
PHILOSOPHICAL MAGAZINE A, 1998, VOL. 77, NO. 3, 593± 619

Structure and phason energetics of Al± Co decagonal
phases

By Eric Cockayne

Department of Applied Physics, Yale University, PO Box 208284, New Haven,
Connecticut 06520-8284, USA

and MikeWidom

Department of Physics, Carnegie-Mellon University, Pittsburgh,
Pennsylvania 15217, USA

[Received 9 April 1997 and accepted in revised form 30 June 1997]

Abstract
We develop a model for Al± Co decagonal quasicrystals and approximants.

Our model de® nes a large number of potential atomic positions. These sites are
populated by two atomic species that interact with each other through electronic-
structure-based pair potentials. Monte Carlo simulation of the model produces
realistic atomic con® gurations for Al± Co alloys in the temperature and
composition ranges where a metastable decagonal quasicrystal exists. The
resulting structures generally consist of packings of space by pentagonal
bipyramid clusters. Projections of the centres of these clusters form tilings of
hexagons, boats and stars. We identify atomic displacements associated with
phason ¯ uctuations. We note a distinction between s̀imple’ phason hops
involving predominantly Al atom motion and c̀ollective’ phason ¯ ips that
transport the Co atoms.

§ 1. Introduction

A fundamental question in the science of quasicrystals is: where are the atoms
(Bak 1986a)? Experiments provide partial answers but often cannot resolve the
precise position or chemical identity of a small subset of the atoms. Theory can
assist experiment. As in ordinary crystallography (Stout and Jensen 1989), total
energies for plausible con® gurations consistent with experimental data can be calcu-
lated, and the more favourable structures identi® ed. In addition to improving our
knowledge of where the atoms are, we receive a bonus of understanding why they
choose particular positions. Further, we can identify important structural changes
and associated energetics. A topic of lively debate in quasicrystal science is the
distinction between entropy and energy stabilization of the quasicrystalline state
(Widom 1990, Henley 1991, Ingersent 1991, Socolar 1991). Accurate structural mod-
els and total energy calculations can help to resolve this debate. The modelling
presented in this paper is unbiased with regard to the mechanism of quasicrystal
stabilization.

Early theories of quasicrystals focused on tilings of space without explicit refer-
ence to the relationship between individual tiles and real atoms. Cluster models
propose reasonable local atomic structures but may leave a small amount of
empty space around the clusters, or else su� er from unreasonably short interatomic
distances. Similar di� culties plague `atomic surface’ (Bak 1986b) descriptions of
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quasicrystal structure. These di� culties led to a proliferation of nearly identical
proposed structures di� ering from one another mainly in the placement or chemical
identity of a small number of atoms. We feel that is important to compare possible
structures with each other systematically, discriminating on the basis of total energy
(Cockayne et al. 1993, Phillips and Widom 1993) for zero-temperature stability, and
free energy at ® nite temperatures.

Recently, ab initio electronic structure calculations have been used in the case of
Al± Pd± Mn to ® nd the most stable large decagonal approximants (KrajcÏ õÂ et al. 1997).
To investigate structures as complex as quasicrystals and their approximants at
thermal equilibrium, however, it is necessary to be able to evaluate energies for
large number of con® gurations rapidly. First-principles methods are not practical
at present; therefore e� ective interatomic potentials are required.

All known stable icosahedral (i-) and decagonal (d-) quasicrystals (i-(Al± Cu± Fe)
(Tsai et al. 1987), d-(Al± Cu± Co), d-(Al± Ni± Co) (Tsai et al. 1989), i-(Al± Pd± Mn)
(Tsai et al. 1990), etc.) are at least ternary compounds. To date, no e� ective inter-
atomic potentials are known for any stable quasicrystal-forming systems, so atten-
tion must be focused on binary alloys. Electronic-structure-based pair potentials
exist for binary alloys of Al with Co (Phillips et al. 1994) and Mn (Zou and
Carlsson 1993a,b). The binary Al± Co alloy is a good system to study via pair
potentials, because it contains a metastable quasicrystalline phase. Related stable
crystal phases possess local structures with ® vefold symmetry. Al and Co are also
constituents of stable d-(Al± Cu± Co) and d-(Al± Ni± Co). This paper describes in
detail our investigation of Al± Co alloys related to decagonal quasicrystals (Widom
and Cockayne 1995, 1996).

Several stable and metastable complex phases occupy a small composition inter-
val in the binary Al1- xCox system for 0.23 < x < 0.29 (Grushko et al. 1995). Most of
these phases, including a decagonal phase (d-Al± Co)), share an 8AÊ stacking periodi-
city in the z direction and possess similar structural units separated in the plane by
6.5AÊ . These structural units form tilings of hexagons in the solved structures of
monoclinic Al13Co4 (Hudd and Taylor 1962) and orthorhombic Al3Co (Grin et al.
1994, Li et al. 1994, Widom et al. 1995) and appear to form tilings of hexagons, boats
(crowns) and stars in high-resolution electron microscopy images of larger approx-
imant phases (Ma and Kuo 1995). We shall sometimes refer to this family of related
structures under the name `Al3Co’. The fact that tiles shaped like hexagons, boats
and stars comprise the Al3Co structures suggests that the same tiles also comprise the
decagonal phase. We call this model the h̀exagon± boat± star (HBS) tiling model’ (Li
1995) for d-(Al± Co). The simplest quasiperiodic HBS tiling is given by a subset of the
vertices of the two-dimensional (2D) Penrose tiling and is an example of a t̀wo-level
tiling’ (Tang and JaricÏ 1990, Li and Kuo 1991, Henley 1991, 1993) (® g. 1 (a)). Many
other HBS tilings are also possible (® g. 1 (b)). A slight variation on the HBS tiling
model, where a fourth tile shaped like a decagon is allowed (Li 1995), seems to
describe decagonal phases such as d-(Al± Pd± Mn) (Li and Dubois 1994). We call
this the `HBSD’ model.

The solved low-temperature Al3Co structures alternate ¯ at (F) and puckered (P)
layers of atoms separated by approximately 2AÊ and have a periodicity of four layers
in the z direction. The stacking sequence is FPFÂ PÂ , where FÂ is a variant of F, and PÂ
is P mirrored in a horizontal plane. The only known exception, Al11Co4 (Li et al.
1995), is stable only at high temperatures. It alternates layers similar to the F and P
types with a net 4AÊ periodicity and is closely related to the 8AÊ structures. Structural
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units separated horizontally by 6.5AÊ consist of Al16Co7 pentagonal bipyramids
(PBs) ( ® g. 2). The equator of the PB features a pentagon of Co atoms in a ¯ at
layer with edge length 4.7AÊ centred by an Al atom. Co atoms in adjacent puckered
layers lie on the (pseudo)pentagonal axis of the PB and are forced away from this
central Al, causing puckering of those layers. The PB occupies three layers along the
stacking axis. Two PBs separated by c = 8AÊ along z are joined by a fourth j̀unction’
layer consisting of a highly distorted pentagon of Al (including frequent vacancies) in
a ¯ at layer. Flat layers F and FÂ di� er by interchanging PB equators with PB
junctions. Figure 3 shows the recently solved structure (Grin et al. 1994) of orthor-
hombic Al3Co. PB equators and ¯ at-layer junctions are visible in ® g. 3 (a), while the
PB caps ® ll ® g. 3 (b).

Because two ¯ at layers occur per 8AÊ along the stacking axis, there are two
choices of level on which to centre the PB. When centred on the ¯ at layer F we
label the PB `+ ’ . The Co in layer P, just above F, is displaced upwards to accom-
modate the centring Al. When centred on the ¯ at layer FÂ we label the PB -̀ ’ . The
Co in P just below FÂ is then displaced downwards. Vertical displacement of Co
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Fig. 1

(a) Two-level HBS tiling formed by removing a subset of vertices from the Penrose rhombus
tiling. (b) Random HBS tiling.



atoms in puckered layers relates to the centring of PBs in layers F or FÂ . Because our
description is Ising like (i.e. a Z2 symmetry), we use the Ising spins to describe the
centring of the PBs or the `puckering pattern’. Figure 4 shows the puckering patterns
observed in monoclinic Al13Co4 and orthorhombic Al3Co.

Combining the HBS tiling model with the PB structure described above suggests
that the 8AÊ decagonal phase consists of PBs on the vertices of a HBS tiling. We call
this model the `PB-HBS tiling model’ for 8AÊ decagonal phases. The model `PB8’
proposed by Henley (1993) was a PB± HBS tiling model. Signi® cant structural re-
arrangements are easily described within the context of the PB± HBS tiling model. A
transformation, which e� ectively shifts the centres of the PBs in a single column by
4AÊ along the column, changes the sign of the PB. We call this transformation a
p̀uckering ¯ ip’. A second transformation is the minimal transformation that
changes one HBS tiling into another. We call this transformation a p̀hason ¯ ip’.
An alternate name for this transformation would be t̀iling ¯ ip, and we use the two
names synonymously. In a phason ¯ ip, the PBs in one column e� ectively shift by
2.5AÊ and rotate 180ë .

In this paper, we explore the thermodynamics, equilibrium structures and ener-
getics of 8AÊ periodicity Al± Co alloys with a ® nite-temperature Monte Carlo
method. Among our results, we found the following

(1) Favoured atomic con® gurations are well described within the PB± HBS
model.

(2) The average structure of a 508-atom approximant is found and presented
as atomic surface maps. Co atoms mainly occupy atomic surface interiors.
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Fig. 2

(a) PB cluster containing 16 Al and seven Co atoms. (b) Exploded view showing equator and
caps. In both simulated and observed structures, some equator Al atoms are displaced
to the midpoints of their Co neighbours. (c) Flat-layer junction. All Al sites have
partial occupancy. The sites labelled ´ also have partial Co occupancy. The long
axis of the distorted pentagon de® nes an orientation, indicated by the arrow.
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Fig. 3

(a)

(b)

Experimental and ideal atomic sites for the 2/3 approximant in (a) a ¯ at layer F and (b) a
puckered layer P. Clockwise from lower left: ideal and averaged sites labelled with
atomic surface numbers; experimental structure (atoms labelled as in the structure
re® nement of Grin et al. (1994)); ideal and experimental superimposed; same with
averaged sites added.



(3) Phason disorder similar to partial occupancy in quasicrystal approximants
(Hudd and Taylor 1962, Mahne and Steurer 1996) is prevalent at Al sites
near atomic surface edges.

(4) Individual atomic phason hops (Frenkel et al. 1986) and collective atomic
motions resulting in puckering ¯ ips or phason ¯ ips turn out to cost little
energy.

The following section presents model atomic surfaces chosen to be consistent
with known Al± Co crystalline approximant phases, and to generalize those struc-
tures to the quasicrystal. In § 3 our Monte Carlo simulation method and the pair
potentials used for total energy calculations are explained. In § 4 our main results on
structure (§ 4.1) and energetics § 4.2 are described. Finally, in § 5, our key results are
summarized, and improved methods for future studies are discussed.

§ 2. Atomic surfaces

Quasicrystalline structures can be succinctly described in terms of atomic sur-
faces (Bak 1986b). Although the shapes of atomic surfaces for a quasicrystal are
not necessarily simple (GaÈ hler 1988, Cockayne 1995), di� raction experiments on
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Fig. 4

Tiling and puckering patterns observed in (a) monoclinic Al13Co4 and (b) orthorhombic
Al3Co. The pseudocentred orthorhombic supercell of the monoclinic phase is
highlighted.



decagonal quasicrystals (Steurer and Kuo 1990, Steurer 1991, Steurer et al. 1993,
1994) show that the vast majority of atoms belong to a set of distinct atomic sur-
faces, and that these atomic surfaces are relatively ¯ at. They are strongly localized in
p̀arallel space’ while being quite extended in p̀erpendicular space’ . Since the precise
shapes of the atomic surfaces for the d-(Al± Co) structure are unknown, we include in
this work all the sites that belong to a set of oversized atomic surfaces. The number
of sites included is therefore much greater than the number of atoms. Atomic surface
sizes and shapes are deliberately chosen to include any likely low-energy structure as
well as the dominant ¯ uctuations about these structures.

In the following we use the cut method, beginning with a ® ve-dimensional (5D)
lattice. The three-dimensional (3D) physical (parallel) and 2D perpendicular space
components of the 5D basis vectors used here are

ei = [(ei
i ) , ( êi ) ]

º
a0 cos

2p i
5( ) ,sin 2p i

5( ) ,0( ) ,a0 cos
6p i
5( ) ,sin 6p i

5( )( )[ ] , i <5,

(0,0,c,0,0), i = 5,

ìï
íïî

(1)

where a0 (the quasilattice constant) and c are lattice parameters to be determined by
experiment. We use a0 = 1.529AÊ and c = 8.120AÊ for our calculations. Most atomic
surfaces are centred on 5D sites of the form (n1,n2,n3,n4,z), that is the ® rst four
coordinates are integer. In this case, we de® ne the level t of the atomic surface to be

t = å
4

j=1
nj( ) mod5. (2)

Since the atomic surfaces are distinguished by coordinate t , the actual periodicity of
the 5D structure is the superlattice of the lattice generated by eqn. (1) which leaves t

invariant. An atom in the quasicrystal located at position r has (ri , r̂ ) = (r,0) and is
associated with a nearby ìdeal site’:

(r,0) = (rideal,0) + ( D ri ,0) , (3)

(rideal,0) = å
4

j=1
nj (ei

j , êj ) + z(ei
5, ê5 ) + (0, D r̂ ) . (4)

For an approximant, eqns. (3) and (4) still hold, except that the form of the êi in
eqn. (1) must be altered appropriately (Edagawa et al. 1991, Fettweis et al. 1994).

For a given atom, the decomposition into {nj} is not unique, but in the solved
Al3Co approximants, nearly all the atoms have a unique solution to eqns. (3) and (4)
such that |D r i | < 0.4AÊ and |D r̂ | < a0. For such atoms, we call rideal the ideal site for
the atom. Inserting the corresponding values for nj in eqn. (4) into eqn. (2), we ® nd
the value of t associated with the ideal site and with the atom itself. Two atoms
whose ideal sites are separated by ¿a0 = 2.5AÊ (a typical atomic near-neighbour
distance) di� er in t by 2 (modulo 5). Centres of PBs, ideally separated by
¿3a0 = 6.5AÊ , also di� er in t by 2 (modulo 5).

From structures of solved approximants, we ® nd appropriate atomic surface
locations. We set the ideal sites for PB centres at levels 1 and 4, in agreement with
the notation of Steurer and Kuo (1990) and Steurer et al. (1993). Most remaining
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atoms in the ¯ at layers occupy levels 0, 2 and 3. The puckered layers are simpler;
nearly all the sites occupy levels 1 and 4 (see ® g. 3). Although the z coordinates of the
puckered-layer atoms take a range of values, we make the simplifying approximation
that all such atoms, except for certain ùnpuckered’ atoms described in the following
paragraph, are located at exactly (0,c/2) 6 p, where p is a p̀uckering parameter’ for
Al± Co. From the solved Al13Co4 structure, we averaged the z coordinates for the
puckered-layer atoms appropriately to obtain p < 0.26AÊ . For convenience, we com-
piled a list of useful intersite distances in table 1.

Three types of atomic site that occur in the orthorhombic Al3Co approximant
are di� cult to represent in terms of ¯ at atomic surfaces. Using the notation of Grin
et al. (1994), these are sites of type Al(7) ± Al(26), Al(8) and Al(18) (see ® g. 3). The
latter two lie at sites of approximate inversion symmetry: Al(8) in the ¯ at layer at the
midpoint between two edge-sharing PBs; Al(18) in the puckered layer where two
empty pentagons of Al meet tip to tip at the centre of a long hexagon of PBs. In each
of these two cases, ideal sites with integer coordinates lie symmetrically placed
nearby. For the Al(8) sites, atomic surface 2 and 3 sites lie 0.76AÊ away. For the
Al(18) sites, atomic surface 1 and 4 sites lie 0.54AÊ away, 0.47AÊ in plane and 0.26AÊ
vertically. The vertical puckerings occur in opposite directions; so the averaged site is
ùnpuckered’, as is nearly the case experimentally. We de® ne the appropriate
averages of the nearby ideal sites as extra s̀pecial’ sites, shown in ® g. 3.

The remaining di� cult sites, the Al(7) ± Al(26) pair, lie in the ¯ at layer near the
midpoint of a PB edge shared by two clusters and are asymmetrically displaced
1.34AÊ and 0.90AÊ respectively, toward the centres of the two clusters (Grin et al.
1994). A pair of atomic surface 2 and 3 sites exist in similar positions, but with
smaller and symmetric 0.76AÊ displacements from the edge (see ® g. 3). The Al(7)
and Al(26) sites lie 0.58AÊ and 0.14AÊ respectively, away from from these ideal sites.
We rely on the existing ideal sites to approximate the Al(7) ± Al(26) class of sites. The
ideal sites are 1.53AÊ apart while the experimental sites are 2.24AÊ apart. In either
case, the sites are so close together that it would be very costly energetically for both
sites to be simultaneously occupied by Al.

In all cases except the Al(7) ± Al(26) pair, the displacement of experimental sites
from ideal is less than 0.38AÊ . To visualize the coincidence between ideal and experi-
mental positions, consider spheres of radius 0.38AÊ placed around every ideal site.
Only 5% of the total volume of space would be ® lled, but 99% of the experimental
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Table 1. List of important distances in our model. For Al± Co, we use quasilattice parameter
a0 = 1.529AÊ , periodicity along decagonal axis c = 8.120AÊ and puckering parameter
p = 0.260AÊ .

Total distance In-plane Vertical Total distance In-plane Vertical
(AÊ ) distance distance (AÊ ) distance distance

0.260 0 p 2.353 ¿ cos ( p /10) a0 0
0.520 0 2p 2.474 ¿a0 0
0.539 ¿- 1a0 /2 p 2.908 2 cos ( p /10) a0 0
0.765 a0 /2 0 4.706 2¿ cos ( p /10) a0 0
0.945 ¿- 1a0 0 5.532 51/2¿a0 0
1.529 a0 0 6.477 ¿3a0 0
2.290 0 c/4 + p 7.614 2¿2 cos ( p /10) a0 0
2.339 a0 c/4 - p 8.120 0 c



sites would be covered by these spheres. The median deviation of experimentally
measured sites from the nearest ideal site is 0.12AÊ , a distance smaller than typical
displacements due to thermal phonons at room temperature.

We extend the above analysis to ® nd reasonable atomic surface shapes and sizes
for larger approximants and the decagonal phase. We exploit the fact that the atomic
arrangements observed in the Al± Co approximants are locally two- or three-level
packings and the fact that there is a very convenient limit to the range of atomic
surface shapes for a good two- or three-level packing: the atomic surfaces for levels
t , t + 2 and t - 2 lie within decagons of radius a, a and ¿- 2a respectively (Olamy
and KleÂ man 1989, Niizeki 1994). The Al± Co approximants show that levels 0, 2 and
3 dominate in certain regions of the ¯ at planes (see ® g. 3). These atomic surfaces are
set to be decagons of radius a, while the atomic surfaces for levels 1 and 4 are set to
radius ¿- 2a. In the puckered layers, the occupied sites in the solved structures are
exclusively level 1 and level 4 sites (or their averages as described above). We choose
decagons of radius a for levels 1 and 4. We also include atomic surfaces of radius
¿- 2a at levels 2 and 3 to allow for the possibility of three-level packings in these
layers.

The di� culty extrapolating from approximants to the quasicrystal is that the
quasicrystal itself may contain sites cut from atomic surfaces so small that they are
not contained in small approximants. For example, a boat and two hexagons could
combine to form a decagon of 20AÊ diameter, reducing the number of vertices, as
shown in ® g. 5. The interior of an asymmetric 20AÊ decagon in a PB± HBS tiling
could undergo reconstruction to a decagonally symmetric arrangement (Beeli and
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Fig. 5

Possible reconstruction of two hexagons and a boat of edge length 6.5AÊ into a symmetric
decagon of diameter 20AÊ .



Horiuchi 1994), turning it into a PB± HBSD tiling. The solved Al± Co approximants
are too small to contain the motifs shown in ® g. 5 and hence cannot distinguish
between a HBS tiling quasicrystal and a HBSD tiling quasicrystal. The centres of
reconstructed decagons would be level 0 points and could naturally accommodate a
(distorted) pentagonal bipyramid. For maximal local symmetry, these bipyramids
would be centred at unpuckered positions in the puckered layer and the p̀ole’ atoms
would then be puckered positions in the ¯ at layer. These potential sites are associated
with the small atomic surfaces of radius ¿- 3a included in table 2. We thus allow for
the possibility of HBSD tilings in our system. Note how the distinction between HBS
and HBSD tilings depends on very small atomic surfaces, that is a very small fraction
of the atoms.

With the atomic surface radii described above, the site list allows for a variety of
quasiperiodic and approximant structures. Certain phason ¯ uctuations cannot be
represented, however, because the ® nal atomic position would be outside this set. To
model these ¯ uctuations, which we expect to be important, we make the atomic
surfaces oversized. We keep their decagonal shapes, but expand each radius by
² º ¿- 3a/2 < 0.12a. The value of ² was chosen to allow for what we estimate to
be the important ¯ uctuations while keeping the number of sites from being too large.
In a 2D, maximally random random-tiling quasicrystal, for large approximants, ²

should increase logarithmically (Widom et al. 1989, Strandburg et al. 1989) as the
size of the approximant. For 3D icosahedral quasicrystals it should saturate (Tang
1990). The appropriate behaviour for 3D decagonal quasicrystals with equilibrium
stacking disorder is still open to investigation (Henley 1991, Burkov 1991a, Jeong
and Steinhardt 1993, Shin and Strandburg 1993).

After the atomic surfaces are oversized, we add the special sites with half-integer
coordinates. All ¯ at layer positions midway between level 1 and level 4 ¯ at-layer sites
separated by 6.5AÊ are added to the list, in order to include sites equivalent to Al(8)
in Al3Co. Additionally, sites at z = {0,0.5}which project to the centre of a 6.5AÊ by
7.6AÊ rectangle of level 1 and 4 ¯ at-layer sites are included, in order to include sites
equivalent to Al(18) in Al3Cd (see ® g. 3).

Finally, all atomic surfaces are repeated at the additional values of z equal to - z,
0.5 + z and 0.5 - z. Addition of the - z sites allows the atoms in the puckered layers
to shift to either of two puckering positions 0.26AÊ above or below the middle of
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Table 2. Atomic surfaces included. We used ² = ¿- 3 /2 < 0.118 in this study. The remaining
atomic surfaces differ only in their z coordinate and generated by z + 0.5 and - z. The
average electron count in individual atomic surfaces as determined by simulation,
showing the absence of certain atomic surfaces.

Radius Average electron count
z Level(s) Multiplicity (units of â ) (simulated)

0.25 0 2 1 + ² 702
0.25 2, 3 4 1 + ² 140
0.25 1, 4 4 ¿- 2 + ² 27
0.25 (Averaged) 10 (See text) 18
0.282 0 4 ¿- 3 + ² 13
0.468 1, 4 8 1 + ² 227
0.468 2, 3 8 ¿- 2 + ² 0
0.5 0 2 ¿- 3 + ² 0
0.5 (Averaged) 10 (See text) 21



their layer. As a consequence, the periodicity of the list of sites is only 4AÊ . However,
we note that most models for 4AÊ periodic decagonal quasicrystals (Steurer and Kuo
1990, Yamamoto et al. 1990, Burkov 1991b, Hiraga et al. 1991, Steurer et al. 1993, E.
Cockayne and M. Widom 1996, unpublished) are incompatible with our atomic
surfaces because we impose FP alternation (P10/mmm symmetry), while the 4AÊ
models alternate equivalent layers (P105/mmc symmetry), as implied by di� raction
studies (Steurer and Kuo 1990).

§ 3. Monte Carlo approach

We employ Monte Carlo simulation to assign atoms to sites. Over long runs, the
simulation generates many possible atomic arrangements, each with a probability
proportional to its Boltzmann weight. Our simulation uses the Metropolis et al.
(1953) method, generating a new con® guration based upon the present atomic posi-
tions, and moving to the new con® guration with a probability related to the change
in total energy between con® gurations while obeying the requirement of detailed
balance.

New con® gurations are generated by one of three moves. We permit a s̀mall
hop’ of an atom to a neighbouring site less than 2.5AÊ away. We also permit l̀ong
hops’ to any other site regardless of how far removed. Finally, we include s̀pecies
swaps’ in which an arbitrarily chosen Al± Co pair exchange positions. In the steady
state, the rate of transitions into a con® guration must match the rate of transitions
out of the con® guration. Detailed balance guarantees that the steady-state probabil-
ity to be in some con® guration is proportional to the Boltzmann factor
exp(- E /kBT) for the con® guration.

Long hops and species swaps easily obey detailed balance using the ordinary
Boltzmann factor to accept or reject the move. The small hops are more complicated,
however, because some sites have more neighbours than other sites do. Consider a
small hop from site i to site j leaving all other atoms ® xed. Let Pi and Pj be the
Boltzmann factors for the initial and ® nal con® gurations respectively, and Ei and Ej
the energies. The rate to go from i to j is

Ri® j =
Pi x i fij exp (- (Ej - Ei) /kBT ) if Ej > Ei,
Pi x i fij otherwise,

ì
í
î

(5)

where x i is the rate at which we attempt moves out of site i when it is occupied and fij
is the fraction of attempted moves out of site i that go to site j. Let Zi be the number
of sites within the small hop size of site i, so that fij = 1/Zi. Detailed balance requires
equality of rates Ri ® j = Rj ® i, or

x jZi

x iZj
=

Pi

Pj
exp (- (Ej - Ei) /kBT ) . (6)

Inspecting eqn. (6) we note that the right-hand side equals unity at thermal equili-
brium. In order for our simulation to produce this equilibrium distribution we must
choose the rate x i of attempted transitions out of each site i in proportion to the
number Zi of sites within the small hop length of the site i.

Provided that the list of possible sites is not too large, one may speed the simu-
lation by pre-calculating atomic interaction energies. First form an array recording
values of the interaction energy (including images under periodic boundary
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conditions) between an atom of type a at site i and an atom of type b at site j for all
pairs of sites i and j and species a and b . Then, to calculate the potential energy of a
given atom at site i, just sum the values of this array over each occupied site j. The
savings in simulation time is considerable, with a single evaluation of potential
energy for our 508 atom system going about 50 times faster than is possible without
using pre-calculated values. The disadvantage to this approach is the need to store
large arrays in active memory.

Simulation e� ciency is important because we need to reach from 105 ± 106 Monte
Carlo steps per atom. Such long runs are needed because of two peculiarities of our
calculation.

(1) Acceptance rates are low, typically 0.0026 for small atomic hops at
T = 1000K; so we must attempt large numbers of moves signi® cantly
change the con® guration.

(2) Average energy differences between con® gurations are small compared with
random thermal ¯ uctuations.

Quasicrystals possess a mode of elastic deformation, known as a phason mode,
not found in ordinary crystals. One can conveniently distinguish phason modes from
ordinary elastic phonon modes by representing the quasicrystal as a superposition of
incommensurate density waves (Lubensky 1988), each with its own phase. Varying
the relative phases of the waves with respect to each other creates zero energy
`Goldstone modes’ of the quasicrystal. Certain combinations of phase changes
(those that transform as vectors under rotation (Lubensky 1988)) generate contin-
uous translations of the structure and correspond, at ® nite wavelengths, to phonon
modes. The orthogonal subspace of phase changes generates phason modes.
Whereas phonon modes impart continuous atomic displacements to each atom,
phason modes are believed to create discrete atomic hops (Frenkel et al. 1986)
between nearby ideal sites. It is common to refer to such localized atomic hops as
phasons, without regard to spatial correlations among hopping atoms. In the atomic
surface description of a quasicrystal, an atom on a site near the edge of an atomic
surface can hop to a nearly equivalent site near a di� erent atomic surface edge.
Because the two sites are nearly equivalent, the energy di� erence may be vanishingly
small.

Our modelling technique places atoms only at ideal sites generally located at least
0.5AÊ apart. Since the expected thermal phonon displacements of about 0.3AÊ at
T = 1000K are insu� cient to displace atoms from one ideal site to its neighbour,
phonons are frozen out in our model. Thus, except for some purely vertical hops that
relate to puckering ¯ ips, the atomic hops in our simulation are properly described as
phason ¯ uctuations. However, we simulate ® nite unit-cell structures with periodic
boundary conditions. These are ordinary (although complex) crystals and should not
have phasons as long-wavelength elastic modes. For these crystal structures, the
phason hops correspond to a type of internal disorder in which many sites possess
fractional occupancy.

Our Monte Carlo method loses the temporal information produced by molecular
dynamics, but it retains the thermodynamic equilibrium state. Con® gurations are
sampled with the proper frequency; they just appear in unusual order. In fact, the
evolution pathways in the Monte Carlo method can be chosen at our convenience.
By explicitly testing discrete atomic hops, atoms may move easily between nearby
potential wells without the need to climb the barrier that separates them. Another
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move unique to the Monte Carlo method swaps atoms of di� ering chemical species.
In reality this might require the participation of a nearby vacancy or a lattice dilation
to give the atoms enough room to move in. Our simulation accomplishes the same
task without these complications. We even allow hops and swaps of arbitrarily large
distance, further reducing the time necessary for the simulation to equilibrate.

For atomic interactions we use pair potentials previously described by Phillips
et al. (1994). These pair potentials represent the dominant term in the structural
component of cohesive energy. They are derived by calculating the perturbation to
an otherwise uniform free-electron density caused by inserting a positively charged
ion and then calculating the energy to place a second ion in the electron gas
of spatially varying density. The resultant Friedel oscillations in the potentials
favour particular interatomic separations consistent with quasicrystalline structures
(Widom and Cockayne 1996). Direct d± d interactions between transition-metal
(TM) atoms are not included. These may be expected to play a role when TM
atoms lie close together (less than about 2.5AÊ ), but in the actual structures the
TM atoms lie 2.9AÊ or more apart. The full cohesive energy should include three-
body and higher-order interactions. Fortunately, the two-body term alone seems to
reproduce adequately the experimentally determined phase diagram in the composi-
tion regime of interest up to about 27% Co (Phillips et al. 1994).

The pair potentials include a smooth cut-o� beyond 10AÊ . We employed periodic
boundary conditions in our simulations. Typically the simulation cell was just a
single unit-cell length along the a and b axes but was doubled to achieve a length
of 16.24AÊ along the c axis. Thus no atom interacted strongly with periodic images of
itself.

§ 4. Results

Using the simulation method outlined in § 3, we acquire data relevant to two
important problems: structure and energetics. Most con® gurations produced in the
simulations can be described in terms of cluster packings, allowing us to describe an
ideal alloy structure both in real space and in terms of atomic surfaces. By comparing
total energies of di� erent con® gurations we calculate energies of single- and multiple-
atom displacements. We identify changes in structure and energy related to phason
hops and to puckering and tiling ¯ ips.

4.1. Structure
We investigated several orthorhombic approximants in the h/k series (Edagawa

et al. 1991, Fettweis et al. 1994). A remarkable number of approximants to di� erent
decagonal phases belong to this family (Liao et al. 1992). Even the Al13Co4 mono-
clinic phase can be looked at as a slightly distorted supercell of a 3/2 orthorhombic
approximant (see ® g. 4). Simulations on periodic approximants allow the atomic
structure of small approximants to be compared with known results and the atomic
structure of large unsolved approximants to be predicted. The results on the approx-
imants can then be extrapolated to a plausible model for the decagonal quasicrystal
phase.

Before any simulation can begin we must decide on an appropriate atomic
density and chemical composition. We use a known structure as a guide. The
Al13Co4 monoclinic phase (Hudd and Taylor 1962) has 102 sites per unit cell, occu-
pied by 72.8 Al atoms and 24 Co atoms. Assuming that all Co atoms for any h/k
approximant belong to PBs and that the PBs lie on an HBS tiling, there are eight
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Fh+k- 1 Co per cell, Fi being the ith Fibonacci number (we choose the origin of the
Fibonacci series F1 = F2 = 1). The p̀roper’ number of Al atoms for the other
approximants should be near the closest integer to 72.8¿h+k- 5. This suggests the
decagonal phase lies at about limn® ¥ [8Fn /(8Fn + 72.8¿n- 4] < 25.2% Co, and the
approximant phases should converge towards this value. Fortunately, the corre-
sponding electron density is 0.1808AÊ - 3, almost exactly the same as the density in
pure Al for which the pair potentials were calculated.

The ideal lattice parameters a and b for an h/k approximant are a = 51/2¿h+1a0
and b = 2cos ( p /10) ¿ka0. We focus our attention on three particular approximants:
the 2/3 approximant, with lattice constants a = 14.48AÊ and b = 12.32AÊ , with com-
position Al73Co24; the 3/2 approximant with lattice constants a = 23.43AÊ and
b = 7.61AÊ , with the identical composition; the 3/4 approximant with lattice con-
stants a = 23.43AÊ and b = 19.93AÊ and composition Al190Co64. The 3/4 approxi-
mant has not been observed in Al± Co alloys but it provides a bridge between the
solved 2/3 Al3Co approximant and the larger Al± Co approximants reported (Ma
and Kuo 1992, 1995, Ma et al. 1995), as well as the metastable decagonal phase itself.

The simulation described in § 3 was performed on all three approximants to test
the PB± HBS tiling model. Long runs were performed on each approximant and
con® gurations separated by long time intervals were examined from each simulation.
A systematic way of associating a PB± HBS tiling with a con® guration is needed. Our
results suggest that examination of the Co atoms alone is su� cient to identify PBs
and the puckering pattern. The characteristic of a PB is a Co pentagon at the equator
and junction layers with the Co atoms in the puckered layers on pole positions
displaced away from the PB equator. We examined the Co positions in each sample
con® guration to determine the location of PBs. All independent coordinates (x,y) in
the site list were considered as possible PB axes. Two PBs, each containing ® ve
equator Co atoms and two pole Co atoms, as well as two junction layers each
containing ® ve junction Co atoms can be accommodated by the (doubled)
c = 16AÊ periodicity, for a a total of 24 Co atoms per ideal vertically stacked PBs.
For each con® guration tested, the number of Co atoms matching Co positions for
the ideal PBs was counted for each possible cluster center, and then the centres were
ranked in order of agreement with the ideal PB.

Suppose that the simulation of a 3/4 approximant yielded a perfect PB± HBS
tiling. There would be a 24-atom(or 100%) coincidence between ideal and actual Co
positions for each of the ten PB axes. Additionally, there would be axes external to
the actual PB axes with a large coincidence between actual and ideal Co positions.
Detailed consideration of the geometry of each possible tiling (® g. 6) shows that the
maximum coincidence for an external axis is 16 Co atoms (two thirds of the max-
imum 24) and that there are several such axes for each tiling. Now suppose, on the
other hand, that the simulation structure were completely random. Then the ranked
Co coincidence count would be a smoothly decreasing function of rank. The inter-
mediate case of a PB± HBS tiling with slight Co disorder would yield ten axes with
nearly perfect agreement and several with close to two-thirds agreement.

The results for our simulation are shown in ® g. 7, where we plot the average Co
coincidence fraction against rank for the 3/4 approximant simulation. The signature
of a PB± HBS tiling with only slight Co disorder is evident. First, the coincidence
fraction for ranks 1± 10 is close to unity showing that ten PB axes can be identi® ed
per con® guration. Second, the coincidence fraction jumps discontinuously at rank 11
to a group of axes with close to two-thirds coincidence fraction, suggesting that the
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local environment of the PBs is correct for a PB± HBS tiling. Inspection of repre-
sentative con® gurations con® rms that the projected PB axes formed a PB± HBS tiling
in each case. Finally, for most PB axes, with few exceptions, one centring position
(+ /- ) reproduced the positions of the pole Co atoms signi® cantly better than the
other, showing that puckering patterns are also well de® ned.

The agreement between observed Co positions and those for a perfect PB± HBS
tiling is not always exact, as shown by the less than perfect coincidences in ® g. 7.
Still, for the 3/4 approximant, an average of 97% of the Co atom positions agreed
exactly with those of the corresponding perfect PB± HBS tiling. Similar agreement is
found for the other approximants studied. We conclude that under pair potentials
the PB± HBS tiling model, with the PB puckering Ising variable, is valid for small
approximants.
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Fig. 6

All symmetry-independent HBS tilings allowed for the 3/4 orthorhombic cell.



In both the 2/3 and the 3/2 approximants there is only one possible HBS tiling
consistent with the lattice constants, namely the tilings consisting of hexagons only
shown in ® g. 4. The simulation easily ® nds (and remains l̀ocked’ on) these tilings,
which are the experimentally observed tilings. For the 3/4 approximant, there are ® ve
symmetry-independent HBS tilings (see ® g. 6). Four of these (B, C, D and E) have
mirror or glide planes consistent with full orthorhombic symmetry, while tiling A has
only monoclinic symmetry. Three of the ® ve distinct tilings of ® g. 6 (B, C and D)
were observed in our simulation. With the atomic surface oversizing parameter ² that
we chose, we lack proper sites to place a complete PB on each vertex of tiling E and
did not observe this tiling in our simulation. We suspect that tiling A would appear
in a su� ciently long simulation.

A representative atomic structure corresponding to tiling B is shown in ® g. 8. The
broken lines in ® g. 8 indicate the tiling change needed to transform the tiling of type
B into type C. The broken lines in ® g. 8 (b) form boundaries of bowtie-shaped
regions; thus this ¯ ip is called a b̀owtie ¯ ip’ (Steurer et al. 1993, Widom and
Cockayne 1995). Each tiling in ® g. 6 (and its mirror images) can be reached from
the others via a series of bowtie ¯ ips.

By inspection of ® g. 8, we ® nd a simple description of the atomic motion
involved in the bowtie ¯ ip. It involves the exchange of an Al± Co pair separated
by 2.47AÊ in each puckered layer, the exchange of a Co atom with a vacancy or
Al atom 5.5AÊ away in each ¯ at layer, together with some additional small Al atom
phason hops. Details of the ¯ at-layer exchange and Al atom phason hops depend on
the local Al con® guration.

Individual structures in our 1000K simulations are not fully stable under
relaxation using our pair potentials. We believe this re¯ ects two de® ciencies in
our modelling e� ort. First, the ideal sites do not exactly match known positions in
small approximants. The atomic surfaces should not be perfectly ¯ at. The median
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Fig. 7

Average coincidence fraction f between Co positions for Nth-best cluster axis in a T = 1000K
Al± Co simulation and the Co positions for perfect PB cluster centred on this axis. The
horizontal line at f = 2

3 represents the maximum coincidence for an axis external to a
given PB in a PB± HBS tiling. Note the clear division between PB axes for N < 10 and
non-PB axes for N > 10 as expected in the HBS tiling model.
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Fig. 8

(a)

(b)
Atomic positions in (a) a ¯ at layer and (b) a puckered layer for a representative 1000K

simulation con® guration. A 2 by 2 supercell of the simulation cell is shown. Open
circles denote the Al atoms, while full circles denote the Co atoms. This con® guration
represents tiling B of ® g. 6. The broken lines indicate the single bowtie phason ¯ ip per
unit cell needed to convert this tiling into a tiling of type C.



displacement under relaxation of 0.2AÊ is fairly consistent with the median 0.12AÊ
deviations of our model from experiment discussed in § 2. Secondly, the pair poten-
tials only approximate the total energy, which should include three- and higher-body
interactions. While we believe this has only a small impact on our calculated total
energies and the resulting simulated equilibrium ensemble, it can have a considerable
impact on relaxation to lowest-energy con® gurations. There are many nearly degen-
erate structures di� ering only by small atomic displacements. Any barrier between
such con® gurations would be small. The lack of many-body interactions then could
mean the di� erence between existence or absence of a barrier in our calculated
energy landscape. Where barriers are missing, large displacements may result even
though energy changes are small.

Interestingly, in the orthorhombic Al3Co structure (Grin et al. 1994), the largest
Debye± Waller factors are reported for those sites in the Al(7) ± Al(26) family near the
edges of ¯ at-layer pentagons, and their averaged counterparts. These are the atoms
that appear most mobile in our simulation. We speculate that the large Debye±
Waller factors con® rm the very ¯ at energy landscape described above, and these
atoms will easily displace under relaxation. A minority (about 2%) of the atoms
exhibit relaxations over 1AÊ . Most of these large displacements are the central PB Al
atom ò� centring’. Whether this is an artefact of the pair potentials or represents an
actual displacive transition that takes place at low temperatures is an open question.

Since the experimental evidence suggests that most atoms do indeed sit near our
ideal sites, we believe that our discretization of space partially compensates for our
lack of many-body interactions. We believe our simulated con® gurations are closer
to experiment than would be possible in the continuum.

PB equators occupied by just one central Al atom are easily distinguished from
PB junction layers occupied by up to ® ve Al atoms. The decoration of these ¯ at
layers is strongly correlated with the vertical displacement of the Co atoms in adjoin-
ing layers. During the simulation the ¯ at-layer Al decoration ¯ uctuates in tandem
with the p̀uckering’ discussed in the introduction. There is greater variability in the
¯ at-layer Al con® guration than may be accounted for by the puckering ¯ uctuations
alone. The PB junction layers, in particular, do not exhibit a unique Al pattern. The
Al concentration is su� ciently low that plenty of energetically reasonable atomic
sites remain empty. Many more sites remain that cannot be occupied owing to over-
lap with a nearby Al atom but can become occupied once the nearby Al atom moves
elsewhere. As the simulation progresses, a vast number of distinct Al con® gurations
are visited that are all compatible with a given PB tiling and puckering pattern.

Table 2 gives the simulation average electron count per unit cell due to each
atomic surface type, based on results for the 3/4 approximant at 1000K. The
d̀ominant’ atomic surfaces (based on average electron count times multiplicity)
for the ¯ at layers are, in order, the t = 0 atomic surface associated with the network
of Co pentagons, the t = 2,3 atomic surfaces associated with the PB junction layer
Al atoms, the àveraged’ atomic surfaces associated with Al atoms on the edge of a
Co pentagon, and the t = 1,4 atomic surfaces associated with the PB centre Al
atoms. The dominant atomic surfaces for the puckered layers are the t = 1,4 atomic
surfaces containing all the PB cap atoms and the àveraged’ atomic surfaces for
unpuckered atoms near the centres of the tiles. It is interesting to note that the
puckered-layer level 0, 2 and 3 atomic surfaces had strictly zero occupancy in the
simulations. This implies that there is little tendency for reconstruction in this
approximant.
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The average structure obtained can be conveniently displayed as atomic surface
maps. Figure 9 shows maps of mean Al, Co and total occupancy of each integer
coordinate atomic surface that is occupied during the 1000K 3/4 simulation. The
discreteness of the maps is due to the ® nite approximate size. The pseudopentagonal
symmetry of the individual atomic surfaces is clear, particularly for the t = 1 and 4
puckered-layer atomic surfaces. The ¯ at-layer atomic surfaces at t = 0, and puck-
ered-layer atomic surfaces at t = 1 and 4 consist of cores that are primarily Co, and
Al on the outsides, while the other atomic surfaces are nearly entirely occupied by
Al. The occupancy probability of the ¯ at-layer t = 2 and 3 atomic surfaces fall o�
rather smoothly near the atomic surface edges. Partial occupancy is the crudest
characterization of disorder. We have also investigated pair correlation functions,
de® ned by subtracting the product of two individual site occupancies from the
probability of simultaneous occupation of those two sites. The strongest correlations
found are negative correlations between sites separated by less than 2AÊ and are due
to the short-range interatomic repulsion.

Partial Al occupancy corresponds mainly to variability in the junction layer
decoration described above. Coordinated phason ¯ uctuations that rearrange the
HBS tiling, in contrast, require both Al movements and Al± Co exchange. This
causes the partial Al occupancy near the edges of the puckered-layer atomic surfaces,
as well as a thin zone of mixed Al± Co occupancy separating the Co and Al zones in
the mixed atomic surfaces. In physical space, a Co± Al pair separated by 2.47AÊ
exchanges in each puckered layer, while a Co atom in the junction layer exchanges
with an Al or vacancy 5.5AÊ away (see broken lines in ® g. 8).

Finally, we discuss the disorder in the Co atom positions. On average, 3% of Co
atoms are not on ideal PB± HBS tiling positions at T = 1000K. We systematically
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Fig. 9

Maps of the atomic surfaces obtained by simulating an Al± Co 3/4 orthorhombic approximant
at T = 1000K.



investigated these defects and found that nearly all of them (95%) involve the type of
Co motion associated with a phason ¯ ip (2.47AÊ horizontal in a puckered layer or
5.5AÊ horizontal in a ¯ at layer) or a puckering ¯ ip (0.52AÊ vertical motion of the pole
atom). These defects create stacking disorder because they occur in some, but not all,
atomic layers. About a third of such defects displace Co atoms to a new position that
is incompatible with a PB tiling; however, these defects were always isolated, while
the Co defects compatible with the bowtie ¯ ip mentioned above often occur in a
coordinated way in several layers to change the tiling. Incidentally, in the high-
temperature 4AÊ Al11Co4 phase, the Al and Co positions are interchanged with
respect to the PB cap decoration, that is the 2.47AÊ horizontal Al± Co exchange
actually becomes favoured in free energy.

That observation reveals the chemical nature of phason hops in this system, and
in chemically ordered systems in general. Exchanges used in our simulation are long-
range with unphysical dynamics, but correct equilibrium properties. We conclude
that the energy di� erence between a perfect PB± HBS tiling and one with bowtie ¯ ips
in some layers is much less than the energy barrier associated with the Co atom in an
intermediate position (which was not observed in the sampled con® gurations).
Chemical ordering is a problem for phason dynamics, because the short (less than
2AÊ ) atomic phason hops in realistic atomic models destroys the chemical ordering.
Preserving chemical order in the PB± HBS tiling model requires Co motion greater
than 2AÊ . Our simulations suggest a hierarchy of phason motion; short (less than
2AÊ ) mainly Al atom phason hops, and correlated phason ¯ ips that transport Co
atoms more than 2AÊ to their positions in another chemically ordered structure. The
Co atoms spend a statistically insigni® cant time at intermediate positions.
Examination of the physically plausible local swaps and hops suggests that mobility
of Co atoms increases greatly when some nearby Al sites are vacant. Our observa-
tions on Co hopping are consistent with the kinds of vacancy-assisted hopping and
di� usion discussed by Coddens et al. (1993) and Zumkley et al. (1996).

4.2. Energetics
We examine the energetics of single-atom displacements and multiple-atom `̄ ips’

associated with distinct tilings and distinct patterns of puckering. At a temperature
of 1000K we observe fast ¯ uctuations of certain Al sites in addition to slow evolu-
tion of the Co positions. To investigate the nature of the excitations in more detail,
we ® rst cooled the 3/4 approximant to absolute zero temperature via simulated
annealing; then we ran the Monte Carlo simulation discussed in § 3, still at absolute
zero. Our annealed con® guration is metastable because no hops or swaps are suc-
cessful at 0K. Energy increases of the attempted motions are the energies of the low-
lying one- and two-atom excitations. Figure 10 shows the frequency of attempted
processes as a function of energy change for those Al hops, Co hops and Al± Co
swaps of less than 2.5AÊ and D E < 2eV which are most likely to be physical. The
corresponding hops or swaps are identi® ed in table 3.

Two spectral features worth noting. Firstly the spectra for Al and Co hops
contain sharp peaks at low energies and show no overall increase between 0 and
2eV. The spectrum for Al± Co swaps, on the other hand, rises as a broad continuum
as the energy increases. Secondly there are many more distinct low-energy Al hops
than low-energy Co hops. The only low-energy Co hops observed that contain a
phason component are 2.34 and 2.47AÊ hops to nearby empty sites. Interestingly,
both of these hops involve the kind of junction layer site indicated by an ´ in ® g.
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Fig. 10

`Energy spectra’ for (a) short Al hops, (b) short Co hops and (c) short Al± Co swaps.

Table 3. Prominent low-energy peaks in excitation
spectra (® gs. 10 (a) and (b)) and associated
atomic motion.

Energy (eV) Move type

0.04 Al 0.765 AÊ
0.10 Co 2.339 AÊ
0.12 Al 0.520, 0.539 AÊ
0.15 Co 2.339 AÊ
0.20 Co 0.520 AÊ
0.21 Al 0.539 AÊ
0.28 Co 0.260 AÊ
0.29 Al 0.520 AÊ
0.45 Co 0.260 AÊ
0.51 Al 0.520, 0.945 AÊ



2 (c). In fact, during the simulated annealing, three out of 128 Co atoms moved o�
puckered-layer PB pole positions via 2.34AÊ hops to these vacant junction layer sites.
The lowest-energy Co phason excitations simply move those Co atoms back to the
PB poles. Curiously, there are more Co atoms on ideal PB positions on average at
1000K than at 0K. The slower rate for Co motion may be due to the need for
Al vacancy assistance, rather than the relatively strong binding of Co compared with
Al.

It would be useful to establish an e� ective free energy for di� erent tilings and
puckering patterns, in which the Co atoms are frozen in the PB± HBS tiling positions
and the fast Al ¯ uctuations are ìntegrated out’. Formally, the full partition function
can be written

Z = å{Co positions} å{Al positions}
exp - E

kBT( ) = å{Co positions}
exp - Fef f

kBT( ) , (7)

and the e� ective free energy may be decomposed into

Fef f = Uef f - TSef f . (8)

Determination of Feff would replace the complex problem of atomic-level thermo-
dynamics with a simpler tiling model thermodynamics containing terms for indivi-
dual tile energies and entropies as a function of temperature and corrections for the
energy and entropy interactions between tiles.

The inner sum in eqn. (7) can be evaluated, up to an overall constant factor, by
simulatingtheAlmotionwhileholdingtheCoatoms ® xed. Theenergycomponent Ueff
is the averageof the instantaneous total energies. The entropy Seff maynot be soeasily
evaluated. For the present we consider the partial information provided by the energy
alone. We investigated the dependence of Ueff on the PB tiling and puckering pattern.
Our results show small, but measurable, e� ects of tiling and puckering patterns on
energy. Theenergydi� erencesamongtilingswiththesamenumbersof hexagons, boats
andstarsare typicallyin the rangeof 0.001eVatom- 1. There is a largerenergychange,
about 0.002eV atom- 1, for replacing a pair of boats with a star and a hexagon.
Quantitative data for some of the structures simulated is presented in table 4.

During a run the internal energy constantly ¯ uctuates. From the calculated heat
capacity (about 0.3kB atom- 1) at T = 1000K, with 508 atoms we ® nd rms deviations
of total energy of 1.1eV, or 0.002eV atom- 1. This energy scale for single-atom
¯ uctuations is slightly larger than the energy di� erences between distinct tilings.
That explains why the system evolves among distinct tilings during the simulation.
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Table 4. Selected results for simulations with ® xed Co patterns. Data based on three runs of
150000 attempted Monte Carlo steps per atom for each tiling and spin con® guration.
The form of a two-interaction tiling Hamiltonian for Uef f is also shown.

Energy Specific heat
Type Uef f (eV atom- 1) (units of kB)
B antiferromagnetic UB - 14J + 10K 0.113 37(7) 0.280(9)
B ferromagnetic UB + 14J + 10J 0.112 75(5) 0.275(7)
C antiferromagnetic UC - 14J + 10K 0.113 85(6) 0.299(7)
C ferromagnetic UC + 14J + 10K 0.113 31(4) 0.293(5)
D antiferromagnetic UD - 14J + 11K 0.116 02(4) 0.285(8)
D ferromagnetic UD + 14J + 11K 0.114 67(7) 0.288(6)



It also means that the e� ective energy Ueff is sensitive to each atomic position, and
therefore sensitive to the presence or absence of individual sites in our ideal site list.
The details of the site list may dominate di� erences in e� ective energies between
con® gurations, with the true energy di� erences between tilings being immeasurably
small by our method.

We attempted to describe the puckering energetics in terms of the Ising spin
model described in the Introduction. For each PB (labelled i) we de® ne the Ising
spin si. The e� ective energy is a function of the tiling and the spin con® guration
because these, together, de® ne the Co positions. Since the puckering patterns of
experimental Al3Co and Al13Co4 are neither f̀erromagnetic’ nor `antiferromagnetic’
(see ® g. 4), we include second-nearest-neighbour terms. It is plausible that ® rst- and
second-neighbour terms dominate the puckering energetics because, in these cases,
two PBs share atoms. In the hope that the Ising variables decouple from the tiling we
write the e� ective Hamiltonian

Uef f = Uef f (tiling) + å nn
Jsisj + å

2nn
Ksisj. (9)

To determine the magnitudes of J and K, we produced a series of di� erent puckering
con® gurations for the tilings. For each basic tiling, we chose fully antiferromagnetic
and ferromagnetic puckering patterns (see table 4) to give the greatest possible range
in J at ® xed positive K, other patterns that maximize the negative contribution of K,
and random patterns. The average internal energy di� erences among patterns are
typically of the order of 10- 4 eV atom- 1, implying values of J and K of the order of
10- 5 eV atom- 1. These energy di� erences are small compared with energy ¯ uctua-
tions for single-atom displacements.

If the two-coupling model of eqn. (9) were a good approximation, then the
internal energies of all puckering patterns investigated for each tiling could be ® tted
with little error. Unfortunately, it is not a good approximation, as the rms error of
the two-coupling model ® t is 5 ´ 10- 4 eV atom- 1, which is the same order of mag-
nitude as the di� erences in energy of the puckering patterns being ® tted. We believe
that this failure re¯ ects both a true failure of such a simple model and a systematic
di� culty with our approach. To illustrate the ® rst point, consider the junction layers,
and let all the junction layer Al atoms either form distorted pentagons as shown in
® g. 2 or sit on subsets of this pentagon. A full description of a con® guration must
specify the orientation of this distorted pentagon, that is, the direction of the junc-
tion layer arrow shown in ® g. 2. Preferred orientations are coupled with the Ising
puckering variable and the local tiling. Even if an accurate tiling Hamiltonian with
short-range pairwise interactions exists for the combination of puckering and arrow
variables, averaging over arrow orientations as in eqn. (7) will probably generate
long-range and multiple spin e� ective Ising interactions. We conclude that longer-
range and/or many-cluster e� ects are important for stabilizing certain puckering pat-
terns in Al3Co. In our approach, the issue is further complicated because we did not
base our site list on considerations of junction layer pentagon orientation and do not
even have the necessary sites to allow all orientations for each junction layer.

§ 5. Conclusions

We reach several conclusions as a result of our study. This section summarizes
real and perpendicular space descriptions of 8AÊ Al± Co structure and ¯ uctuations,
together with a description of possible improvements and directions for future work.
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Our simulations reveal strong preference for spatial arrangements of atoms that
® ll space with PB clusters. These arrangements place clusters at vertices of some HBS
tiling with edge length 6.5AÊ . We have previously shown that the oscillating form of
the pair potentials favours PB clusters because pair potential minima match impor-
tant characteristic distances within each PB and linking neighbouring PBs (Widom
and Cockayne 1996). At a simulation temperature of 1000K, there is some disorder
in Co atom location, but each Co pattern observed in a simulation on a 24AÊ by 20AÊ
by 16AÊ approximant can be associated uniquely with a HBS tiling. With each tiling
there is associated a p̀uckering pattern’ according to which ¯ at layer each cluster is
centred on. Di� erent tilings occur during the 1000K simulation, as well as di� erent
puckering patterns for each individual tiling. While the puckered-layer Al positions
are generally well de® ned, many di� erent Al arrangements are observed in the ¯ at
layers at 1000K. Puckering disorder at the temperature where the quasicrystal is
metastable is likely to lead to an average structure with 4AÊ periodicity and
P10/mmm symmetry.

We have determined the Co positions and the Al occupancies in the hexagon,
boat and star tiles in our approximants. The hexagon, boat and star tiles are su� -
cient for generating quasiperiodic structures and a simple extension of our results
leads to atomic models for such quasicrystals. The bowtie phason ¯ ips that change
the tiling in our simulations on approximants should also occur in the quasicrystal.

Atomic sites in our model quasicrystal are intersections of atomic surfaces with
physical space. To model all the sites in the observed Al3Co approximants requires a
few small atomic surfaces whose 5D coordinates include half-integers as well as
several large atomic surfaces associated with integer coordinates. as listed in table
2. Because we choose over-sized atomic surfaces, we do not need to know or pre-
suppose detailed atomic surface shapes. Indeed, we ® nd that a statistical description
of atomic surfaces is necessary at a temperature of 1000K. When both Al and Co
share an atomic surface, the Co occupies the middle, while the Al forms a shell
around it. There is a smooth fall-o� in occupation probability near the boundaries
of the surfaces and a smooth transition of occupation probability from Co to Al.
Both these smooth transitions re¯ ect distinct forms of phason disorder.

Our simulation visits an entire family of probable con® gurations. This includes
both ideal cluster packings and characteristic low-energy ¯ uctuations that transform
one ideal structure into another. By far the most common type of ¯ uctuation is
movement of those Al atoms near the atomic surface edges. The Co positions change
with much lower frequency. We believe that the Co mobility is highly dependent on
the presence of Al vacancies. From the attempted hop energy spectra in ® g. 10 we
note that many possible hops require less than 5kBT (= 0.43eV at T = 1000K)
energy, implying a reasonable chance for acceptance. Indeed, there is no e� ective
lower bound on the attempted hop energy. Our simulation continues to display Al
vacancy hopping at room temperature (T = 300K) and below. Because these atoms
occupy sites near the atomic surface edges, the vacancy hopping is a type of phason
¯ uctuation.

Al motion and Al± Co swaps contribute to two kinds of collective ¯ uctuation in
our simulations that preserve the PB± HBS description. One of these (the p̀uckering
¯ ip’) shifts a column of clusters 4AÊ along its axis; the other (the p̀hason ¯ ip’) moves
a column of clusters 2.5AÊ in a direction perpendicular to its axis and rotates it 180ë .
In each ¯ ip, most atoms remain stationary or move very small distances. Puckering
¯ ips occur with greater frequency than phason ¯ ips. Our observation of puckering
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reversals within a given tiling, and phason ¯ ips between tilings, implies that the
energy cost of such ¯ uctuations is low enough that they occur readily in equilibrium
at T = 1000K.

We now summarize possible inadequacies of our methods and results. The ideal
sites do not capture the observed Al and Co positions exactly. While the median
distance of experimental sites from ideal is 0.12AÊ , a few sites lie as much as 0.58AÊ
away. Furthermore, a small number of atoms exhibit large displacements under
relaxation from their ideal positions. We believe that present Al± TM pair potentials
are inadequate to treat relaxation properly.

The comparative energetics of di� ering tilings and puckering patterns are very
sensitive to the inclusion or exclusion of certain sites, in particular the special sites in
the ¯ at and puckered layers. To make matters worse, our site list constructed accord-
ing to the discussions of § 2 does not yield full local ® vefold rotational symmetry
within PB clusters, introducing the systematic error discussed in the previous section.
To investigate sensitivity to the site list, we added carefully chosen sites to the site
list, especially those that maximize local pentagonal symmetry on possible cluster
axes. Simulations con® rmed that the energy depends on inclusion of particular sites
at a level comparable with the energy di� erences between distinct tilings. Our results
for the energy di� erences between tilings must thus be taken as upper estimates only.

We have not found a temperature-dependent e� ective tiling Hamiltonian. Such a
Hamiltonian, once obtained, would allow simulation studies of the fundamental and
interesting question of the nature of the stability of the quasicrystalline phase.
Further progress requires both a new method for site list construction that respects
local symmetry, and inclusion of long-range and many-body couplings in the e� ec-
tive Hamiltonian.

Finally, we compare this work with similar e� orts. MihalkovicÏ et al. (1996a,b)
used pair potentials to ® nd tile energies and interaction energies of tiles for a cano-
nical cell model of i-(Al± Mn) at zero temperature and succeeded in creating a z̀ero-
temperature’ tiling Hamiltonian. We focused, on the other hand, on ® nite-tempera-
ture structures and found a large source of entropy due to Al rearrangements within
the tiles that we were unable to quantify. Based on the large number of Al sites with
partial occupancy, and the small number of di� erent tilings, the internal Al disorder
entropy is likely to be larger than the tiling entropy at 1000K (for a tiling description
on the 6.5AÊ length scale). We conjecture that this is true for complex Al± TM phases
in general.

Dmitrienko and Astraf’ev (1995) combined energetics with a growth model to
de® ne a set of ideal sites. That is, their site list evolved as the quasicrystalline
structure grew. An approach of this type might help to solve our problem of sys-
tematic errors in Ueff arising from the site list construction. The idea would be to
replace the site list with atomic surface occupancy directly in the higher-dimensional
space. The equivalent of our discretization of space would be placing a limit on
perpendicular space deviations between neighbouring atoms. The fall-o� in atomic
surface occupancy near the edges suggests such a cut-o� may easily be implemented.
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