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Order in supercooled liquids and metallic glasses is related to a regular icosahedral "'crystal" 
consisting of 120 particles inscribed on the surface of a sphere in four dimensions. Hyperspherical 
harmonics and the discrete symmetry group of this four-dimensional platonic solid can be used 
to construct an order parameter for glasses in three-dimensional flat space. A uniformly frustrated 
Landau expansion in this order parameter suggests a ground state with a regular array of wedge 
disclination lines. Homotopy theory is used to classify all topologically stable defects. A generaliz- 
ation of Bloch's theorem for electronic states in flat space solids allows explicit diagonalization of 
tight binding models defined on the curved-space icosahedral crystal. 

1.  I n t r o d u c t i o n  

As poin ted  out many  years ago by Frank  [1], most  s imple pair  potentials  lead to 

a strong energetic preference for twelve-part icle icosahedrai  coord ina t ion  shells 

su r round ing  atoms in dense liquids. Correlations in the or ienta t ions  of ne ighbor ing  

icosahedra  which increase with decreasing temperatures  have been observed in 

recent molecular  dynamics  s imulat ions  of supercooled l iquids [2]; s imilar  correla- 

t ions [2] appear  in simple models  of metal l ic  glass [3, 4]. Frus t ra t ion prevents 

long-range icosahedral  order  however,  and  forces a finite densi ty of defects into the 

g round  state*. The incompat ib i l i ty  of local icosahedral  order  with a space-filling 

icosahedral  "crystal"  seems to be the key to unde r s t and ing  the structure and  

statistical mechanics  of s imple glass-formers. 
As descr ibed in detail by Coxeter  [5, 6], particles with icosahedral  coord ina t ion  

shells do tile the surface of a sphere in four  d imens ions ,  forming a four -d imens iona l  

p la tonic  solid, or "po ly tope" .  Fol lowing Schlafli [5, 6], we shall call this 120-vertex 

object  "poly tope  {3, 3, 5}", to emphasize  that it is composed  of tetrahedral  cells of 

four particles (denoted  {3, 3}), with 5 te t rahedra  per near -ne ighbor  bond.  In an 

interest ing early paper  [7] Coxeter  suggested that dense r andom packing models  

(now commonly  used to describe metal l ic  glasses [3, 4]) could be approx imated  by 

a fictitious space-fil l ing "statistical h o n e y c o m b "  polytope {3, 3, q}, with a fract ional  

* By "frustration", we mean that all atoms cannot simultaneously sit in the minima presented to them 
by the pair potentials of their near neighbors. A closely related kind of frustration appears in uniformly 
frustrated spin glasses. 

113 



l l4 D.R. Nelson, M. Widom / Polytope models of glass 

number  q of  tetrahedra per bond. The simplest such model has q =  
2~-/cos-~ ~-" 5.104 [5]. Today, we would call this an "effective medium" or "mean 
field" approach.  

It is more realistic to imagine a predominantly icosahedral medium interrupted 
occasionally by defects. As pointed out by Kl6man and Sadoc [8], defects such as 
disclinations are necessary to flatten curved space polytopes. The importance of the 
polytope {3, 3, 5} for metallic glasses (and for covalently bonded glasses like SiO2) 
has been emphasized by Sadoc [9] and by Sadoc and Mosseri [10]. Numerical 
calculations of defect-free tight binding models of  electronic states defined on {3, 3, 5} 
seem to give reasonable agreement with densities of  states for flat-space amorphous 

semiconductors [11]. Recently [12], the defects which frustrate icosahedral order 
in flat space have been characterized more precisely using homotopy theory and 
the icosahedral orientational order parameter  defined in ref. [2]. The curvature 
mismatch between flat space and the curved space polytope {3, 3, 5} forces an 
asymmetry in the density of  +72 ° and - 7 2  ° wedge disclination lines. Microscopically, 
these lines correspond respectively to contiguous links of  "anomalous"  bonds 
surrounded by four and six tetrahedra. The Frank-Kasper  phases of complex 

transition-metal alloys [13] are an interesting example of  ordered arrays of  frustra- 
tion-induced - 7 2  ° disclination lines; the average number  of  tetrahedra per bond 
is quite close to the value 2~-/cos ~1 discussed by Coxeter[5].  The defect lines 
are characterized by non-abelian SU(2) matrix charges, which leads to entanglement 
as they attempt to form an ordered network when cooled rapidly [12]. A tangled 
array of - 7 2  ° disclination lines in an otherwise icosahedral medium is an appealing 
model for a metallic glass. Sethna [14] has recently suggested a uniformly frustrated 
continuum elastic free energy to describe this situation. 

The set of  symmetry operations G of the polytope {3, 3, 5} which are proper 
rotations form a 7200 element discrete subgroup of SO(4)[15]. In this paper, we 
exploit this symmetry group in three different ways. The first concerns the coefficients 
Q~2 . . . . .  in an expansion in hyperspherical harmonics [16] applied to 120 particles 
in S 3 (the surface of a sphere in four dimensions). The subscript n = 0, 1 . . . .  indexes 
irreducible representations of  SO(4), and the indices m~ and rn2 run in integral steps 

f r o m  -~n to In. The symmetry group G greatly restricts the allowed spherical 
harmonics in the configuration {3, 3, 5}, which is presumably the ground state for 
particles interacting via simple pair potentials. The first nontrivial spherical har- 
monics occur for n -- 12. As will be discussed in detail in sects. 2 and 3, the allowed 
values of  the index n are related to the concept of  reciprocal lattice vectors in flat 
space solids. This description of particles in S 3 leads quite naturally to an order 
parameter  for glasses in flat space via stereographic projection of a local particle 
configuration into S 3. A related construction is used in Sethna's continuum elastic 
theory[14]. Both translational and orientational icosahedral symmetries are 
embodied in this order parameter,  in contrast to the purely orientational symmetries 
studied in ref. [2]. A Landau expansion in posit ion-dependent "Four ier"  coefficients 
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Qt2 ....... (r) turns out to be reminiscent of  Landau theories for the blue phases of 
choelesteric liquid crystals, which are ordered arrays of  disclination lines in a chiral 
nematic [17-19]. The generators of  the n = 12 representation of SO(4) are used to 
produce a uniformly frustrated covariant derivative. At low temperatures,  we recover 
Sethna's continuum elastic free energy, except that his 4 x4  SO(4) matrices are 
replaced by 169-dimensional n = 12 SO(4) representation matrices. Both theories 
depend only on the six SO(4) "Euler  angles" at low temperatures.  

We also use the symmetry group G to discuss line defects in glasses, which are 
described by the homotopy  classes [20] of  rr~(SO(4)/G). Only the subgroup of 
disclination defects was studied in ref. [12]. Here, we show that the complete defect 
classification is given by 

rr~(SO(4)/G) = Y' x Y ' ,  (1.1) 

where Y' is the 120-element lift of the icosahedral point group Y into SU(2). The 
diagonal elements in this direct product are the disclinations studied in ref. [12]; 
these include the wedge disclinations forced into the medium by the curvature 
mismatch of fiat space with the polytope {3, 3, 5}. 

As a final application of the symmetry group G, we show how to explicitly 

diagonalize tight-binding models defined on {3, 3, 5}. The simplest such model is 
described by the hamiitonian 

H = - t  E (li)(Jl+[J}(il), (1.2) 
(i,j) 

where t is a hopping matrix element connecting nearest-neighbor sites on the 
polytope, and {1i)} is a set of  orthonormal basis functions localized at the sites {i}. 
These basis functions generate a 120-element reducible representation of the group 
G. Here, we exploit the relationship [15] 

G = (Y' x Y')/Z2 (1.3) 

to show that this representation breaks into nine irreducible representations [21] 
(cq c~) indexed by the irreducible representations c~ of Y'. The dimensionalities of 
these representations (which give the degeneracies of  the 120 eigenvalues of H)  are 
summarized by the formula 

120= I @ 4 @ 4 @ 9 Q 9 Q  16@ 16@25@36. (I.4) 

As discussed in sect. 5, the eigenvalues for arbitrary rotationally invariant tight 
binding models with one level per site have a very simple analytic expression in 
terms of the character table of  Y'. 

In sect. 2, we show how to analyze particle configurations on a sphere using 
hyperspherical harmonics. The Landau description of a glass is developed in sect. 
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3. We summarize the properties of  the homotopy  group ~q(SO(4)/G) in sect. 4, and 
turn to a discussion of tight binding models in sect. 5. 

2. Icosahedral order parameter 

2.1. S T R U C T U R E  F U N C T I O N S  IN S 3 

Crystalline order in euclidean space shows up most clearly in the structure 

function, a quantity directly accessible to experiment via X-ray diffraction. Before 
describing an analogous object for particles confined to the surface of a four- 
dimensional sphere, we briefly recall the salient ideas in flat space [22]. Because of 
the periodicity embodied in a crystalline lattice, it is natural to expand the particle 
density in a Fourier series 

p(r) 

where the Fourier coefficients pq are 

1 
pq = -~ 

The integral in (2.2) is over a volume 
restricted by, say, periodic boundary 

= ~  pq e -iq'" , (2.1) 
q 

given by 

f d3r eiq"p(r). (2.2) 

V, and the precise q-values entering (2.1) are 
conditions. These q's, of  course, close up to 

form a continuum in the limit of  an infinite system. Nonzero Fourier coefficients 
are possible for any q in a liquid. In a classical crystal at T =  0, however, pq is 
nonzero only for a discrete set of reciprocal lattice vectors {G}. The collection of 
Fourier coefficients {Pc} constitute a set of  order parameters for a crystalline solid. 
Landau [23] has used the pc ' s  with the smallest nonzero reciprocal lattice vectors 
to construct an order parameter  theory of  freezing. 

X-ray diffraction experiments on liquids and solids measure the structure function 

5¢(q) = (]pql2), (2.3) 

where the brackets denote a thermal expectation value. In practice, one is usually 
forced to work with samples composed of randomly oriented microcrystallites, and 
measures instead of the angular or "powder"  average of eq. (2.3) 

'I S(q) = ~  dJ2qS°(q). (2.4) 

Here, d~Qq is an element of  solid angle in q-space. Standard manipulations using 
(2.2)-(2.4) suffice to show that S(q) is related to a radially averaged correlation 
function G(r) by [24] 

4Ir [" 0o sin (qr) 
S(q)=~-jot r 2dr  qr G(r) . (2.5) 
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This radial correlation function is an angular average in real space of  the densi ty-  
density correlation function, 

l I G(r)=~ dO,(p(r)p(O)). (2.6) 

The structure function S ( q )  in a solid has peaks when q = ]G], where G is a reciprocal 
lattice vector. It is this powder-averaged structure function, rather than 5~(q), which 
has a simple analogue in S 3. 

Consider a collection of particles on the surface of a four-dimensional sphere 
with unit radius. Denoting a position on this sphere by a unit four-vector fi, we 

expand the particle density p(a)  in hyperspherical harmonics Yn . . . . .  (u) 

p ( ~ )  = ~ O . . . . . .  Y~ . . . .  (~)  . (2.7) 
n, m l , m  2 

The hyperspherical harmonics Y, ...... (fi) are a particularly convenient complete set 
of functions on S 3. As described in detail in ref. [16], the Y, . . . . .  (I/) are proportional 

to the Wigner matrices of  the l = ½n representation of SU(2) 

]n  + 1 n/2 
Y ,  . . . . .  ( a ) = ~ /  ~5-2  D . . . .  ( a,  /3, y ) . (2.8) 

The Euler angles a, /3 and 3' which appear  in (2.8) are obtained from ~ using the 
well-known isomorphism between the elements of  SU(2) and points on a four- 

dimensional sphere [16, 21]. Upon writing fi = (Uo, ux, uv, u.), and setting 

we have [21] 

a = Uo + iu=, b = iux  + Uv, (2.9) 

D~m'(~) = ~ [(!-+ m)~.(l-_m_)!(__..ll_+,__rn')!(_IZ m')T.]'/~ 

( l  + m - ~ )! p. ! ( l -  m - p . ) ! ( m  - m + t.~ )! 

x a l+" ~ ( a * ) t - m ' - ~ b ~ ( - b * )  m' ,n+~, . (2.10) 

This sum over integers /~ is made finite by the factorials in the denominator.  The 
identification of the four-dimensional hyperspherical harmonics Y . . . . . .  (u) (which 
are basis functions for a set of irreducible representations of  SO(4)) with the 
representation matr i ces  of SU(2) is a remarkable and very useful coincidence. This 
coincidence makes it clear that for every n = 0, 1 , . . . ,  we have (n + 1) e independent 
basis functions, obtained by varying m~ and m~ from - ~ n  to ½n in integral steps. 

Eq. (2.7) is readily inverted to obtain the Fourier coefficients Q . . . . . .  . Using the 
orthogonality relation [ 16] 

f d O a  Y . . . . . .  (~) Y~*, ,,,i,,q(t])= ~nn,arn,mi~mern2, (2.11) 
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we find that  
¢ *  

Q . . . . . .  = j d ~  Y . . . . . .  ( ~ ) p ( ~ ) .  (2.12a) 

The integral  over  S 3 in eq. (2.12a) can be carried out using pola r  coordinates  

~ = (cos ~, sin ~0 sin 0 cos d), sin qJ sin 0 sin 4~, sin q, cos 0) (2.12b) 

and the integrat ion measure  

fdS~.=foSin2~'dOffsinOdOff ~ d ~ .  (2.12c) 

In ana logy  with eq. (2.3), we define a thermal ly  averaged structure funct ion 

5e . . . . . .  -= ([Q . . . . . .  12). (2.13) 

The Q . . . . . .  t ransform like a (n + l )2-dimensional  representa t ion of  SO(4). When we 
rotate the external coord ina te  system which defines fi, the (n + 1) 2 numbers  Q . . . . . .  

for a par t icular  n are scrambled.  It is easily shown,  however ,  that  

1 
S. - - - - -  E 5e . . . . .  (2.14) 

(n + 1) 2 . . . .  ' - 

is ro ta t ional ly  invariant.  The quant i ty  S, is the ana logue  of  the powder -ave raged  
X-ray  structure function.  To see this in more  detail,  we substi tute eqs. (2.12a) and 

(2.13) into (2.14) and use the identity [16] 

Z Y . . . . . .  (u.)  # ~ n_+l sin [(n +l)~b] (2.15) 
_ Y . . . . . . . .  ( u h ) -  2 ~ 2  s m  4/ ' 

t t / ]  tTi 2 

where 4J is the angle be tween the four-vectors  d, and ~h. It follows that  

1 f I S . - 2 r F ( n + l )  d D .  d~hsin[(n+l)O](O(~a)P(~b))'sin 0 (2.16) 

We now change  var iables  in eq. (2.16), letting 

(2.17) 

where R is an e lement  of  SO(4) which rotates ~h into ~,. The sets o f  physical ly 
distinct e lements  R which rotate fih into fia consti tutes the coset space  SO(4)/SO(3).  
This in turn is i somorph ic  to S 3, so we can parametr ize  the integrat ion measure  
d.OR as in eq. (2.12c) with polar  angles. Note  that  ~ is the angle between ~, and 
~b. We shall also use the fact that,  in thermal  equi l ibr ium, we have 

(P( uo)P( ~b )) = (p( Rub )p( ~ )) = (p( R 1)p(1)). (2.18) 

Since the average  in eq. (2.18) includes configurat ions related by a rigid SO(4) 
rotat ion,  we have, wi thout  loss of  generali ty,  replaced the point  fib by 1 ~ (1,0,  0, 0). 
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Upon  def ining the " r a d i a l l y "  averaged  cor re la t ion  funct ion  

;o L G(O)=4~l  s i n 0 d 0  ~ d ~ ( p ( R l ) p ( 1 ) )  

we ob ta in  finally 

119 

(2.19) 

47r f ~  sin [(n + l)qJ] 
Sn = sin 2 q, d~b G(tp) (2.20) 

n + 1 J~ sin ~ ' 

in c lose ana logy  with eq. (2.5). To take  the flat space  l imit  o f  eq. (2.20), we set 

= Kr, where  r is a geodes ic  d i s tance  on S 3 and K is the inverse rad ius  of  the sphere.  

We note  in a d d i t i o n  tha t  the cor re la t ion  func t ion  G must  in genera l  be a func t ion  

o f  r on ly  for  spheres  which  are not  o f  uni t  radius .  Tak ing  the l imit  K ~ 0 and  n ~ 

in such a way  that  nK ~ q remains  fixed, we find that  

Sn ") 8~3 Ix r 2 d r  sin (qr) G(r) = 2~r2S(q), (2.21) 
V Jo qr 

where  V = 2 ~ 2 K  3 is the a rea  o f  the fou r -d imens iona l  sphere .  Thus,  S,  becomes  

p r o p o r t i o n a l  to S(q) in the flat space  limit.  

In ana logy  with the Bragg peaks  expec ted  in S(q) for  flat space  crystals ,  we expec t  

that  Sn will be nonze ro  only for a d iscre te  subset  o f  n 's  for  120 par t ic les  a r r anged  

in the conf igura t ion  {3, 3, 5}. The a l lowed  n 's  will be de t e rmine d  in subsect .  2.3. 

First ,  however ,  we summar i ze  the r emarkab l e  p roper t i e s  o f  the symmet ry  g roup  G 

of  p o l y t o p e  {3, 3, 5}. 

2.2. SYMMETRIES OF {3, 3, 5} 

Fig. I shows a p ro j ec t ion  [6] o f  the 120 vert ices and  720 ne a r -ne ighbo r  b o n d s  o f  

the p o l y t o p e  {3, 3, 5}. To efficiently dea l  with symmetr ies  o f  this objec t  we need  a 

concise  way to enumera t e  the vert ices and  bonds .  An espec ia l ly  useful  enumera t i on  

exploi ts  the  i s o m o r p h i s m  [15, 16] be tween  poin ts  on the fou r -d imens iona l  sphere  S 3 

and  the g roup  SU(2). A po in t  t i c  S 3 can be thought  o f  as a uni t  four -vec tor  with 

c o m p o n e n t s  

= (cos ~, n~ sin ~b, ny sin q/, n. sin q,), (2.22) 

where  ~i = (n~, ny, n.) c S 2 is a unit  three-vector .  Al te rna t ive ly  we can write a as an 

SU(2) mat r ix  u th rough  the ident i f ica t ion  

~ u ~ 1 cos ~b + i~.  ~r sin t9, (2.23) 

where  1 is the 2 ×2 unit  mat r ix  and  the (r~ are Pauli  matr ices .  

Two poin ts  u, v c S 3 can now be mul t ip l i ed  toge ther  by using the mul t ip l i ca t ion  

rules o f  Paul i  matr ices .  The  sphere  S 3 has now been given the a lgebra ic  s t ructure  

o f  the g roup  SU(2). Hence fo r th  we shall  regard  po in ts  in S 3 as s y n o n o m o u s  with 
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Fig. 1. Polytope {3, 3, 5}, from ref. [6]. 

SU(2) matrices. As demonstrated in the book by Du Val [15], the vertices of{3, 3, 5} 
can be identified with the lift into SU(2) of the 60-element icosahedral point group 
Y. The 120-element group Y' which results describes, among other things, the algebra 
of  disclination line defects in a glass [12]. Because of its importance we shall 
summarize the properties of  Y' which will be used in this paper. 

The two-element lift of  an SO(3) rotation R~(O) into SU(2) is given by the pair 
of  matrices ±e '~C~'''~°. The symmetry group Y of an icosahedron contains five 
conjugacy classes. The group Y' which is the lift of Y into SU(2) contains nine 
conjugacy classes. The identity in Y lifts to the classes 

Co = 1, (2.24a) 

Co = - 1. (2.24b) 
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The twenty rotations by ± 2 ~ / 3  lift to the classes 

C3 = {e~i~"~)2~r/3: ~ points to faces of  icosahedron},  (2.25a) 

C 3 = { - u :  u~ C3}. (2.25b) 

The twelve rotations by +27r/5 lift to the classes 

Cs = {e?~'~2~/s: d points to vertices of icosahedron} ,  (2.26a) 

(75 = { - u :  u c Cs}. (2.26b) 

The twelve rotations by ±4~-/5 lift to the classes 

C 2={u2: u e Cs}, (2.27a) 

C 2 = { - u 2 :  u ~ Cs}. (2.27b) 

Finally, the fifteen rotations by 7r lift to the class 

C2 = {e ~"~'')~'. ~ points to edges of  icosahedron}. (2.28) 

The character table for Y' is displayed in table 1. Because Y' is a subgroup of 
SU(2), we guessed that some of its irreducible representations would be generated 
by the /th irreducible representation functions of SU(2), with l = 0, ~, 1 , . . . .  The 
irreducible representations A, E~, F~, G~, H and I were obtained in this way. The 
dimensions of the remaining irreducible representations are constrained by the sum 
rule 

y 2 d ,  = 120, (2.29) 
c~ 

where d, is the dimension of the representation c~. The remainder of  the character 
table follows from requiring orthogonality of  its rows and columns. 

This character table will prove useful in sect. 5, when we discuss the eigenvalues 
of  tight binding models defined on {3, 3, 5}. As an additional application, we now 

T A B L E  l 

Character table of  Y': r = ~(,/'5 + 1) 

Y' ICo IC'o 3 0 C  2 20Cs 20(~s 12C s 12~s 12C~ 12( ~2 

A 1 1 1 I 1 I I I 1 

E~ 2 2 0 1 - I  r z r ~ - z  

E 2 2 - 2  0 1 1 - r  ~ r -~ -~"  r 

F~ 3 3 1 0 0 r r - r  ~ - r  t 

F 2 3 3 I 0 0 - - z  -~ - - r  - t  T r 

G t 4 - 4  0 - I  1 1 - 1  - 1  1 

G 2 4 4 0 1 1 1 - 1  - 1  1 

H 5 5 1 - 1  - 1  0 0 0 0 

I 6 6 0 0 0 - 1  1 1 - 1  
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C~ 

9 0 *  

i T I t 

3 0  ° 6 0  ° 1 2 0  ° 150 ° 1 8 0  ° 

Fig. 2. Radial distribution function of polytope {3, 3, 5}. Peaks are labelled by classes of  Y' (see table 1). 

show that it determines the radial distr ibution g(~)  o f  {3, 3, 5} (see fig. 2). The 
funct ion g(@) gives the number  o f  points at geodesic distance q, f rom a reference 
point,  which we take to be 

This radial distribution funct ion has been discussed in the context o f  metallic glasses 

by Sadoc  [9], and is closely related to the radially averaged correlat ion function 
G(O) discussed in sect. 2.1. If  S 3 is o f  unit radius, 0 is just the angle between 1 and 

the point  under  considerat ion.  It is s t raightforward to show that the angle between 
two arbitrary points u, v c S 3 is 

tp(u, v) = cos ' (~ Tr {uv+}), (2.31) 

where the dagger  denotes  a hermitian conjugate,  v += v ~. The distance between 
u~  S 3 and the identity 1 thus depends  only on Tr u. But u is the matrix of  the 
two-dimensional  representat ion E~ of  Y', so Tr u is a character  o f  this representat ion 

and depends  only on the class which contains u. The set o f  possible geodesic 

distances between neighbors  on {3, 3, 5} is thus implicit in the row labeled Et in 

table 1. This observat ion accounts  for the identification o f  peaks in g(th) with classes 
o f  Y' shown in fig. 2. (The peak heights give the number  o f  elements in each class.) 
Note,  in particular, that  nearest-neighbor  distances fall in the class C5. Inspecting 

eq. (2.26a) we observe that the nearest neighbors of  a point  form an icosahedron,  
so Y' really does describe a packing of  icosahedra.  

We can now determine the symmetry  group G c SO(4) o f  po ly tope  {3, 3, 5}, using 
some basic facts [15, 16] about  SO(4). Consider  two points u, v~ S 3 and multiply 
them on the left by l~ S 3 

u ~ l u ,  (2.32a) 

v ~ I v ,  (2.32b) 
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or the right by r * = r  ~, r 6 S  3, 

u ~ u r  i ,  (2.33a) 

v ~ v r - 1  . (2.33b) 

Because o f  the group structure o f  S 3 the results o f  these multiplications are new 

elements o f  S 3. It follows f rom eq. (2.31) that the geodesic separat ion is unchanged.  

~O(lu, Iv)  = qJ(ur  - I ,  v r  - I )  = qJ(u, v )  . (2.34) 

Thus,  the t ransformat ions  in eqs. (2.32) and (2.33), called left and right screws 

respectively, are rotations.  Every rotat ion o f  S 3 is generated by a combina t ion  o f  

left and right screws, and every pair (l, r) ~ SU(2) x SU(2) generates a rotat ion [15, 16] 
th rough  

(l, r): u ~ lur  i . (2.35) 

Not ing that (l, r) and ( - l ,  - r )  generate the same rotation, we have the formal result 

SO(4) = [SU(2) x SU(2)] /Z2.  (2.36) 

We can obtain a similar formula  for G. For any elements l, r c Y' the left and 
right cosets lY' and Y ' r  -t give the original group Y' in a new orientation. Thus 

G = (Y' x Y')/Z2 • (2.37) 

It follows that the order  of  the group G is O(G)  = (120)2/2 = 7200. This decomposi -  
tion o f  G will allow us to compute  the project ion o f  poly tope  {3, 3, 5} onto hyper- 
spherical harmonics.  

2.3. S T R U C T U R E  F U N C T I O N  O F  POLYTOPE {3, 3, 5} 

In this section we use the group G to determine the al lowed values of  n for which 

the structure funct ion Sn of  poly tope  {3, 3, 5} can be nonzero.  We find in part icular  

that the first n > 0 for  which Sn need not vanish is n = 12. We will also discuss the 

matrix Q~2 . . . . .  for a part icularly simple orientat ion o f  poly tope  {3, 3, 5}. 

Recall the definition o f  Q . . . . . .  in eq. (2.12a). Expanding  the integrand in irreduc- 
ible representat ions of  G (see sect. 5 for discussion of  irreducible representat ions 
o f  G), 

Yn . . . . .  (t2)p(fi) = ~ C.t3 . , j (n  , m , ,  m2)qb.~.u(fi), (2.38) 
c~/3, o 

where 0" indexes basis functions q~.~.!; within representat ion c~/3, we have 

Q . . . . . .  = ~ C~t3,o(n, m l ,  m2) f dg2a q).t3,0(fi) . (2.39) 
~/3,6 J 

But the integral in eq. (2.39) is zero unless q)~.u is the unit representat ion [28] 
@a(~) = 1. Because S. vanishes if all Q . . . . . .  vanish, we must determine the number  

of  times that the expansion (2.38) contains the unit representat ion;  S. vanishes unless 
the unit representat ion occurs at least once. 
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In general the number  o f  times that a representat ion R of  a g roup  H contains 
the irreducible representat ion a is [21] 

1 H H* 
MnH(a) O(H) h~H XR(h)x~ (h) ,  (2.40) 

where O(H) is the order  o f  the group,  and xH(h) is the character  of  the element h 

o f  the group H in the representat ion R. Since p(~) is invariant under  G, we must 

determine the number  o f  times that the reducible representat ion Y, m,,,: contains 

the unit representat ion A of  the group G. Because XA = 1 for any element of  any 
group we have 

1 
M-°(A)=o(o)(,.~)~(~2 xO( l , r ) ,  (2.41) 

where the character 2(~ of the representation Y~.m,,,,._ is obtained from the transforma- 
tion of  Y~ . . . . .  under SO(4) rotations [16, 21,27]. The basic formula is 

Y, . . . . .  (lur 1) = ~, D Z ~ I ( I  ) Y,,,[,,;(~)D~,/~,_(r-'), (2.42) 
m; 
i n ;  

and the cor responding  character  is 

/~SO(4)[,I, Dn/2 (I]D,,/2 ¢ - 1 ~  (2.43) , ~.u,t. q & ) =  E - - -  . . . . .  - , - -  . . . . .  r , 
m I m 2  

sin (n + 1)01 sin (n + 1)0~ 
- ( 2 . 4 4 )  

sin 0l sin 0~ ' 

where 0t = 0(l, 1) and t/,~ = t/,(r, 1) are the geodesic distances o f  I and r f rom 1. Recall 

that the character  o f  the /th irreducible representat ion of  SO(3) is 

xSO~3~(0 ) _ sin (21 + 1)½0 
sin ~0 (2.45) 

Thus 

/~ SO(4) [ , I  s . S O ( 3 ) / ~ . 1 . - ~ . S O ( 3 ) [ , ~ , I t  .~ (2.46) 

We can now rewrite the sum in eq. (2.41) as 

{ Y SO(3) M~;(A) = Y½0 ~ X,/2 (20,) . (2.47) 
IcY' 

The expression in parenthesis is zero for n odd, and for n even is equal to 

• so(s~t. ~ (2.48) MY/2(A)= 61 Y~ ,~,,/2 ~v~, 
y ~ Y  

which is the number  o f  times that the spherical harmonic  Y,/:.m(O, cb) contains the 

unit representat ion o f  the icosahedral  group. Carrying out the sum in eq. (2.48) we 
find that nonzero  spherical harmonics  are possible for 

n = O, 12, 20, 24, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60 ,  (2.49) 
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and any even n > 60. This result has also been  ob ta ined  by Straley [29] who evaluated 

the integral (2.16) numer ica l ly  for a del ta  funct ion distr ibution on poly tope  {3, 3, 5}. 
In order  to c o m p a r e  the result (2.49) with X-ray  scattering exper iments  we need 

to in t roduce defects,  and associate wave numbers  q with values of  n. One possible  
associa t ion relies on ident ifying q2 with an e igenvalue of  the laplacian opera to r  in 
R 3. Not ing  that  Y,.,,,m: is an e igenfunct ion of  the laplacian on S 3 with e igenvalue 
[16] n(n  +2)  we make  the associat ion 

q~--~`/n(n + 2 ) .  (2.50) 

The peaks  in S, at n = 12, 20, 24 suggest that  S(q )  will have peaks  at q, where 

q2/ql  - - ` /55/21 - 1.6183 , 

q3/q~ ---`/26/7 - 1.9272. (2.51) 

Exper imenta l ly  [30] it is found  that  q2/q~ ~ 1.7 and q 3 / q ~ - 2 . 0  for  a variety of  

metal l ic  glasses. 
Because n = 12 is the lowest  value of  n for  which S, need not vanish,  it plays a 

special  role in the Landau  theory  deve loped  in sect. 3. In part icular ,  the order  
p a r a m e t e r  is the 13 x 13 matr ix  Qt2 . . . .  2. It is possible  that  there are non- icosahedra l  
dis tr ibut ions of  points  on S 3 for which S, has its first peak  at n = 12. Therefore  we 
descr ibe details o f  the matr ix  o QJ2,m,,,2 which are unique to icosahedra l  distr ibutions.  

A similar  calculat ion has been carr ied out for  the coefficients Q6m in an expans ion  
in ord inary  spherical  ha rmonics  Y6m (0, 6 )  describing an icosahedron  [2]. When  the 

z-axis passes through a vertex of  an icosahedron  [2], 

Q~6,,, = Q;,0(0, _`/.7--, 0, 0, 0, 0, 1,0, 0, o, 0, ` /~ ,  0) .  (2.52) 

Similarly when the z-axis passes through a face of  an icosahedron  

f = ~ f  l _ . / ~  ~ ~ O6,m v6,ot -33, 0, 0, `/3, 0, 0, 1,0, 0, - ` /g ,  0, 0, - ' /33) -  (2.53) 

We wish to see if a c o m p a r a b l e  result holds for  po ly tope  {3, 3, 5} in some special  

or ientat ion.  
Thus far, we have regarded  the vertices of{3, 3, 5} as e lements  of  Y'. An al ternat ive 

tabula t ion  of  these points  (cor responding  to a different or ienta t ion of  {3, 3, 5}) is 
given by a modif icat ion of  Coxe te r ' s  " t r i acon tagona l  p ro jec t ion"  [6]* 

A k  = e icrzTrk/6 e "~'~° e ~ =k/5, (2.54a) 

B k = e i,rzrk/6 e~,/~ t3~ e-i~rk/5, (2.54b) 

C k = e -i(r:Trk/6 e ~i%t3' e icrTrk/5, (2.54c) 

D k = e -i '~:~k/6 e ~i'~'t3" e ~%~k/5, (2.54d) 

* The triacontagonal projection used here is related to the one described by Coxeter on p. 247 of [6] 
by interchanging the second and fourth entries in every four-vector. 
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where  /3a = 37.377 °, /3h =79.188 °, /3,.= 100.822 °, and  /3a = 142.623 °. In eqs. (2.54a) 

and  (2.54d), k = 0, 2, 4 , . . . ,  58. In eqs. (2.54b) and  (2.54c), k = 1,3, 5 . . . . .  59. Using 

the fact that  
D n/2 " ~ e i~m, d n/2 (f4~ " . . . .  t a ,  p, y)  = ,, . . . . . .  e '~'2 , (2.55) 

we can eva lua te  eq. (2.12a) using the po in ts  (2.54). We find that  Q~2 . . . . .  must  vanish  
unless  

5 m 2 - 6 m l  = 15i, (2.56) 

where  i is an integer.  The a l lowed  pairs  (m~, m2) have rn~ = - 5 , 0 ,  5 and  me = 

- 6 ,  - 3 ,  O, 3, 6. In fact we have de t e rmined  numer ica l ly  that  Qw_ . . . . .  factors ,  

0 v f 
Q6,m,Q6 .m2  Q I2 . . . . . .  oc (2.57) 

a l though  we have not  succeeded  in der iv ing  this s imple  result .  Thus if  a par t ic le  

d i s t r ibu t ion  is i cosahed ra l  then the mat r ix  Q~2 . . . . .  _ must  be the matr ix  Q~2° . . . . .  (eq. 

(2.57)) t r a n s f o r m e d  by some rotat ion.  In par t i cu la r ,  we find that  Q~2 . . . . . .  oc Q~.,,, Q6,m_, 

when the vert ices o f  {3, 3, 5} are in the o r ien ta t ion  Y'. 

The  ca lcu la t ions  o f  this sect ion are read i ly  ex tended  to de t e rmine  the a l lowed  

n 's  for  po ly topes  based  on {3, 3, 5} with more  than one a tom per  unit  cell. " P o l y t o p e  

240" [10, 11], for example ,  has an a tom at some pos i t ion  r on S 3 within the unit  

cell su r round ing  an a tom at 1, and  at 119 s imi lar  pos i t ions  in the o ther  unit  cells. 

It is s t r a igh t fo rward  to show in this case that  

Q . . . . . . .  -+ 2 [a., , , .  + D " . . / , 2 ( r ) ] Q  . . . . .  . (2.58) 
m 

3. Landau theory 

In sect. 2, we showed  how to charac te r ize  the ex t ended  i cosahedra l  o rder  present  

in p o l y t o p e  {3, 3, 5}. There  is a na tura l  genera l i za t ion  of  this po in t  o f  view which  

a l lows one to define a local o rde r  p a r a m e t e r  for glasses and  s u p e r c o o l e d  l iquids in 

fiat space .  Using  this desc r ip t ion ,  one can cons t ruc t  a un i fo rmly  f rus t ra ted  G i n z b u r g -  

L a n d a u  mode l  o f  the  s tat is t ical  mechanics .  Because the magn i tude  of  the o rde r  

p a r a m e t e r  can vary,  this a p p r o a c h  can be used at bo th  high and  low tempera tures .  

Since the  o rde r  p a r a m e t e r  vanishes  on d i sc l ina t ion  lines, magn i tude  f luctuat ions will 

also be impor t an t  when one coarse  gra ins  over  regions conta in ing  many  defects.  

When  a m p l i t u d e  f luc tuat ions  are neglec ted ,  our  desc r ip t ion  is s imi lar  to a con t inuum 

elast ic  theory  p r o p o s e d  by Sethna [14]. In this l imit ,  only  the phase  degrees  o f  

f r eedom in the o rde r  p a r a m e t e r  matter .  Both theor ies  have a nonzero  dens i ty  of  defect  

l ines in the  g round  state,  and  are very l ikely to have glassy metas tab le  states. 

Before p roceed ing  further ,  it is useful  to recap i tu la te  L a n d a u ' s  descr ip t ion  of  

inc ip ien t  crys ta l l ine  o rde r  in a l iquid  [23]. Sup pose  we know that  a lat t ice with 

rec iproca l  lat t ice vectors  {G} is abou t  to emerge  f rom a d i so rde r e d  l iquid with 
dec reas ing  t empera tu re .  A l though  there is no long-range  order ,  we can define a set 

o f  local  o rde r  pa rame te r s  p G ( r )  by res t r ic t ing the d o m a i n  of  in tegra t ion  in eq. (2.2) 
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to a volume AV centered at the point t, 

1 fd3r  , pc(r) = ~  e ' a ' " p ( r  ') (3.1) 

The volume A V must be larger than a lattice constant, but small compared to the 
macroscopic system size. For simplicity we approximate  density variations in the 
material using a restricted summation X' over the subset of  smallest nonzero 
reciprocal lattice vectors, 

p ( r ) = p o + R e { ~ , p c ( r ) e  i t -r},  (3.2) 

where Po is the density in a uniform liquid. Henceforth, all summations over G will 
be restricted to this subset. 

To construct a translationally and rotationally invariant free energy from the 
pc(r)'s, we first note that, under a uniform translation of space r--> r - u o ,  it follows 
from (3.2) that 

pa(r)  ~ eia"pa(r) .  (3.3a) 

Under a uniform rotation about the origin, r--> R~(O)r, we have 

on(r)--" exp { iG . [ R , ( 0 o ) -  1]r}pc( r) . (3.3b) 

The 3 x 3  matrix R is R=exp[iOo(l .n)] ,  where the li are generators of SO(3) 
rotations. In the limit of  infinitesimal uo and Oo = 0o~, which avoids complications 
associated with the noncommutivi ty of  translations and rotations, the net effect on 

the order parameter  pc(r) is 

pc(r) --> eiC'"" +ic'~%×') pc( r) . (3.3c) 

Eq. (3.3c) suggests that the important degrees of  freedom will be an order parameter  
amplitude and six slowly varying "phases"  u(r) and O(r), corresponding to the six 
generators of  translations and rotations in a solid. A free energy density, including 
gradient terms, which is translationally invariant, and rotationally invariant to lowest 
order in 0 is [25] 

t ,,, 12 4- i r = KoXl(v-iax. p,.i 2 y lpcl = 
G C 

4 -  4 . + w ~ Pc,PG:Pc~ O(pc) ( 3 . 4 )  
GI+G2+C~ 0 

The peculiar gradient coupling is required by rotational invariance. If  fluctuations 
can be neglected, the cubic term leads to a first-order freezing transition for 
sufficiently negative quadratic couplings r. At low temperatures 0 becomes locked 
to the curl of  the phonon displacement field [25] 

O(r) =IV x u(r), (3.5) 
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so that the orientational degrees of  freedom drop out of  the problem. This locking 
is quite analogous to the Higgs mechanism. At low temperatures,  we expect that 
pc(r) depends only on a slowly varying displacement field u(r), 

= Ip l e ' C " c ' ) ,  (3.6) 

where the amplitude Ip~l is independent of  the direction of G. Assuming for 
simplicity an isotropic distribution of G's,  it is straightforward to show that f f  then 
becomes 

= const +½K f d3r[c3iblj - -  e i j k O k ]  2 , (3.7) 

OC o 2 r.," with K Pc  t~o, which exhibits the locking of Ok to gradients of  uj explicitly. 
Using eq. (3.5) to eliminate Ok, we recover the standard continuum elastic description 
of a crystal, expressed in terms of the symmetrized strain tensor u~ = ½(aiu; + a;ui) [26]. 

As discussed in sect. 2.3, order in a {3, 3, 5} crystal can be characterized by the 
Fourier coefficients Q~2 ........ . As illustrated in fig. 3, we can define a local order 
parameter  Q~2 . . . . .  (r) in flat space via stereographic projection onto a featureless, 
tangent four-dimensional sphere. The radius of  the sphez'e is chosen so that it can 
just accommodate  120-particles in the configuration of {3, 3, 5} with geodesic separ- 
ation equal to the flat space near neighbor separation. The order parameter  associated 
with a small volume d V of particles centered at r is given by a modification of eq. 
(2.12a), 

0,2 . . . . .  (r) = { d,O~,Y12 . . . . .  (~ )p (~ ) ,  (3.8) 
d a  v '  

where p(~) is the projected particle density, and the domain of angular integration 
is restricted to the projection /IV' of / IV.  Sethna [14] has used a similar sphere with 
the polytope {3, 3, 5} inscribed on it to formulate a continuum elastic theory. 

\ , /  1 ,, / 

7 

Fig. 3. P r o j e c t i o n  o f  p a r t i c l e  c o n f i g u r a t i o n  a t  r o n t o  S 3. 
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Under an SO(4) rotation of the coordinate axes (eo, ex, e .  ez), the change in Q12 . . . . .  
is given by an SO(4) representation matrix [16] 

R ~ SO(4) 
A(12)  /'1 (3.9) Ot2,m > ~ ~m,n",gt2.m'. 

m '  

Here, we have used the notations m---(m~, rn2) and rn '~  (m'b m~) to denote pairs 
of  variables each of which runs from - 6  to +6. The indices m and m'  can assume 

AO 2) 169 different values. The matrix . . . .  , can be expressed in terms of SU(2) Wigner 
matrices using the homeomorphism between SO(4) and SU(2) x SU(2). If  a rotation 
R c S O ( 4 )  is characterized by the pair of  elements (l, r ) ~ ( - l , - r ) ,  we find from 
eq. (2.42) 

A 2~)~:,,< m~(l. r) = D~ ),,<(l)D~!.,2(r-' ) . (3.10) 

Alternatively. we can write, 

A('2)= exp [ i = ,z=l L 0'~L02)] , , (3.1 I) 

where the L~ 2) are the six generators of  the n = 12 representation [27] of SO(4). 

These generators can be labelled by the six possible rotation planes (0, x), (0, y) 
I, ~2) where /z and v are distinct (0, z), (y, z), (x, z) and (x, y). The generators ~ , , , ,  

cartesian components  x, y or z, correspond to the generators of  rotations in flat 
space, while the generators L~o; -~ are analogous to generators of  flat space translations. 

An SO(4)-invariant Landau free-energy density constructed from the order 

parameter  Ql_, ....... (r) is 

o~=t2K }~ [( D.O,2,m)12 +½r 2 [O,2..,] 2 
m m 

(666)(666) 
. . . . . . .  m I m 2 m 3 m'j m ;  m'3 Q ,2  . . . .  IQ12 . . . . .  i Q , 2  . . . .  i + G ( O ~ 2 )  • 

(3.12) 

The third order term is constructed from the standard SO(3) Wigner 3j-symbols 
[28]; its SO(4) rotational invariance follows from (3.9) and (3.10) and the properties 
of the 3-j symbols. The gradient term in eq. (3.12) is a kind of matr ix ,"covariant  
derivative", 

(DuQ,2)., = E [6m,m,a. - "  ( , 2 )  zK(Lo~, )m,,,,'] Q12,,,,' • (3.13) 
m' 

Following ref. [14], we have constructed this derivative so that the ground state is 
obtained when adjacent particle configurations are related by "roll ing" a reference 
polytope {3, 3, 5} with radius K ~ along a straight line joining them. Indeed, solving 
the equation (D.Qt2)m = 0  along a small separation vector G gives a preferred 
relationship between Ql2,m(r+~) and Q]2,m(r), namely 

Q 1 2 ( ¥  q- ~ )  = e 'q'd2's~ O,2(r) • (3.14) 
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For notational convenience, we have written Q,2.m as a 169-component vector. Note 
that the sign of the iK term in eq. (3.13) is at our disposal, since it can be changed 
by reflecting the tangent sphere through the hyperplane spanned by e,, e,, and e:. 

At low temperatures,  in analogy with a closely related analysis of  orientational 
spherical harmonics by Steinhardt et al. [2], we expect that the polynomial part of 
eq. (3.12) is minimized when OI2,m 0 0 ~-" QI2,m where = 12 Q~2.,, is the special set of n 
Fourier coefficients determined (up to an SO(4) rotation) by the configuration {3, 3, 5} 
(see sect. 2.3). In this limit, it makes sense to substitute 

Q,2(r) = exp i O~(r)L}~2) o (3.15) 

into (3.12), and obtain a theory parametrized by the six SO(4) Euler angles 0~,(r). 
The energetics then depend only on the gradient term, and the resulting theory is 
almost identical to the continuum elastic approach of Sethna. In contrast to the 
4 x4  SO(4) matrices used in ref. [14], however, the 169 x 169 representation matrices 
used here respect the symmetries of  the polytope {3, 3, 5}. This difference is impor- 
tant, for example,  to properly account for defects in lattice discretizations of the 
theory. 

It is interesting to compare eq. (3.12) with the Landau expansion (3.4) for a flat 
space crystalline solid. Both theories have cubic terms suggesting first-order phase 
transitions in equilibrium. The Euler angles O~(r) are reminiscent of  the translational 
and orientational phases u(r) and 0(r) entering (3.4). A crucial difference, however, 
is that eq. (3.12) is f ru s t r a t ed - i t  is impossible to make the gradient term vanish 
everywhere without introducing defects. 

To characterize this frustration more precisely, let us follow the order parameter  
around the small square plaquette (/.t, p) with area a 2 shown in fig. 4. Assuming 
that Q~2(r) is given, we can make the gradient term vanish along this contour by 
requiring that Q~2 at successive points on the plaquette be given by eq. (3.14). The 
net change in Q,2(r) is given by 

(12) (12) (12) (12) O,2(r)~ ~o~, (Ka)~o,, (Ka)~ou (-Ka)~ov (-Ka)Q,2(r),  ( 3 . 1 6 a )  

where the representation matrices are 
• (12) ~0~ (Ka) --= exp [,KaLo~ ].  (3.16b) 

a a 

Fig. 4. Plaquet te  (/x, ~,) with area a 2. 
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Frustration is present because the order parameter  will not in general return to its 

initial value. Indeed, it is easy to show that 

(12) (12) (12) , 2 2[-I(12)  L o 2 ) ]  20,  (Ka)~o,, (Ka)~o.  ( -na)~o~(-Ka)  ~ 1 - , . .  t r o . ,  .o , , J  

= ~J ) ) ( -K2a  2) -{-O(K303)  , (3.17a) 

where 
~ ( 1 2 ) /  2 2x r . ~ 2 r (12 )1  . .  t -K  a ) = e x p  t-t~:-a ~.v J. (3.17b) 

We have used units such that the SO(4) angular momentum operators are dimension- 
less and obey the commutat ion relations [27] 

[Lo., Lov] = iL.~. (3.18) 

The remaining commutators  may be written [27] 

[L•, L,,] = ie..ALA, [L., Lo. ] = ie..ALoA, (3.19) 

where L.  is a conventional SO(3) angular momentum operator,  

L.  ~ ~e..A L,,A . (3.20) 

Eq. (3.17) makes it clear that the order parameter  must have rotated in the plane 
(/x, v) by an amount  proportional  to the area of  the plaquette after it traverses the 
contour in fig. 4. Such a rotation can be accommodated  by threading through a 
finite density K 2 of --72 ° wedge disclination lines oriented normal to the plaquette 
[12]. 

The noncommutivi ty of the angular momentum generators plays a crucial role in 
~o2) behaved like c-numbers,  the term generating the frustration. If  the operators 40, 

analogous to a vector potential in eq. (3.13) could be eliminated by the change of 
variables 

Q12(r) = e'~[""~'~- O', 2(r). (3.21) 

Physically, this change of variables means the order is now measured relative to a 
reference {3, 3, 5} template which has been rolled in straight lines out from the 
origin in all directions. At low temperatures,  we might then expect that Q'  could 
be parametrized by an amplitude Qo and a slowly varying set of  small displacements 
u(r) 

O'12(r) = e'~--c"~X'"-~')Oo, (3.22) 

in analogy with eq. (3.6). This correspondence makes it clear that the matrices 

_ 4-KL(12) . ( 2 o )  KL(o24) .} ( 3 . 2 3 )  { G o . } - .  . o . , ~ o . ,  ~ - .  • 

play the role of reciprocal lattice vectors in this approach.  It is their noncommutivi ty 
(with commutators  scaling like the inverse radius g of  the polytope) which makes 
the physics of  glasses nontrivial. 
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The partition function associated with the Landau theory (3.12) is given by a 
functional integral over the field Q(r) 

Z= f ~Q(r) e x p [ - ~ T  f d3r~(r)]. (3.24) 

At low temperatures,  we expect the statistical mechanics to be dominated by a 
regular lattice of  - 7 2  ° disclination lines, as in the Frank-Kasper  phases of  transition 
metal alloys [12]. The high temperature liquid should have defect lines of  both signs, 
with a bias to accommodate  the frustration. In equilibrium, there is probably a 
first-order transition connecting these phases. If  the liquid is cooled rapidly, however, 
one might expect complicated "glassy" metastable states, consisting of tangled arrays 
of  defect lines. Entanglement upon cooling is suggested by strong topological 
constraints on the crossing of - 7 2  ° disclination lines at low temperatures [12]. 

We expect that similar Ginzburg-Landau theories can be constructed for 
covalently bonded amorphous  systems. More generally, we can use an order para- 
meter Qp . . . . .  (r), where p is the first nonvanishing entry (other than n =0)  in the 
expansion (2.7). 

4. Defects 

Disclination line defects in a predominantly icosahedral medium were studied in 
ref. [12]. The algebra of  such defects is given by the homotopy group 

vr, (SO(3)/Y) = Y ' ,  (4.1) 

where Y' is the 120-element subgroup of  SU(2) whose properties were summarized 
in sect. 2.2. At low temperatures,  the curvature mismatch between flat space and 
the polytope {3, 3, 5} forces in an uncompensated density of  - 7 2  ° wedge disclination 
lines. Both plus and minus 72 ° disclination lines appear  in a microscopic Voronoi 
construction which counts the number  of tetrahedra surrounding every near- 
neighbor bond [12]. 

Disclinations are defects in an orientational subgroup of the symmetries of the 
order parameter  discussed in sects. 2 and 3. It is of some interest to classify the 
defects associated with the full symmetry group of this order parameter. An 
analogous problem arises in flat space crystalline solids, where translational disloca- 
tion defects are possible, as well as disclinations in the orientational order. The 
symmetry group of the order parameter  QI2 . . . . .  (r) is SO(4) modulo the symmetry 
group of G of {3, 3, 5}. According to ref. [20], the algebra of line defects (there are 
no stable point defects) is given by 

7r~(SO(4)/G) = G ' ,  (4.2) 

where G'  is the (two-to-one) lift of  G into the cover group of SO(4). Since the cover 
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group of SO(4) is SU(2) x SU(2), and we know from sect. 2.2 that G = (Y' x Y')/Z2, 
we clearly have 

G'  = Y' x Y ' .  (4.3) 

According to eq. (4.3), line defects in a glass can be labelled by a pair (/, r) of 
SU(2) matrix charges, where l and r are in Y'. In contrast to the group G, (l, r) and 

( - l ,  - r )  are now distinct elements. The laws of combination are given by the class 
multiplication table for G'  [20]. This in turn follows from the class multiplication 

table for Y' worked out in ref. [12]. Disclinations are given by diagonal elements 
of  the form (l, l) in the direct product. This identification follows by noticing [15] 
that if 

1 = e ~ i (~ ' ' ) °  , (4.4) 

the 4 x 4  SO(4) matrix which produces the lifted elements (l, l) and ( - l ,  - l )  is 

if000) 
R~(O)  ' 

(4.5) 

where R a ( O )  is a 3 x3 SO(3) rotation matrix. The SO(4) matrix in eq. (4.5) describes 
the motion of  the reference polytope {3, 3, 5} as one traverses a closed counterclock- 
wise circuit surrounding the defect line [20]. Evidently, the polytope rotates in one 
of the "physical"  planes (~, u), with the axes eo and ea held fixed. The rotation 
angle varies continuously from 0 to 0 for the defect (1, l), and from 0 to 0 ± 27r for 
the defect ( - l ,  - I ) .  The subgroup of diagonal elements (I, I) of  G'  is, of  course, just 
the group Y' studied in ref. [12]. 

It is also of  interest to consider defects of  the form (l, l ~). One can show that 
the corresponding SO(4) matrix represents a rotation of the polytope in the plane 
spanned by eo and e~ as one moves around the defect. Since these rotations can be 
described by the " translat ional"  generators Lo, of  SO(4), it seems appropriate  to 
call such defects "dislocations".  Two additional types of  defect may be written (1, r) 
and (l, 1). The associated SO(4) matrices represent right and left screw symmetry 
operations [15], which have no simple analog in SO(3). This symmetry is closely 
related to the twisted "Bernal spiral" of  perfect tetrahedra shown in fig. 20 of 
ref. [12]. Since 

(l, r ) =  (p, 1)(r, r ) ,  (4.6) 

where p r  = l, any defect can be decomposed into a disclination and a left (or right) 
screw. 

At low temperatures,  the frustration embodied in the free energy (3.12) forces in 
defects of  the type (e ~i°o~'~, e ~'~°o~~) where 0o = -2~- /5 ,  and ~ if directed along the 
axis of  the disclination line. When two such defect lines (a, c~) and (/3,/3) try to 
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cross, they will in general create an umbilical line (y, y) joining them, given by [20] 

(% y) = (~, ~)(/3,/3)(~, ~) ~(/3,/3) ' 

~__(a /3a- I /3  10L~OL I / 3 - 1 ) .  (4 .7 )  

As discussed in ref. [12] in the context of  the group Y', two lines corresponding to 
- 7 2  ° rotations about different axes will always produce another - 7 2  ° line joining 
them. This observation is the basis of the "entanglement"  phenomenon referred to 

at the end of sect. 3. 

5. Tight binding model 

In sect. 2 we have analyzed structural properties of the perfect icosahedral crystal 
polytope {3, 3, 5}. In this section we diagonalize a tight binding hamiltonian in order 
to elucidate the corresponding electronic properties. Calculations have been carried 
out numerically [11] on a "decorated"  version of polytope {3, 3, 5} which is expected 
to model amorphous  silicon*. We choose to solve the simpler model 

Y g = - t  • ~] ]u)(n.n. (u)l , (5.1) 
u~Y' n.n.(u) 

where t is a hopping matrix element and n.n. (u)~ Y' denotes a nearest-neighbor 
of u e Y'. We carry out our calculation exactly using the full symmetry group G. 

In fig. 2 we see that the nearest neighbors of  1 comprise the class C5. Thus the 
nearest-neighbors of  u c Y' are v u  where v c C5, and 

~ C = - t  Y Y lu>(vul • (5.2) 
uGY' L'cC 5 

Because the hamiltonian (5.2) is invariant under any transformation in G, and 
because G is transitive on the basis functions {lu): u ~ Y'}, a generalization of Bloch's 
theorem tells us that eigenfunctions of Y( are basis functions of  irreducible rep- 
resentations of  G. We shall now determine the representations generated by eigen- 

functions of  (5.2). 
The relationship (2.37) between G and Y' allows us to express irreducible rep- 

resentations and characters of  G in terms of irreducible representations and charac- 
ters of  Y'. Warner [31] displays the full character table of  G. We shall exploit the 
following facts. Irreducible representations of  G with dimension d,~ are generated 

by 
O,t3,o = O,,,&~,j, (5.3) 

where O~ and O~j generate irreducible representations of  Y' with dimensions d~ 
and d~, and d,~ = d,~dt3. We call the representation generated by qb~,~ "diagonal"  
when a =/3 and "off diagonal" when a ¢/3. 

• In these references the symmetries of abelian subgroups of G are used to partially diagonalize tight 
binding hamiltonians.  
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Only the diagonal  representat ions o f  G are relevant to the hamil tonian (5.2). To 

see this, consider  the 120-dimensional representat ion R generated by the tight 

binding basis funct ions lu) centered at each vertex u c Y'. The character  o f  (I, r) in 
this representat ion is the number  o f  vertices that are stat ionary under  u ~ lur  -1. 

Note that if u is s tat ionary then l =  uru  ~ so l and r must  belong to the same class. 

Thus we have 
X ~(  I, r) = t~A.BO(Y ' ) /  O(  A ) , (5.4) 

where A and B are the classes o f  Y' conta ining l and r, and O(Y')  and O(A) are the 

number  o f  elements in Y' and A. Any eigenfunct ion of  ~g is a sum of  tight binding 
basis funct ions centered on the vertices c Y' and is thus expressible in terms of  the 
basis o f  the representat ion R. We can apply eq. (2.40) to determine which irreducible 

representat ions o f  G are conta ined in R, 

= r)x~t3(I  , r) (5.5) 
O(O) {I.r)cG 

The only terms in the sum which are nonzero  have 1, r both elements o f  the same 

class o f  Y'. But when this is true we have 

G Y' Y' 
= X~ (1)Xl3 ( r ) ,  X , ~ ( t ,  r) (5.6) 

which, when combined  with eq. (5.4) yields 

1 
xo (t)x~ (t) (5.7) M~(a/3)-O(y, ) ,~v.E Y' Y' • 

This equat ion is just the dot p roduc t  o f  two rows in the character  table o f  Y' and 

hence [28] 

~¢~(~/3) = ~o,~. (5.8) 

Thus we see t ha t  the representat ion R contains each diagonal  irreducible representa- 

t ion o f  G precisely once. This is the result expressed in eq. (1.4) which is a sum 

over c~ of  d~,, = d~ and should be recognized also in the sum rule (2.29). 
Const ruc t ion  o f  wave funct ions and evaluat ion o f  energies involves some algebraic 

manipula t ions  which we outline here. A characterist ic wave funct ion o f  representa- 
tion c19,,,! i is [28] 

1 
X ~ , ( I ,  r ) l l r - ' ) .  (5.9) _ ~ B 

It is useful to rewrite this in terms of  componen t s  v ~ Y' 

4,~o = E c ~ ( v ) l v ) ,  (5.1o) 
v ~ Y '  

where 
1 

X. ,~(u ,  u )  (5.11) G V 1 
C . . ( v )  2 0 ( G ) . ~ v ,  

noting that 2 0 ( G )  = (120) 2, C.,~(1) = 1/120 for all a .  
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Because 0 ~  is an eigenfunction of ~ we have 

E,,O,,, = ~(qJ~,,. (5.12) 

Using the form (5.2) to represent 9~, and projecting both sides of  (5.12) onto (1] we 
find 

E ~ C ~ , ( l ) = - t  Z C,~,~(v). (5.13) 
v~ C 5 

Using the fact that 
X~,~(I, r) = Xv'(1)xY'(r 1) (5.14) 

to rewrite eq. (5.11) we conclude 

- t  = ~ Y'  Y '  - 1  
E~ 120,~v,X~(u)x~(u v). (5.15) 

t ,c C 5 

Because the character X~V'(u) depends only on the conjugacy class A which contains 
u we can rewrite (5.15) as 

- t  
E,~=,-2~,EXv'(A) E E xv'( u 'v).  (5.16) 

I Z U A  u c A  p e g  5 

Further simplification is achieved by noting that 

~ XV'(u tv)=Tr{ ~A ~ T~(u ~)T~(v)} (5.17) 
u e A  v 6 C *  u v E C  5 • ~" ' 

where T~(v) is the matrix of  the representation O~,i for the group element v • Y'. 
Making use of  the identity [21] 

E T~( u I)=I,~O(A)xY~'(A)/d,~, (5.18) 
u c A  

when 14 is the identity matrix of  dimension d~, we find 

• xV'(u-~v)= O(A)O(Cs)xV'(A)xv'(Cs)/d~. 
u c A  t , ~ C  5 

(5.19) 

We can use this result to write 

d~ J(o(Y') 
(5.20) 

The second factor in eq. (5.20) is the dot product of  a single row in the character 
table of  Y' with itself, and thus equals 1. Finally, we have 

E~ = - l Ztxv'( Cs)/ d~ . (5.21) 

The same methods are easily extended to a general, rotationally invariant, tight 
binding hamiltonian of the form 

~ = - E t A  E E [.)(v.[, (5.22) 
A u e Y "  y e A  
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(3 2 

: ~ E/~ 
5 

the prediction of the free electron model. 

where the first sum is over the nine classes A of Y'. The eigenenergies are 

E,  = - 2 taO(a)xv ' (A) /  d~. (5.23) 
A 

Fig. 5 shows a histogram density of states computed from eq. (5.21). Peaks are 

labelled according to the irreducible representation formal by sets of degenerate 
wave functions. The peak height is just d~, = d 2, the degeneracy of the irreducible 

representation. These results agree with numerical calculations by Warner [32]. 

Note the linear growth in the density of states near the low-energy band edge. 

This can be understood in the context of  a free electron model on S 3 for which, in 

dimensionless units, E, = n(n +2) and d,,  = (n  + 1) 2. (The eigenfunctions are just 
the hyperspherical harmonics Y, . . . . .  .) It follows that d,, = E, + 1. Presumably at 

low energies the discreteness of the tight binding model is irrelevant because of the 
long wavelengths of the eigenfunctions" similar issues have been discussed in ref. [32]. 

In flat space one must ultimately determine how a given distribution of line defects 
alters electronic states. Some insight is given by the following argument. We can 

write a single electron Schr6dinger equation on a length scale large compared to 

the atomic spacing but small compared to the defect spacing 

- - - 7 2  +AV(r )  tb(r) = etp(r), (5.24) 
2m 

where the deviation A V(r) of the potential from its mean value is caused by defects 

in the icosahedral ordering. 

Following the Landau approach of sect. 3, we can relate the coarse grained 
potential AV(r)  to the local order parameter Q12 . . . .  (r). The deviation of particle 

density from its average value is 

p(r) -po=-  Ap(r)-~ ~. O,2 . . . .  (r)Y*2 . . . . . .  ( - 1 ) ,  (5.25) 
m,m: 

where -1  is the point of tangency of the sphere in fig. 3. Using the relation (see 
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13 ,, 
Y , ~ . . . . .  ( - 1 )  = ~ l  ~--~ ~ . . . .  (5.26) 

and assuming A V ( r )  is proportional to Ap(r)  we see that the Schr6dinger equation 
is 

- - V  2 + vo Tr {Q,2 . . . . . .  (r)} 0(r)  = e~,(r) (5.27) 
- 2 m  

with vo a phenomenological  constant. Because Q J2 . . . . .  (r) vanishes on disclination 
lines, electrons are repelled from or attracted to these defects, depending on the 
sign of vo. 

It may also be of  interest to solve nearly free electron models on S 3, with a weak 
potential which has the symmetries of  polytope {3, 3, 5}. The relevant Schr6dinger 
equation is 

- 2 ~ v ~  + v(,~) ~(,~) = ~ ( ~ ) ,  (5.28) 

where V~ is the laplacian operator on S 3. The potential has the expansion 

V(fi)= • V . . . . . .  Y* . . . . .  (fi), (5.29) 
n,  m l m  2 

where the only nonzero coefficients V, . . . . .  occur for the n-values listed in eq. (2.49). 
A description of energy bands in real metallic glasses would presumably require 
some combination of  the tight binding and nearly-free electron methods discussed 
here. 
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