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Order in supercooled liquids and metallic glasses is related to a regular icosahedral “crystal”
consisting of 120 particles inscribed on the surface of a sphere in four dimensions. Hyperspherical
harmonics and the discrete symmetry group of this four-dimensional platonic solid can be used
to construct an order parameter for glasses in three-dimensional flat space. A uniformly frustrated
Landau expansion in this order parameter suggests a ground state with a regu]ar array of wedge
disclination lines. Homotopy theory is used to classify all topologically stable defects. A generaliz-
ation of Bloch’s theorem for electronic states in flat space solids allows explicit diagonalization of
tight binding models defined on the curved-space icosahedral crystal.

1. Introduction

As pointed out many years ago by Frank [1], most simple pair potentials lead to
a strong energetic preference for twelve-particle icosahedral coordination shells
surrounding atoms in dense liquids. Correlations in the orientations of neighboring
icosahedra which increase with decreasing temperatures have been observed in
recent molecular dynamics simulations of supercooled liquids [2]; similar correla-
tions [2] appear in simple models of metallic glass [3,4]. Frustration prevents
long-range icosahedral order however, and forces a finite density of defects into the
ground state*. The incompatibility of local icosahedral order with a space-filling
icosahedral ‘“‘crystal” seems to be the key to understanding the structure and
statistical mechanics of simple glass-formers.

As described in detail by Coxeter [5, 6], particles with icosahedral coordination
shells do tile the surface of a sphere in four dimensions, forming a four-dimensional
platonic solid, or “polytope”. Following Schlafli [5, 6], we shall call this 120-vertex
object “‘polytope {3, 3, 5}, to emphasize that it is composed of tetrahedral cells of
four particles (denoted {3, 3}), with 5 tetrahedra per near-neighbor bond. In an
interesting early paper [7] Coxeter suggested that dense random packing models
(now commonly used to describe metallic glasses [3, 4]) could be approximated by
a fictitious space-filling “statistical honeycomb” polytope {3, 3, g}, with a fractional

* By “frustration”, we mean that all atoms cannot simultaneously sit in the minima presented to them
by the pair potentials of their near neighbors. A closely related kind of frustration appears in uniformly
frustrated spin glasses.
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number g of tetrahedra per bond. The simplest such model has g=
27/cos™' §=5.104[5]. Today, we would call this an “‘effective medium” or “‘mean
field”” approach.

It is more realistic to imagine a predominantly icosahedral medium interrupted
occasionally by defects. As pointed out by Kléman and Sadoc[8], defects such as
disclinations are necessary to flatten curved space polytopes. The importance of the
polytope {3, 3, 5} for metallic glasses (and for covalently bonded glasses like SiO,)
has been emphasized by Sadoc [9] and by Sadoc and Mosseri[10]. Numerical
calculations of defect-free tight binding models of electronic states defined on {3, 3, 5}
seem to give reasonable agreement with densities of states for flat-space amorphous
semiconductors [11]. Recently [12], the defects which frustrate icosahedral order
in flat space have been characterized more precisely using homotopy theory and
the icosahedral orientational order parameter defined in ref.[2]. The curvature
mismatch between flat space and the curved space polytope {3, 3, 5} forces an
asymmetry in the density of +72°and —72° wedge disclination lines. Microscopically,
these lines correspond respectively to contiguous links of ‘““anomalous™ bonds
surrounded by four and six tetrahedra. The Frank-Kasper phases of complex
transition-metal alloys [13] are an interesting example of ordered arrays of frustra-
tion-induced —72° disclination lines; the average number of tetrahedra per bond ¢
is quite close to the value 27/cos '3 discussed by Coxeter [5]. The defect lines
are characterized by non-abelian SU(2) matrix charges, which leads to entanglement
as they attempt to form an ordered network when cooled rapidly [12]. A tangied
array of —72° disclination lines in an otherwise icosahedral medium is an appealing
model for a metallic glass. Sethna [14] has recently suggested a uniformly frustrated
continuum elastic free energy to describe this situation.

The set of symmetry operations G of the polytope {3, 3,5} which are proper
rotations form a 7200 element discrete subgroup of SO(4)[15]. In this paper, we
exploit this symmetry group in three different ways. The first concerns the coefficients
Q\2,m,m, iN an expansion in hyperspherical harmonics [16] applied to 120 particles
in S* (the surface of a sphere in four dimensions). The subscript n =0, 1, ... indexes
irreducible representations of SO(4), and the indices m, and m, run in integral steps
from —3n to in. The symmetry group G greatly restricts the allowed spherical
harmonics in the configuration {3, 3, 5}, which is presumably the ground state for
particles interacting via simple pair potentials. The first nontrivial spherical har-
monics occur for n = 12. As will be discussed in detail in sects. 2 and 3, the allowed
values of the index n are related to the concept of reciprocal lattice vectors in flat
space solids. This description of particles in S’ leads quite naturally to an order
parameter for glasses in flat space via stereographic projection of a local particle
configuration into S°. A related construction is used in Sethna’s continuum elastic
theory [14]. Both translational and orientational icosahedral symmetries are
embodied in this order parameter, in contrast to the purely orientational symmetries
studied in ref. [2]. A Landau expansion in position-dependent “‘Fourier” coefficients
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Q12.m,m,(r) turns out to be reminiscent of Landau theories for the blue phases of
choelesteric liquid crystals, which are ordered arrays of disclination lines in a chiral
nematic [17-19]. The generators of the n =12 representation of SO(4) are used to
produce a uniformly frustrated covariant derivative. At low temperatures, we recover
Sethna’s continuum elastic free energy, except that his 4 x4 SO(4) matrices are
replaced by 169-dimensional n =12 SO(4) representation matrices. Both theories
depend only on the six SO(4) “Euler angles™ at low temperatures.

We also use the symmetry group G to discuss line defects in glasses, which are
described by the homotopy classes [20] of 7,(SO(4)/G). Only the subgroup of
disclination defects was studied in ref. [12]. Here, we show that the complete defect
classification is given by

7.(SO(4)/G)=Y' XY, (1.1)

where Y’ is the 120-element lift of the icosahedral point group Y into SU(2). The
diagonal elements in this direct product are the disclinations studied in ref.[12];
these include the wedge disclinations forced into the medium by the curvature
mismatch of flat space with the polytope {3, 3, 5}.

As a final application of the symmetry group G, we show how to explicitly
diagonalize tight-binding models defined on {3, 3, 5}. The simplest such model is
described by the hamiltonian

), (1.2)

H ==t T (i)l +Xi

where ¢ is a hopping matrix element connecting nearest-neighbor sites on the
polytope, and {|i)} is a set of orthonormal basis functions localized at the sites {i}.
These basis functions generate a 120-element reducible representation of the group
G. Here, we exploit the relationship [15]

G=(Y'xY")/Z, (1.3)

to show that this representation breaks into nine irreducible representations [21]
(a, @) indexed by the irreducible representations @ of Y. The dimensionalities of
these representations (which give the degeneracies of the 120 eigenvalues of H) are
summarized by the formula

120=1D4D4DIDID 16D 16D 2536 . (1.4)

As discussed in sect. 5, the eigenvalues for arbitrary rotationally invariant tight
binding models with one level per site have a very simple analytic expression in
terms of the character table of Y

In sect. 2, we show how to analyze particle configurations on a sphere using
hyperspherical harmonics. The Landau description of a glass is developed in sect.
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3. We summarize the properties of the homotopy group 7,(SO(4)/G) in sect. 4, and
turn to a discussion of tight binding models in sect. 5.

2. Icosahedral order parameter

2.1. STRUCTURE FUNCTIONS IN §°

Crystalline order in euclidean space shows up most clearly in the structure
function, a quantity directly accessible to experiment via X-ray diffraction. Before
describing an analogous object for particles confined to the surface of a four-
dimensional sphere, we briefly recall the salient ideas in flat space [22]. Because of
the periodicity embodied in a crystalline lattice, it is natural to expand the particle
density in a Fourier series

p(N=% pe™", @0

where the Fourier coefficients p, are given by

Pq =—1‘; J d*rep(r). 2.2)

The integral in (2.2) is over a volume V, and the precise g-values entering (2.1) are
restricted by, say, periodic boundary conditions. These ¢’s, of course, close up to
form a continuum in fhe limit of an infinite system. Nonzero Fourier coefficients
are possible for any ¢ in a liquid. In a classical crystal at T =0, however, p, is
nonzero only for a discrete set of reciprocal lattice vectors {G}. The collection of
Fourier coefficients {ps} constitute a set of order parameters for a crystalline solid.
Landau [23] has used the p¢’s with the smallest nonzero reciprocal lattice vectors
to construct an order parameter theory of freezing.

X-ray diffraction experiments on liquids and solids measure the structure function

(@)= {p,"), (2.3)

where the brackets denote a thermal expectation value. In practice, one is usually
forced to work with samples composed of randomly oriented microcrystallites, and
measures instead of the angular or “powder” average of eq. (2.3)

S(q)—ﬁjdﬂqy(q)- (2.4)

Here, df2, is an element of solid angle in g-space. Standard manipulations using
(2.2)~(2.4) suffice to show that S(q) is related to a radially averaged correlation
function G(r) by [24]

S(q)=4—‘;TJ:O rzdrSiLq(r‘ir—)G(r). (2.5)
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This radial correlation function is an angular average in real space of the density—
density correlation function,

1
G(r)=ajdﬂr<p(r)p(0)>- (2.6)

The structure function S(q) in a solid has peaks when g = |G|, where G is a reciprocal
lattice vector. It is this powder-averaged structure function, rather than ¥(q), which
has a simple analogue in S°.

Consider a collection of particles on the surface of a four-dimensional sphere
with unit radius. Denoting a position on this sphere by a unit four-vector &, we
expand the particle density p(#) in hyperspherical harmonics Y, . m,(#)

pi)=" T Quumm Yhmm(id). (2.7)

nmy,my

The hyperspherical harmonics Y, .. (i) are a particularly convenient complete set
of functions on S*. As described in detail in ref. [16], the Y, ., ..(#) are proportional
to the Wigner matrices of the / =4n representation of SU(2)

n+1
Py Dy (a, B, y). (2.8)

Yn,ml mg(ﬁ) =

The Euler angles a, 8 and y which appear in (2.8) are obtained from i using the
well-known isomorphism between the elements of SU(2) and points on a four-
dimensional sphere [16,21). Upon writing & = (u, U, u,, 4.), and setting

a=ug+iu,, b=iu +u,, 2.9

we have [21]

DL (i)=% [(I+m)! (= my (I +m)(—m)]"?
s (tm=—p)ptd—m' —p)l(m' —m+pu)!
xal Mm@y T TR pR (=) T (2.10)

This sum over integers u is made finite by the factorials in the denominator. The
identification of the four-dimensional hyperspherical harmonics Y, . . (u) (which
are basis functions for a set of irreducible representations of SO(4)) with the
representation matrices of SU(2) is a remarkable and very useful coincidence. This
coincidence makes it clear that for every n =0, 1, ..., we have (n +1)° independent
basis functions, obtained by varying m, and m, from —3n to n in integral steps.

Eq. (2.7) is readily inverted to obtain the Fourier coefficients Q, ., ,- Using the
orthogonality relation [16]

J‘ dnﬂ Yn,m,mz(ﬁ) Yj:mlml(ﬁ) = 6nn'6m|mi6m3m§ s (21 ])
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we find that
Qn,mlmz = J dnﬁ Yn,m]mz(ﬁ)p(ﬁ) . (2123)
The integral over S* in eq. (2.12a) can be carried out using polar coordinates
i = (cos ¥, sin i sin 6 cos ¢, sin ¢ sin @ sin ¢, sin ¢ cos 6) (2.12b)
and the integration measure
Jd.(),;zj sinﬁ/;d:/;J sinGdGJ de. (2.12¢)
[\] 0 0
In analogy with eq. (2.3), we define a thermally averaged structure function
S mmyms = | Qoo msl ) - (2.13)

The Q,, n,m, transform like a (n + 1)°-dimensional representation of SO(4). When we
rotate the external coordinate system which defines &, the (n + 1) numbers Q,, ., m.
for a particular n are scrambled. It is easily shown, however, that

1
X Lomm (2.14)

S =T

is rotationally invariant. The quantity S, is the analogue of the powder-averaged
X-ray structure function. To see this in more detail, we substitute eqs. (2.12a) and
(2.13) into (2.14) and use the identity [16]

n+1sin[(n+1)y]

Y i)Y () = : , 2.15
mlz:mz n,m,m:(ua) n,mlnz(uh) 277_2 Slnl/l ( )
where ¢ is the angle between the four-vectors i, and i, It follows that
1 sin[(n+1)¢] . .
S, =——5——-1{d0, | dQ,—————= » . 2.1
27_’_2(n+1)J- J b sin l!l <p(u )P(uh)> ( 6)

We now change variables in eq. (2.16), letting

Jdﬂajdﬂbe Jd.QRJd.Q,,, (2.17)

where R is an element of SO(4) which rotates &, into 4, The sets of physically
distinct elements R which rotate #, into #, constitutes the coset space SO(4)/SO(3).
This in turn is isomorphic to S*, so we can parametrize the integration measure
df2; as in eq. (2.12¢) with polar angles. Note that ¢ is the angle between 4, and
#,. We shall also use the fact that, in thermal equilibrium, we have

(p(d.)p(i,)) = (p(Riy)p(dy)) = (p(R1)p(1)) . (2.18)

Since the average in eq. (2.18) includes configurations related by a rigid SO(4)
rotation, we have, without loss of generality, replaced the point d, by 1=(1, 0, 0, 0).
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Upon defining the ‘“‘radially” averaged correlation function

T

G(¢)=LJ' sin 8 d6 Jﬂdd) {(p(R1)p(1)), (2.19)
47 ),

0

we obtain finally

Lﬂyﬂaw) , (2.20)

ny

in close analogy with eq. (2.5). To take the flat space limit of eq. (2.20), we set
¢ = kr, where r is a geodesic distance on S? and « is the inverse radius of the sphere.
We note in addition that the correlation function G must in general be a function
of r only for spheres which are not of unit radius. Taking the limit « >0 and n > c©
in such a way that nk = ¢ remains fixed, we find that

S~47'rJ'"_2 d
"Tn+l), sin” ¢ dy

87"

S, -
\%

J rzdrwG(r):}nzS(q), 2.21)

where V =27°k " is the area of the four-dimensional sphere. Thus, S, becomes
proportional to S(g) in the flat space limit.

In analogy with the Bragg peaks expected in S(g) for flat space crystals, we expect
that S, will be nonzero only for a discrete subset of n’s for 120 particles arranged
in the configuration {3, 3, 5}. The allowed n’s will be determined in subsect. 2.3.
First, however, we summarize the remarkable properties of the symmetry group G
of polytope {3, 3, 5}.

2.2. SYMMETRIES OF {3, 3, 5}

Fig. 1 shows a projection [6] of the 120 vertices and 720 near-neighbor bonds of
the polytope {3, 3, 5}. To efficiently deal with symmetries of this object we need a
concise way to enumerate the vertices and bonds. An especially useful enumeration
exploits the isomorphism [15, 16] between points on the four-dimensional sphere S*
and the group SU(2). A point 4 S’ can be thought of as a unit four-vector with
components

i = (cos ¢, n, sin , n, sin Y, n, sin ), (2.22)
where A =(n,, n,, n.)€S? is a unit three-vector. Alternatively we can write # as an
SU(2) matrix u through the identification

d>u=lcosy+in-asiny, (2.23)

where 1 is the 2 X2 unit matrix and the o; are Pauli matrices.

Two points u, ve S can now be multiplied together by using the multiplication
rules of Pauli matrices. The sphere S’ has now been given the algebraic structure
of the group SU(2). Henceforth we shall regard points in S* as synonomous with
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Fig. 1. Polytope {3, 3, 5}, from ref. [6].

SU(2) matrices. As demonstrated in the book by Du Val [15], the vertices of {3, 3, 5}
can be identified with the lift into SU(2) of the 60-element icosahedral point group
Y. The 120-element group Y’ which results describes, among other things, the algebra
of disclination line defects in a glass [12]. Because of its importance we shall
summarize the properties of Y’ which will be used in this paper.

The two-element lift of an SO(3) rotation R;(#) into SU(2) is given by the pair
of matrices +e>*’. The symmetry group Y of an icosahedron contains five
conjugacy classes. The group Y’ which is the lift of Y into SU(2) contains nine
conjugacy classes. The identity in Y lifts to the classes

Co=1, (2.24a)
Co=-1. (2.24b)
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The twenty rotations by £21/3 lift to the classes

Cy={e?™?7/3. " § boints to faces of icosahedron} , (2.25a)
Ci={~u:ueCs}. (2.25b)

The twelve rotations by £27/5 lift to the classes
Cs={e*"27/5  j points to vertices of icosahedron} , (2.26a)
Cs={-u:ueCs}. (2.26b)

The twelve rotations by +47/5 lift to the classes
Ci={u*ueCs}, (2.27a)
Cl={-u*ueCs}. (2.27b)

Finally, the fifteen rotations by = lift to the class
C,={e*"**'™.  f points to edges of icosahedron} . (2.28)

The character table for Y’ is displayed in table 1. Because Y’ is a subgroup of
SU(2), we guessed that some of its irreducible representations would be generated
by the Ith irreducible representation functions of SU(2), with I=0, 3, 1,.... The
irreducible representations A, E,, F), G,, H and I were obtained in this way. The
dimensions of the remaining irreducible representations are constrained by the sum
rule

Y di=120, (2.29)

where d, is the dimension of the representation «. The remainder of the character
table follows from requiring orthogonality of its rows and columns.

This character table will prove useful in sect. 5, when we discuss the eigenvalues
of tight binding models defined on {3, 3, 5}. As an additional application, we now

TABLE 1

Character table of Y': 7= %(\/E +1)

Y 1C, 1C, 30G, 20C, 20C, 12C, 12C, 12C3 12C2
A 1 1 1 1 1 1 1 1 1
E, 2 -2 0 1 -1 T -7 7! -7
E, 2 -2 0 1 -1 -7 ! -7 T
F, 3 3 -1 0 0 T T —77! —r !
F, 3 3 -1 0 0 —r7! —r! T T
G, 4 -4 0 -1 1 1 -1 -1 1
G, 4 4 0 1 1 -1 -1 -1 —1
H 5 5 1 -1 -1 0 0 0 0
I 6 -6 0 0 0 -1 1 1 -1
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Fig. 2. Radial distribution function of polytope {3, 3, 5}. Peaks are labelled by classes of Y’ (see table 1).

show that it determines the radial distribution g(y) of {3, 3, 5} (see fig. 2). The
function g(¢) gives the number of points at geodesic distance ¢ from a reference

p()lrlt, W]l]Ch we take to be
l . 2 30

This radial distribution function has been discussed in the context of metallic glasses
by Sadoc[9], and is closely related to the radially averaged correlation function
G(y) discussed in sect. 2.1. If S* is of unit radius, ¢ is just the angle between 1 and
the point under consideration. It is straightforward to show that the angle between
two arbitrary points u, ve S’ is

(u, v)y=cos ' G Tr{uv'}, (2.31)

where the dagger denotes a hermitian conjugate, v' = v~'. The distance between
ueS® and the identity 1 thus depends only on Truw. But u is the matrix of the
two-dimensional representation E, of Y’, so Tr u is a character of this representation
and depends only on the class which contains u. The set of possible geodesic
distances between neighbors on {3, 3, 5} is thus implicit in the row labeled E, in
table 1. This observation accounts for the identification of peaks in g(i) with classes
of Y’ shown in fig. 2. (The peak heights give the number of elements in each class.)
Note, in particular, that nearest-neighbor distances fall in the class Cs. Inspecting
eq. (2.26a) we observe that the nearest neighbors of a point form an icosahedron,
so Y’ really does describe a packing of icosahedra.

We can now determine the symmetry group G < SO(4) of polytope {3, 3, 5}, using
some basic facts [15, 16] about SO(4). Consider two points u, ve S® and multiply
them on the left by I € §’

u—->lu, (2.32a)
v-lu, (2.32b)
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or the right by r'=r" re$§’,

u->ur ', (2.33a)
v>or . (2.33b)

Because of the group structure of S* the results of these multiplications are new
elements of S*. It follows from eq. (2.31) that the geodesic separation is unchanged.

Wl Iv)= y(ur™", or ")y =y(u, v). (2.34)

Thus, the transformations in eqs. (2.32) and (2.33), called left and right screws
respectively, are rotations. Every rotation of S* is generated by a combination of
left and right screws, and every pair (/, r) e SU(2) x SU(2) generates a rotation [15, 16]
through

(L r)yu->lur". (2.35)

Noting that (], r) and (—/, —r) generate the same rotation, we have the formal result
SO4)=[SUR2)xSU)}/Z,. (2.36)

We can obtain a similar formula for G. For any elements I re Y’ the left and
right cosets 1Y’ and Y'r™' give the original group Y’ in a new orientation. Thus

G=(Y'XY)/Z,. (2.37)

It follows that the order of the group G is O(G) = (120)?/2 = 7200. This decomposi-
tion of G will allow us to compute the projection of polytope {3, 3, 5} onto hyper-
spherical harmonics.

2.3. STRUCTURE FUNCTION OF POLYTOPE {3,3,5}

In this section we use the group G to determine the allowed values of n for which
the structure function S, of polytope {3, 3, 5} can be nonzero. We find in particular
that the first n> 0 for which S, need not vanish is n = 12. We will also discuss the
matrix Qy».m -, for a particularly simple orientation of polytope {3, 3, 5}.

Recall the definition of Q,, .,m, in €q. (2.12a). Expanding the integrand in irreduc-
ible representations of G (see sect. 5 for discussion of irreducible representations
of G),

Yn,m,mz(ﬁ)p(ﬁ) = Z CaB,ij(n, my, mZ)(paB,ij(ﬁ) > (238)

aB,if

where ij indexes basis functions @,,; within representation af3, we have

Qn,mlrnZ = Z CaB,lj(ns ny, mZ) J‘ dQﬂ ¢aB,ij(ﬁ) . (239)

a.ij
But the integral in eq. (2.39) is zero unless @,4, is the unit representation [28]
P4(i1)= 1. Because S, vanishes if all Q, . vanish, we must determine the number
of times that the expansion (2.38) contains the unit representation; S, vanishes unless
the unit representation occurs at least once.
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In general the number of times that a representation R of a group H contains
the irreducible representation « is [21]
A= g xR, (2.40)
where O(H) is the order of the group, and y%h(h) is the character of the element h
of the group H in the representation R. Since p(i1) is invariant under G, we must
determine the number of times that the reducible representation Y, ,, ., contains
the unit representation A of the group G. Because y, =1 for any element of any
group we have

1
FG(A) = ——
n(A)= O(G)(mze(,x"(l r), (2.41)

where the character x$ of the representation Y. m,m, is obtained from the transforma-
tion of Y, ,, ,, under SO(4) rotations [16, 21, 27]. The basic formula is

Yo mmlur ™) =¥ D3oi(DY pmim( @)Dl (r7) (2.42)

mj

and the corresponding character is

X2 w0 = X DL (DD ) (2:43)
:sin (.n + 1)y sin (.n+1)l[/,’ (2.44)
sin i, sin i,

where ¢, = (I, 1) and ¢, = ¢ (r, 1) are the geodesic distances of / and r from 1. Recall
that the character of the Ith irreducible representation of SO(3) is

sin (21 +1)36
X1O0) =——— (2.45)
sin >0
Thus
X0 W) = X078 Qe0X 75V (24) | (2.46)
We can now rewrite the sum in eq. (2.41) as

WS(A):{UO ) xﬁ"“’(zm} : (247)

The expression in parenthesis is zero for n odd, and for n even is equal to
n/z(A) = 60 > X?.Om()’) s (2.48)

yeyY

which is the number of times that the spherical harmonic Y, ,, .(6, ) contains the
unit representation of the icosahedral group. Carrying out the sum in eq. (2.48) we
find that nonzero spherical harmonics are possible for

n=0,12,20,24,30,32, 36,40, 42, 44, 48, 50, 52, 54, 56, 60 , (2.49)
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and any even n > 60. This result has also been obtained by Straley [29] who evaluated
the integral (2.16) numerically for a delta function distribution on polytope {3, 3, 5}.

In order to compare the result (2.49) with X-ray scattering experiments we need
to introduce defects, and associate wave numbers g with values of n. One possible
association relies on identifying g with an eigenvalue of the laplacian operator in
R’. Noting that Y, ,, . is an eigenfunction of the laplacian on S* with eigenvalue
[16] n(n +2) we make the association

govn(n+2). (2.50)
The peaks in S, at n =12, 20, 24 suggest that S(g) will have peaks at g, where
4o/ g =/55/21 =1.6183
i/ 4, =~26/7=1.9272. (2.51)

Experimentally [30] it is found that ¢,/q,=1.7 and g5/q,~2.0 for a variety of
metallic glasses.

Because n =12 is the lowest value of n for which S, need not vanish, it plays a
special role in the Landau theory developed in sect. 3. In particular, the order
parameter is the 13 X 13 matrix Q)3 ,m,- It is possible that there are non-icosahedral
distributions of points on S* for which S, has its first peak at n = 12. Therefore we
describe details of the matrix Q?z'mlmZ which are unique to icosahedral distributions.

A similar calculation has been carried out for the coefficients Qs,,, in an expansion
in ordinary spherical harmonics Yj,.(6, ¢) describing an icosahedron [2]. When the
z-axis passes through a vertex of an icosahedron [2],

QY= Qio0, —/11,0,0,0,0,1,0,0,0,0,v7,0). (2.52)
Similarly when the z-axis passes through a face of an icosahedron
Qh = Qho(—v2,0,0,v2,0,0,1,0,0, —/1,0,0, —VZ). (2.53)

We wish to see if a comparable result holds for polytope {3, 3, 5} in some special
orientation.

Thus far, we have regarded the vertices of {3, 3, 5} as elements of Y'. An alternative
tabulation of these points (corresponding to a different orientation of {3, 3, 5}) is
given by a modification of Coxeter’s “triacontagonal projection™ [6]*

Ay = e TR/6 grio B, g mioumk/s (2.54a)
B, = e kI g1\ By g iS5 (2.54b)
Cy =e ™/0 g2l B givmk/S (2.54¢)
Dy = O g2l B g IR (2.54d)

* The triacontagonal projection used here is related to the one described by Coxeter on p. 247 of [6]
by interchanging the second and fourth entries in every four-vector.
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where B8,=37.377°, B, =79.188°, B.=100.822°, and B, =142.623°. In egs. (2.54a)
and (2.54d), k=0,2,4,...,58. In egs. (2.54b) and (2.54¢), k=1,3,5,...,59. Using
the fact that

Dyl (e, B y)=e“md}]% (B) e™™, (2.55)

we can evaluate eq. (2.12a) using the points (2.54). We find that Q,,,,, ,,, must vanish
unless

Smy,—6m, =15, (2.56)
where i is an integer. The allowed pairs (m,, m,) have m;=-5,0,5 and m,=
—6,—-3,0,3, 6. In fact we have determined numerically that Q12.m m, factors,

Q2. € Qg Qb.m, (2.57)

although we have not succeeded in deriving this simple result. Thus if a particle
distribution is icosahedral then the matrix Q. », must be the matrix Q‘,’Zm,m2 (eq.
(2.57)) transformed by some rotation. In particular, we find that Q5 ., m, € Qg im, Q%.m,
when the vertices of {3, 3, 5} are in the orientation Y.

The calculations of this section are readily extended to determine the allowed
n’s for polytopes based on {3, 3, 5} with more than one atom per unit cell. ““Polytope
240” [10, 11], for example, has an atom at some position 7 on S* within the unit
cell surrounding an atom at 1, and at 119 similar positions in the other unit cells.
It is straightforward to show in this case that

Qn,m1m2 - Z [8m|m + D:In/,zm(T)]Qn,mmg . (258)

3. Landau theory

In sect. 2, we showed how to characterize the extended icosahedral order present
in polytope {3, 3, 5}. There is a natural generalization of this point of view which
allows one to define a local order parameter for glasses and supercooled liquids in
flat space. Using this description, one can construct a uniformly frustrated Ginzburg-
Landau model of the statistical mechanics. Because the magnitude of the order
parameter can vary, this approach can be used at both high and low temperatures.
Since the order parameter vanishes on disclination lines, magnitude fluctuations will
also be important when one coarse grains over regions containing many defects.
When amplitude fluctuations are neglected, our description is similar to a continuum
elastic theory proposed by Sethna [14]. In this limit, only the phase degrees of
freedom in the order parameter matter. Both theories have a nonzero density of defect
lines in the ground state, and are very likely to have glassy metastable states.

Before proceeding further, it is useful to recapitulate Landau’s description of
incipient crystalline order in a liquid [23]. Suppose we know that a lattice with
reciprocal lattice vectors {G} is about to emerge from a disordered liquid with
decreasing temperature. Although there is no long-range order, we can define a set
of local order parameters p¢(r) by restricting the domain of integration in eq. (2.2)
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to a volume AV centered at the point r,

1 3 G
r)=—— | d’re“ " p(r). (3.1)
pc(r) AV,[ p(
The volume AV must be larger than a lattice constant, but small compared to the
macroscopic system size. For simplicity we approximate density variations in the
material using a restricted summation 3’ over the subset of smallest nonzero
reciprocal lattice vectors,

p(r)=po+Re {% pc(r)eic"} , (3.2)

where p, is the density in a uniform liquid. Henceforth, all summations over G will
be restricted to this subset.

To construct a translationally and rotationally invariant free energy from the
pc(r)’s, we first note that, under a uniform translation of space r - r —u,, it follows
from (3.2) that

pa(r)=>e“pg(r). (3.3a)
Under a uniform rotation about the origin, r—> R;(0)r, we have
pc(r)=>exp{iG - [Ri(6) —1]r}ipc(r) . (3.3b)

The 3 x3 matrix R is R=exp[if,(I+ n)], where the [, are generators of SO(3)
rotations. In the limit of infinitesimal u, and @, = 6,1, which avoids complications
associated with the noncommutivity of translations and rotations, the net effect on
the order parameter pg(r) is

iG-u()+iG~((-)“><r)pG(r) ) (3.3¢)
Eq. (3.3c) suggests that the important degrees of freedom will be an order parameter
amplitude and six slowly varying ‘‘phases”™ u(r) and 6(r), corresponding to the six
generators of translations and rotations in a solid. A free energy density, including
gradient terms, which is translationally invariant, and rotationally invariant to lowest
order in 0 is [25]

p(r)—>e

2

F=3Ko Y (V—iG x0)pg| +3r ¥ |pe
G G

tw Y pepepc,tOPE) . 3.4
G, +G,+G=0
The peculiar gradient coupling is required by rotational invariance. If fluctuations
can be neglected, the cubic term leads to a first-order freezing transition for
sufficiently negative quadratic couplings r. At low temperatures 8 becomes locked
to the curl of the phonon displacement field [25]

0(r)=13V xu(r), (3.9)
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so that the orientational degrees of freedom drop out of the problem. This locking
is quite analogous to the Higgs mechanism. At low temperatures, we expect that
pc(r) depends only on a slowly varying displacement field u(r),

pe(r)=|psle ™, (3.6)

where the amplitude |p%| is independent of the direction of G. Assuming for
simplicity an isotropic distribution of G’s, it is straightforward to show that & then
becomes

F = const +3K J &’ rlou; — epbi ], 3.7

with K oc|p%|°K,, which exhibits the locking of 6, to gradients of u; explicitly.
Using eq. (3.5) to eliminate 6,, we recover the standard continuum elastic description
of a crystal, expressed in terms of the symmetrized strain tensor u;; = 3(3,u; +0,u;) [26].

As discussed in sect. 2.3, order in a {3, 3, 5} crystal can be characterized by the
Fourier coefficients Q1. ., As illustrated in fig. 3, we can define a local order
parameter Q, ., .,(r) in flat space via stereographic projection onto a featureless,
tangent four-dimensional sphere. The radius of the sphere is chosen so that it can
just accommodate 120-particles in the configuration of {3, 3, 5} with geodesic separ-
ation equal to the flat space near neighbor separation. The order parameter associated
with a small volume AV of particles centered at r is given by a modification of eq.
(2.12a),

Ql2,m,m3(r) :I

av

025 13 (@), (3.8)

where p(#) is the projected particle density, and the domain of angular integration
is restricted to the projection AV’ of AV. Sethna [14] has used a similar sphere with
the polytope {3, 3, 5} inscribed on it to formulate a continuum elastic theory.

Sot

Fig. 3. Projection of particle configuration at r onto S°.
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Under an SO(4) rotation of the coordinate axes (e, e,, e,, €.), the change in Q) 1 m,
is given by an SO(4) representation matrix [16]

ReSO(4)
QIZ,m Z A(nlnzn)'QIZ,m" (39)

m

Here, we have used the notations m = (m,, m,) and m’'=(m}, m}) to denote pairs
of variables each of which runs from —6 to +6. The indices m and m’ can assume
169 different values. The matrix 4%2), can be expressed in terms of SU(2) Wigner
matrices using the homeomorphism between SO(4) and SU(2) x SU(2). If a rotation
R eS0(4) is characterized by the pair of elements (I, r)=(—1, —r), we find from
eq.(2.42)

AL mimi(h 1) = D (DD (71 (3.10)

Alternatively, we can write,

a=1

6
AU =exp [i Y 0,1]:51'2’] , 3.11)

where the L? are the six generators of the n =12 representation [27] of SO(4).
These generators can be labelled by the six possible rotation planes (0, x), (0, y)
(0,2), (»,z), (x,2) and (x, y). The generators L.,., where u and v are distinct
cartesian components X, y or z, correspond to the generators of rotations in flat
space, while the generators L{,;” are analogous to generators of flat space translations.

An SO(4)-invariant Landau free-energy density constructed from the order
parameter Qs ., m.(r) is

2

F=3K YD Qo) +3r Y |Qiaml?

6 6 6 6 6 6 4
+w ¥ ( )( , m,)QlZ,mlm;QIZ,mzmﬁollm;mi+@(QIZ)'

my,mp,ms m, m; ni; m: mj

mi,m3,m;

(3.12)

The third order term is constructed from the standard SO(3) Wigner 3j-symbols
[28]; its SO(4) rotational invariance follows from (3.9) and (3.10) and the properties
of the 3-j symbols. The gradient term in eq. (3.12) is a kind of matrix-‘“covariant
derivative”,

(D;J.le)m = Z’ [Sm,m'au - iK(LE)l/f))m,m']QIZ,m' . (313)

Following ref. [14], we have constructed this derivative so that the ground state is
obtained when adjacent particle configurations are related by “rolling™ a reference
polytope {3, 3, 5} with radius « ' along a straight line joining them. Indeed, solving
the equation (D,Q;>)., =0 along a small separation vector & gives a preferred
relationship between Q. ,(r +8) and Q) .(r), namely

Qx(r+8)=e™" Quy(r). (3.14)
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For notational convenience, we have written Q,,_,, as a 169-component vector. Note
that the sign of the ix term in eq. (3.13) is at our disposal, since it can be changed
by reflecting the tangent sphere through the hyperplane spanned by e,, e,, and e..

At low temperatures, in analogy with a closely related analysis of orientational
spherical harmonics by Steinhardt et al. [2], we expect that the polynomial part of
eq. (3.12) is minimized when Q,,,, = Q,,, where Qf, ,, is the special set of n =12
Fourier coefficients determined (up to an SO(4) rotation) by the configuration {3, 3, 5}
(see sect. 2.3). In this limit, it makes sense to substitute

Q.x(r)=exp [i ) oa(r)gﬁ,”’]o?z (3.15)

into (3.12), and obtain a theory parametrized by the six SO(4) Euler angles 0,(r).
The energetics then depend only on the gradient term, and the resulting theory is
almost identical to the continuum elastic approach of Sethna. In contrast to the
4 x4 SO(4) matrices used in ref. [14], however, the 169 X 169 representation matrices
used here respect the symmetries of the polytope {3, 3, 5}. This difference is impor-
tant, for example, to properly account for defects in lattice discretizations of the
theory.

It is interesting to compare eq. (3.12) with the Landau expansion (3.4) for a flat
space crystalline solid. Both theories have cubic terms suggesting first-order phase
transitions in equilibrium. The Euler angles 6, (r) are reminiscent of the translational
and orientational phases u(r) and 6(r) entering (3.4). A crucial difference, however,
is that eq. (3.12) is frustrated — it is impossible to make the gradient term vanish
everywhere without introducing defects.

To characterize this frustration more precisely, let us follow the order parameter
around the small square plaquette (u, ¥) with area a’ shown in fig. 4. Assuming
that Q,,(r) is given, we can make the gradient term vanish along this contour by
requiring that Q,, at successive points on the plaquette be given by eq. (3.14). The
net change in Q,,(r) is given by

Qa(r) > A4 (k) 4P (ka) A~ k@) 42— ka) Qua(r) , (3.162)
where the representation matrices are

Ao, (ka)=exp [ixa!:&f’ . (3.16b)

a

€
qQ a
Cu
a

Fig. 4. Plaquette (u, v) with area a>.
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Frustration is present because the order parameter will not in general return to its
initial value. Indeed, it is easy to show that

452 (k@) 457 (@) 462 (—ka) Ao, (—ra) ~ 1 = *a’[LD, L6
= AUD(~k2a®)+0(x’a’), (3.17a)

ratd
where
Au0(-k*a?)=exp [~ik*a’Lu)]. (3.17b)

We have used units such that the SO(4) angular momentum operators are dimension-
less and obey the commutation relations [27]

[Low, Lov]=iL,, . (3.18)
The remaining commutators may be written [27]
(L., L1=ie, Ly, [L. Lo,]=ig,aLox, 3.19)
where L, is a conventional SO(3) angular momentum operator,
L, =&l (3.20)

Eq. (3.17) makes it clear that the order parameter must have rotated in the plane
(u, v) by an amount proportional to the area of the plaquette after it traverses the
contour in fig. 4. Such a rotation can be accommodated by threading through a
finite density x> of —72° wedge disclination lines oriented normal to the plaquette
[12].

The noncommutivity of the angular momentum generators plays a crucial role in
generating the frustration. If the operators L{..’ behaved like c-numbers, the term
analogous to a vector potential in eq. (3.13) could be eliminated by the change of
variables

le(")“e L = QuaAr) . (3.21)

Physically, this change of variables means the order is now measured relative to a
reference {3, 3, 5} template which has been rolled in straight lines out from the
origin in all directions. At low temperatures, we might then expect that Q' could
be parametrized by an amplitude Q, and a slowly varying set of small displacements

u(r)

Qix(r)=e" ", (3.22)
in analogy with eq. (3.6). This correspondence makes it clear that the matrices
{Go} ={«Li2, kL&, w LS, .} (3.23)

play the role of reciprocal lattice vectors in this approach. It is their noncommutivity
(with commutators scaling like the inverse radius « of the polytope) which makes
the physics of glasses nontrivial.
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The partition function associated with the Landau theory (3.12) is given by a
functional integral over the field Q(r)

Z= J DQ(r) exp [— J d3r97(r)] . (3.24)

kg T
At low temperatures, we expect the statistical mechanics to be dominated by a
regular lattice of —72° disclination lines, as in the Frank—Kasper phases of transition
metal alloys [12]. The high temperature liquid should have defect lines of both signs,
with a bias to accommodate the frustration. In equilibrium, there is probably a
first-order transition connecting these phases. If the liquid is cooled rapidly, however,
one might expect complicated “‘glassy” metastable states, consisting of tangled arrays
of defect lines. Entanglement upon cooling is suggested by strong topological
constraints on the crossing of —72° disclination lines at low temperatures [12].

We expect that similar Ginzburg-Landau theories can be constructed for
covalently bonded amorphous systems. More generally, we can use an order para-
meter Q.. m,(r), where p is the first nonvanishing entry (other than n=0) in the
expansion (2.7).

4. Defects

Disclination line defects in a predominantly icosahedral medium were studied in
ref. [12]. The algebra of such defects is given by the homotopy group

m(SOB3)/Y)=Y', (4.1)

where Y' is the 120-element subgroup of SU(2) whose properties were summarized
in sect. 2.2. At low temperatures, the curvature mismatch between flat space and
the polytope {3, 3, 5} forces in an uncompensated density of —72° wedge disclination
lines. Both plus and minus 72° disclination lines appear in a microscopic Voronoi
construction which counts the number of tetrahedra surrounding every near-
neighbor bond [12].

Disclinations are defects in an orientational subgroup of the symmetries of the
order parameter discussed in sects. 2 and 3. It is of some interest to classify the
defects associated with the full symmetry group of this order parameter. An
analogous problem arises in flat space crystalline solids, where translational disloca-
tion defects are possible, as well as disclinations in the orientational order. The
symmetry group of the order parameter Q,; m m,(#) is SO(4) modulo the symmetry
group of G of {3, 3, 5}. According to ref. [20], the algebra of line defects (there are
no stable point defects) is given by

T (SO4)/G)=G', 4.2)

where G’ is the (two-to-one) lift of G into the cover group of SO(4). Since the cover
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group of SO(4) is SU(2) xSU(2), and we know from sect. 2.2 that G=(Y'xY")/Z,,
we clearly have
G'=YXxY. (4.3)
According to eq. (4.3), line defects in a glass can be labelled by a pair (I, r) of
SU(2) matrix charges, where [ and r are in Y'. In contrast to the group G, (/, r) and
(=1, —r) are now distinct elements. The laws of combination are given by the class
multiplication table for G’ [20]. This in turn follows from the class multiplication
table for Y’ worked out in ref. [12]. Disclinations are given by diagonal elements
of the form (/1) in the direct product. This identification follows by noticing [15]
that if

I= eéi(r?u)@ , (4.4)

the 4 X4 SO(4) matrix which produces the lifted elements (I, /) and (-, 1) is
0 0 0

1
0 (4.5)
0 Ri6) |

0

where R;(0) is a 3 X3 SO(3) rotation matrix. The SO(4) matrix in eq. (4.5) describes
the motion of the reference polytope {3, 3, 5} as one traverses a closed counterclock-
wise circuit surrounding the defect line [20]. Evidently, the polytope rotates in one
of the “‘physical” planes (u, ), with the axes e, and e; held fixed. The rotation
angle varies continuously from 0 to 8 for the defect (I, I), and from 0 to 8 2 for
the defect (—1, —I). The subgroup of diagonal elements (], ) of G’ is, of course, just
the group Y’ studied in ref. [12].

It is also of interest to consider defects of the form (I, I"'). One can show that
the corresponding SO(4) matrix represents a rotation of the polytope in the plane
spanned by ¢, and e; as one moves around the defect. Since these rotations can be
described by the “translational” generators L,, of SO(4), it seems appropriate to
call such defects “dislocations™. Two additional types of defect may be written (1, r)
and (/, 1). The associated SO(4) matrices represent right and left screw symmetry
operations [15], which have no simple analog in SO(3). This symmetry is closely
related to the twisted ‘“‘Bernal spiral” of perfect tetrahedra shown in fig. 20 of
ref. [12]. Since

(Lny=(p, )(r,1r), (4.6)

where pr =1, any defect can be decomposed into a disclination and a left (or right)
SCrew.

At low temperatures, the frustration embodied in the free energy (3.12) forces in
defects of the type (e # ¢:%” %) where §,=—27/5, and # if directed along the
axis of the disclination line. When two such defect lines (a, @) and (B, B) try to
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cross, they will in general create an umbilical line (y, y) joining them, given by [20]
(7, ¥) = (@, a)(B, B)a, a) (B, B) "
=(aBa'B ', apa 'B7). 4.7)

As discussed in ref. [12] in the context of the group Y’, two lines corresponding to
—72° rotations about different axes will always produce another —72° line joining
them. This observation is the basis of the “entanglement’” phenomenon referred to
at the end of sect. 3.

5. Tight binding model

In sect. 2 we have analyzed structural properties of the perfect icosahedral crystal
polytope {3, 3, 5}. In this section we diagonalize a tight binding hamiltonian in order
to elucidate the corresponding electronic properties. Calculations have been carried
out numerically [11] on a “decorated” version of polytope {3, 3, 5} which is expected
to model amorphous silicon*. We choose to solve the simpler model

H=—t Yy Y |u¥nn (u), (5.1)

ueY’ n.n.(u)

where ¢ is a hopping matrix element and n.n. (u)e Y’ denotes a nearest-neighbor
of ueY'. We carry out our calculation exactly using the full symmetry group G.

In fig. 2 we see that the nearest neighbors of 1 comprise the class Cs. Thus the

nearest-neighbors of u €Y' are vu where ve Cs, and

H=—t Y ¥ |uXoul. 5.2)

ueY' veCs

Because the hamiltonian (5.2) is invariant under any transformation in G, and
because G is transitive on the basis functions {|u): u € Y'}, a generalization of Bloch’s
theorem tells us that eigenfunctions of # are basis functions of irreducible rep-
resentations of G. We shall now determine the representations generated by eigen-
functions of (5.2).

The relationship (2.37) between G and Y’ allows us to express irreducible rep-
resentations and characters of G in terms of irreducible representations and charac-
ters of Y. Warner [31] displays the full character table of G. We shall exploit the
following facts. Irreducible representations of G with dimension d,; are generated
by

Gapj = Gaitp.)> (5-3)
where ¢,; and ¢4; generate irreducible representations of Y’ with dimensions d,

and d;, and d,z = d,dg. We call the representation generated by @, ; “diagonal”
when a = 8 and “off diagonal” when o # 8.

* In these references the symmetries of abelian subgroups of G are used to partially diagonalize tight
binding hamiltonians.
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Only the diagonal representations of G are relevant to the hamiltonian (5.2). To
see this, consider the 120-dimensional representation R generated by the tight
binding basis functions |u) centered at each vertex u € Y'. The character of (/, r) in
this representation is the number of vertices that are stationary under u - lur™'.
Note that if u is stationary then [ = uru~' so I and r must belong to the same class.

Thus we have
x®(, r)=8450(Y)/O(A), (5.4)

where A and B are the classes of Y’ containing ! and r, and O(Y’) and O(A) are the
number of elements in Y’ and A. Any eigenfunction of J is a sum of tight binding
basis functions centered on the vertices € Y' and is thus expressible in terms of the
basis of the representation R. We can apply eq. (2.40) to determine which irreducible
representations of G are contained in R,
1 *
A (aBf)=—— S PxSal r). 5.5
r(aB) 0(G) (E{G xr(, Nxap(l 1) (5.5)
The only terms in the sum which are nonzero have /, r both elements of the same
class of Y'. But when this is true we have

xSs(L ) =x2(Dxp(r), (5.6)

which, when combined with eq. (5.4) yields

1 , .
~on L Xa(Dxp(D). (5.7)

G —
AR(aB)= oY) .5

This equation is just the dot product of two rows in the character table of Y’ and
hence [28]

AR(aB)=5,4. (5.8)

Thus we see that the representation R contains each diagonal irreducible representa-
tion of G precisely once. This is the result expressed in eq. (1.4) which is a sum
over « of d,, =d> and should be recognized also in the sum rule (2.29).

Construction of wave functions and evaluation of energies involves some algebraic
manipulations which we outline here. A characteristic wave function of representa-
tion @, ; is [28]

1 G —1

o = aaLDIr ). 5.9
¥ O(G)u,,z)eo Xaall, D[Ir™") (5.9)

It is useful to rewrite this in terms of components veY’
Yoa = % Caa(0)|V), (5.10)

veY'
where

Cua = Sa - 5'11
(v) 20(G) L Xealth v u) (5.11)

noting that 2 O(G) = (120)*, C,..(1)=1/120 for all a.
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Because i, is an eigenfunction of # we have
Etoe = Hon - (5.12)

Using the form (5.2) to represent %, and projecting both sides of (5.12) onto (1| we
find

E.Cou(D)=—t ¥ Cuulv). (5.13)
ve Cs
Using the fact that
G Y Y, o —1
Xan(la r)—Xa' (I)Xa (r ) (514)
to rewrite eq. (5.11) we conclude
—t . .
E,=— T(wxL(u ). .
=0 L XX ') (5.15)
ve Cy

Because the character x ¥ (u) depends only on the conjugacy class A which contains
u we can rewrite (5.15) as

E.=—Yx¥(A) £ T x¥u'v). (5.16)

120A ue A veCs

Further simplification is achieved by noting that

)P XZ'(MIU):TT{Z ) TG(HI)IQ(U)}, (5.17)
ueA veCa ueA veCs ~ ~

where T7(v) is the matrix of the representation ¢, for the group element ve Y’
Making use of the identity [21]

Y T ) =1.0(A)xz (A) da (5.18)

uc A~

when |, is the identity matrix of dimension d,, we find

YL xa(u'0)=0(A)0(Coix s (A)xa (Cs)/d. . (5-19)

ucA veCs

We can use this result to write

_ _ltiZ,(Cs) 1 v 5
Eﬂ - { da }{O(Y’) § O(A)[Xa (A)] } . (520,

The second factor in eq. (5.20) is the dot product of a single row in the character
table of Y’ with itself, and thus equals 1. Finally, we have

E,=-12txX(Cs)/ d, . (5.21)

The same methods are easily extended to a general, rotationally invariant, tight
binding hamiltonian of the form

%:_§1A YOX fuxou|, (5.22)

ueY vcA
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Fig. 5. Density of states p( E) from eq. (5.21). Dashed line shows the prediction of the free electron model.

where the first sum is over the nine classes A of Y'. The eigenenergies are

E, =Y t,0(A)xY(A)/d,. (5.23)

Fig. 5 shows a histogram density of states computed from eq. (5.21). Peaks are
labelled according to the irreducible representation formal by sets of degenerate
wave functions. The peak height is just d,,, = d2, the degeneracy of the irreducible
representation. These results agree with numerical calculations by Warner [32].

Note the linear growth in the density of states near the low-energy band edge.
This can be understood in the context of a free electron model on S* for which, in
dimensionless units, E, = n(n+2) and d,, =(n+1)°. (The eigenfunctions are just
the hyperspherical harmonics Y, ;) It follows that d,, = E, +1. Presumably at
low energies the discreteness of the tight binding model is irrelevant because of the
long wavelengths of the eigenfunctions; similar issues have been discussed in ref. [32].

In flat space one must ultimately determine how a given distribution of line defects
alters electronic states. Some insight is given by the following argument. We can
write a single electron Schrddinger equation on a length scale large compared to
the atomic spacing but small compared to the defect spacing

2
[—h—V2+AV(r)] W(r) = sd(r), (5.24)
2m

where the deviation AV(r) of the potential from its mean value is caused by defects
in the icosahedral ordering.

Following the Landau approach of sect. 3, we can relate the coarse grained
potential AV(r) to the local order parameter Q; m, (7). The deviation of particle
density from its average value is

p(N)—po=A4p("N= ¥ Quzmm(r) Yo m m(=1), (5.25)

where —1 is the point of tangency of the sphere in fig. 3. Using the relation (see
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eq. (2.8))

13
Yl2_m,m2(_1): ZT—?_Smlmz (526)

and assuming A V(r) is proportional to Ap(r) we see that the Schrodinger equation
is

h2
[_'2_V2+Uo Tr{Quz,m.,mz(’)}]lb('): ey(r), (5.27)
m

with vy a phenomenological constant. Because Q2 ., m,(¥)} vanishes on disclination
lines, electrons are repelled from or attracted to these defects, depending on the
sign of vy.

It may also be of interest to solve nearly free electron models on S*, with a weak
potential which has the symmetries of polytope {3, 3, 5}. The relevant Schrodinger
equation is

h’ A
[ - Vit V(ﬁ)]ll/(ﬁ) =ey(u), (5.28)
2m
where V3 is the laplacian operator on S°. The potential has the expansion
Vi)=Y Vawm Yimm(d), (5.29)

where the only nonzero coefficients V,, ,, .., occur for the n-values listed in eq. (2.49).
A description of energy bands in real metallic glasses would presumably require
some combination of the tight binding and nearly-free electron methods discussed
here.
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