a sample. When
calculating free energies of magnetized states, care must be taken to remove
the depolarizing field if uniform magnetization is assumed. Failure to do so
leads to either boundary-condition or shape dependence of thermodynamic
properties.(26,28-30) Two convenient ways to remove the demagnetizing
fields are to study highly prolate ellipsoids or to use tin-foil boundary con-
ditions(8)
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Computer simulations(31) suggest dipolar fluids such as ferrofluids may
spontaneously magnetize. Experiments on supercooled CoPd alloys(32)

claim to observe a spontaneously magnetized metastable state. How then
can we reconcile shape independence of the free energy with these reports
of spontaneously polarized liquid states? Domains or textures must form,
as in equilibrium solid ferromagnets. Liquids lack the crystalline anisotropy
required to sustain a sharp domain wall (see Fig. Ib). De Gennes and
Pincus'33' note, however, that domain wall thickness should be comparable
to system dimensions in a magnetic liquid. We conclude that a spontaneously
polarized liquid has a position dependent axis of polarization that rotates
so as to lie tangent to the sample surface. Since vector fields tangent to the
surface of simply connected volumes exhibit singularities (the "hairy
billiard ball" problem), magnetized fluid droplets must contain defects in
the magnetization field M. Possible textures include line (Fig. 1c) or point
defects (not shown). Away from such defects the magnitude of magnetiza-
tion |M| is independent of position within the sample. In computer simula-
tions a uniformly polarized state is observed because the Ewald summa-
tions(8) drop the surface pole energy (via "tin-foil" boundaries) and thus
mimic an infinite, boundary-free, medium.

Our proof is valid only in zero applied field. The case of an applied
field is still open. The free energy in a field depends on shape as outlined
in Section II. The free energy increase due to the demagnetizing field causes
a droplet of paramagnetic liquid to elongate in an external field, minimiz-
ing its magnetic energy by reducing D.(34) However, we conjecture the
existence of an intrinsic thermodynamic energy, defined in Eq. (5) by sub-
tracting the shape dependent demagnetizing energy from the full shape
dependent free energy.

Finally, let's consider some dipolar systems to which we are unable to
apply our proof due to the lack of a 6 operator. Particles with non-sym-
metric shapes and magnetization fixed with respect their body (Fig. 2a)
provide an example. Each particle is a cube with protrusions (conical,
hemispherical and cubic) on three faces and matching indentations on the
opposite three faces. Each face of one particle fits exactly into the corre-
sponding opposite face of another particle. Recall that we exploit sym-
metries of the Hamiltonian when applying a 9 operator to the internal
coordinates £ i , . The 9 operator, if it exists, reverses the sign of H12 while
leaving H1 invariant. Rotations are not a symmetry of the internal coor-
dinates for these particles. There is no evident symmetry of the Hamiltonian
which could be used as a 9 operator.

When these particles are tightly packed (i.e., the limit of infinite
pressure and hard cores), they align parallel to each other. M is uniform
throughout space and therefore the thermodynamic limit does not exist. At
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Fig. 2. (a) Permanently magnetized particle lacking a 0 operator. The arrows indicate the
direction of magnetization, (b) Domain formation requires gaps between particles. A cross-
section is shown.

finite pressure it is possible to accumulate enough free volume to insert
domain walls, (Fig. 2b), so we expect that the thermodynamic limit does
exist even though the conditions of our proof are not obeyed. That is, our
conditions are sufficient but not in all cases necessary.

Another interesting example is provided by hydrogen absorption in
metals.(35) Interstitial hydrogen creates elastic strain fields that fall off as
l/r3 and hence are referred to as dipoles. This is a rather confusing nota-
tion, since the angular dependence is actually a sum of a quadrupole and
a monopole contribution. The monopole term is the trace of the strain
tensor and governs lattice dilation. Provided the system remains coherent
(the lattice structure is dislocation free), the monopole interactions are
shape dependent, attractive and infinite ranged. The interactions reduce the
energy but create no force. In the coherent state, the phase diagram for
liquid-gas transitions of hydrogen in a metal depends on the shape of the
metal.(36)

The coherent state itself is a metastable state. The true equilibrium
state is incoherent, with dislocations relaxing the lattice strain. If one
allows for dislocations, the elastic interactions become short ranged and
the thermodynamic limit is restored. The sample itself, however, may have
disintegrated into a fine powder!

We start with Eq. (51) for ,HT and show that it equals Eq. (49). Use
Eq. (47) for induced magnetization M' and (48) defining the permanent
and induced fields Hp and Hi to rewrite Eq. (51) as

APPENDIX A. TOTAL MAGNETIC ENERGY FOR
POLARIZABLE DIPOLES



where M1(r) is the induced magnetization which would be present in sub-
system 1 were subsystem 2 absent, and M2(r) that of subsystem 2 were sub-
system 1 absent.

Using Eqs. (A3) and (A4) to simplify Eq. (A1) gives Eq. (49), proving
equality of our expressions (49) and (51) for HT.

APPENDIX B. INTERACTION ENERGY BETWEEN TWO
SUBSYSTEMS OF POLARIZABLE DIPOLES

Let Hp1(r) and Hp2(r) be the fields due to the permanent polarization
in subsystems 1 and 2 located in non-overlapping regions H1 and H2. The
induced magnetizations in the two subsystems can be written in the form

Since Eq. (A2) holds for any two arbitrary magnetization distributions, we
set M1 = M2 equal to the induced magnetization M'. Then Eq. (A2) gives

Similarly, setting M1= Mp and M2 = Mi in Eq. (A2) gives

For any two magnetization distributions M1(r), and M2(r) and the fields
H1(r)and H2(r) caused by them respectively, the following identity
holds:(4)
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because the interaction-induced magnetization M' has lower energy than
the isolated self-magnetization Ms. Upon replacing M} in (B4), with
M i - M s , ( B l ) , one sees that (B5) implies that

APPENDIX C. QUANTUM SYSTEMS

Here are the details for steps 2, 3, and 4 in Section IVD. For step 2
note that the formal Hamiltonian H(A=1), defined in Eq. (60), is sym-
metrical under the interchange of any two particles, since the right side of

is non-positive as we now show. A theorem by Brown(4) states that for a
paramagnetic polarizable material in an applied field, the unique induced
magnetization Mi given by Eq. (47) minimizes the total magnetic energy.
Applying that theorem to our system we observe that

is odd under reversal of the permanent magnetization of particles in sub-
system 1 by the 0 operator, and

Break H12 into odd and non-positive components H12 = H12 + H12,
where

Using Eqs. (49) for .WT and (50) for HM to find the interaction
Hamiltonians H1, H2 and HM for the two subsystems and the whole
system, respectively, we write the interaction energy in (53) as
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note that factors 8mm,, dnn, follow from orthonormality of the single particle
states in (C1). To get the factor dpp- consider p ^ p' both belonging to &.
There is at least one particle / which is in R1 under P, and in R2 under p'.

(58) is simply a way of segregating terms in the sum representing H. To
allow any particle to be anywhere in R1, u R2, subject to the requirement
of N1 particles in R1 and N2 in R2, replace the Hilbert space of the form
(61) with another spanned by states with appropriate symmetries under
interchanging of any pair of particles. We now construct such a Hilbert
space for each type of statistics as indicated by Fisher.(2)

First consider identical particles obeying Boltzmann statistics and let
{l« y >}> .7 = 1,2... be a complete orthonormal set of single particle states
(including spin) for a particle confined to R1.A basis {|$m» for the par-
ticles with labels in ff[ can then be written in the form
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where the operator ap applies permutation p to the Nl + N2 arguments.
The set {IV'm,«,/,)} for m and n defined previously, and p belonging to SP,
forms an orthonormal basis for the N particles in R1^R2, allowing any
particle to be in either region, subject to the constraint of NI particles in
^?! and the remaining N2 in R2.

To prove orthonormality,

It is clear that & contains P = N\/(N1! V2!) permutations, one for each
way of partitioning the integers from 1 to N into two collections one con-
taining N1 and the other containing N2 integers. Then define states

where m stands for the sequence (ml,m2...mNi) of integer labels. In the
same way, a basis {|#B>} for particles with labels in £f2 can be constructed
using single particle states {|v*>|, k= 1, 2... for a particle confined to ^2.

To construct a basis in which any NI particles are in R1and any N2

particles in 3%2. we proceed as follows. Consider the collection 3? of per-
mutations p of the integers (1, 2...N), where p(j) is the image ofy under p,
with the property that



Only terms with p = p' survive because of (C5). Since ( ± }2n(p) = 1, the rest
of the proof is similar to the Boltzmann case.

where n(p] is 0 for an even and 1 for an odd permutation /?, and \(j>my and
!/„> are assumed to have appropriate symmetry with respect to inter-
change of particles withinR1 and within R2,respectively. We use the set
of states {|i/'m,«)} to evaluate the trace in the partition function (57):

which is the same as the partition function ZN1,N2 (defined in Eq. (62))
evaluated in the Hilbert space spanned by { | i A m , n } . The free energy
FN1,n2 therefore is equal to FN1,N2.

For fermions (—) and bosons (+) the appropriately symmetrized
orthonormal states are

The Hamiltonian, being symmetric, commutes with ap. The sum over p
therefore just gives a factor of P, so that

because the Hamiltonian does not interchange particles between the two
regions R1 and R2.

We can use the set of states { \ \ l / m , n , p > } to evaluate the trace in the
partition function (57)

The inner product (C4) contains a factor <//"'(/>(/)) I v" ' ( /> ' ( / ) )> that
vanishes because the \/uJy vanish outside $?,, the |vfc> vanish outside J?2-
Recall that R1 and R2 do not overlap. Finally, the normalization condition
in (C4) follows from the unitarity of ap. In addition note that for p + p'
both belonging to &,
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