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Two-dimensional area-preserving maps can be represented by a generating function, the action. High orders of 
successive period-doubling bifurcations are studied by writing a renormalization group scheme for this action. Fixed 
points and eigenvalues of this scheme are found and ir, terpreted, 

I. Introduction where 

We study the universal .properties of 
period-doubling bifurcation sequences in two- 
dimensional area-preserving maps. This paper 
begins with a description of the period-doubling 
process based on the work of Greene, MacKay, 
Vivaidi, and Feigenbaum [I] and others [2, 3, 4]. 
The scaling laws which the period-doubling 
process is found to obey are explained through 
a renormalization argument previously presen- 
ted by Greene et al. [I], by Helleinan [5, 6] and 
others [7, S]. Tt.is argument assumes the exis- 
tence of a universal mapping which reproduces 
itself under a combined line~x change of coor- 
dinates and composition with itself. We deter- 
mine this function numerically, utilizing the 
principle of least action to perform the com- 
positions. The effects of perturbations on this 
universal mapping are analyzed. 

2. Period doubling in two dlt~ensions 

Greene et ~1 [1], consider a family of map- 
pings 

\ x - I~,(x'~ / 11) 

fp(x) = px - ( I  - p)x 2 (2) 

These mappings can be factored into a producl 
of two involutions, Tp = 12Ii, where 

x 

,: 
y ~ x - f p ( x ' ) / "  (4) 

The line y = 0 is invariant under II and is called 
the dominant symmetry line. The existence of 
this line simplifie~ tremendously the process of 
locating cycles. 

The work of refs. I through 4 shows that 
there is a sequence of cycles of length 2 N each 
with precisely two points on the dominant 
symmetry line. The bifurcation to a 2 N÷! cycle 
occurs when one of the two points initially on 
the line becomes unstable creating a pair of 
stable points on opposite sides of the symmetry 
line. Simultaneously the other point on the 
symmetry line splits into two points both still 
lying on the symmetry line. In fig. 1 we show 
two unstable cycle elements on the symmetry 
line. Four elements of the stable cycle are 
shown, two near each unstable point. 
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Fig. I. Distribution of cycle elements in the x-y pleme. 
Circles indicate an unstable 2-cycle whereas squares in- 
dicate a sta~le 4-cycle. 

Let TN denote the mapping produced by 
iterating T 2 s times. Each element of the 2 N 
cycle is a fixed point of TN. Two of these 
elements lie on the dominant symmetry line: 
(X0.N:0) -= Zo.N and (X~.N;0)---- ZI.N. The opera- 
tion TN_~ maps these points into each other. 
Following earlier workers [I, 2], we distinguish 
between ~e~e two points by noting what hap- 
pens t~ them upon the bifurcation which 
produces the 2 N~' cycle. At the bifurcation ZO.N 

splits into a pair of points Zo.~+, and Zt.N+, which 
still lie upon the dominant symmetry line, while 
the "daughters" of z~.N fall off this line. In fig. 2 
we have plotted the locations of the two cycle 
elements Zo.~ and z~.N as a function of the 
parameter p. Two crucial facts which can be 
explained through a renormalization argument 
,3.r ~: 

{a) the parameter values PN where the 2 N 

p© . . . . .  ~ ~ ,~.. 
-1.25 ' , \ /  

\ 
- ~.2(3~ \ 

-I.15, ~ 

-105 

-(~4 -0.2 

i 

I 
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X 

Fig. 2. Location of cycle elements on dominant symmetry 
line as a f,mction of parameter, Dotted lines indicate un- 
stable cycle elements, dashed lines indicate stable cycle 
elements which as p is further increased will bifurcate off 
the symmetry line (and off our picture), and solid lines 
indicate the principal point which will bifurcate along the 
symmetry ii,~-. See Greene et al. [1] for a further explana- 
tion of an essentially similar picture. 

cycle becomes unstable converge geometrically 
to a finite value p~ in the limit of large N. 

- p=) "-- 8 - s ;  (5)  

(b) when p = p® the separation of cycle ele- 
ments along '¢he line y = 0 varasnes geometric- 
ally. If we define 

D s  = x,.N - Xo.N, (6) 

then in the limit of long cycles 

--  a -N', (7)  

(c) the behavior is generic in the sense that 
almost all choices of T lead to the same large N 
behavior. In particular the index values Greene 
et al., find for the map of eqs. (1) 

a = -.4.018076704, 

8 = 8.721097200, 

are expected to apply te almost all maps of the 
form(I) .  

The scaling ~;quations (5) ~nd (7) can be 
explained through a rlenormalization group 
scheme [ 1, 5--8] similar to that used by Feigen- 
baum [9] in the case of one-dimensional map- 
pings. The fixed point equation for the renor- 
realization group which we study here takes the 
form 

y p \ /. (8) 

We solve this equation numerically. For the ii i 
remainder of this paper we discuss our solution 
and the effect of perturbations. 

3. Action prlaeiple 

Area-preserving maps are of interest becaus 
they generally describe the time evolution of 
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Hamiltenian system thro. ugh a Poincar6 su~4ace Second, composing the mapping is equivalent to 
of section. When w o r ~  with such systems it simply adding the actions. Thus if we wish to 

employed since the path of least action is 
reduced to a discrete set of points. 

Suppose the path starts at (~), passes through 
(~i), and ends at (~). Each step has an action 
associated with it, and the action for the entire 
trip is the sum of the actions for each step. If 
we choose the initial and final x values as our 
canonical variables then we have 

Al(x, x") = Ao(x, x') + Ao(x', x"). (9) 

The principle of least action demands that A I is 
extremal with respect to the intermediate point x'. 
Thus we must have 

aAo(X, x') + aao(X', x'3 = o. (to) 
c3X ' C3X ' 

We can satisfy eq. (10) automatically ff we 
assume that the action is the generating function 
satisfying 

- aAo(X,, ') y, aAo(x, x') 
Y= ax ' =--ax' • (II) 

This representation in terms of an action has 
several advantages over the original mapping. 
First, the area-preserving property is satisfied 
automatically, 

= a(x', y') / a(x, y) 
a(x, y) a(x, X ;)/a(x, x') 

_ a 2 A / -  a=A 
= a x a x ' / - a x ' a X  = 1. (12) 

above and let A s + i ( x , x ' ) b e  'the extremum in x' 
of". As(x, x') +.AN(X', x"). T h e n ,  AN+t is a 
generating function which describes 2 s+1 appli- 
cations o f  T. 

Notice also that A~(x,  x') can be used to find 
elements of cycles of order 2 N-q for q being a 
non-negative integer. These cycle elements, x*, 
are all fixed points of TN. They can all be 
determined by considering 

UN(x) ffi As(x, x). 

These fixed points all obey the condition 

c~UN(X) II = y* - y* = 0 
aX i x" 

and hence are all extreme of UN. 

4. The universal action 

We calculate the universal action starting 
from a modified form of the mapping in eq. (1). 
We take 

ffi T 1 0 °,) _,) 
so that, if we define fC,)= fp.(x) 

x' = y +/(x), y' = -x + f(x'). (t4) 

To determine the action we s(,~ve ~he equations 

aAo(x, x,) = _ y = f(x)- x', 
#x 

0Ao(x, x.~ = y, ffi f(x')- x 
#X t 
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and find where 

Ao(x, x ' )=  - x x ' +  G(x)+ G(x'), (16) 

where 

OG(x)= f(x). (17) 
#x 

Thus our initial action is symmetrical in x and 
x'. and all composed actions will also be sym- 
n~etrical. This fact allows us to specify the 
action numerically with roughly half the effort 
required in the absence of this symmetry. As a 
further benefit an unstable eigen~alue is pro- 
jected out (see section 5). Note that the 
modification leaves the line y = 0 invariant so 
that the dominant symmetry line is unchanged. 

Several equivalent representations of the 
action are employed in our computation. We 
form a grid of points (x,,,x',), where x~ and x', 
take on the values ( -1 ,  -0.8,  . . . .  0.6, 0.8, 1), 
and evaluate the action at each of these points. 
As our initial representation of the action we 
form the polynomial in x and x' which takes on 
the value of the action everywhere on the gr~d. 
In this representation our action is an array of 
¢oeflicier~ts A,j with 

. • -it- ~-,,. (18) 
tl 

We compose the action with itself by applying 
eq. (9) with the initial and final points lying on 
the grid. Since the intermediate point must be 
varied continuously to extremize the action, we 
use expressions which are polynomials in the 
intermediate point. This is accomplished by 
defining the two functions A I and A2. A I is a 
set of polynomials in x', each polynomial being 
essentially eq. (18) with x~ on the grid but x' a 
continuous variable. Thus 

A(x~, x ' )=  ~ AIj(x~)x 'j, (19) 
i 

At  x.) = Z (20) 
m 

A2 is the  analogous function with the first vari- 
able continuous and the second on the ~id.  W e  
then add these actions together to form 

A3~,,(z) = A(x~, z) + A(z, x') 

= ~ [Al~(x~) + A2m(x,)lz% (21) 

For each (,~,v) we find z(x,,x',) which 
extremizes the eq. (21). Now, according to eqs. 
(9) and (10), w~: can determine the value of the 
composed action everywhere on the grid: 
[AoA](x,, ,xD= A3,,,(z(x~,x:)). As a final step 
we convert the composed action to the poly- 
nomial representation. 

To determine the universal function we start 
with the action given by eqs. (16) and (17) which 
should differ from the universal function only 
by irrelevant perturbations since p = p®. We 
shift our coordinate syste~::~ so that the origin 
lies at the two-cycle element .~0.i. We then scale 
the coordinate system so that our grid covers 
Xo.:, but not xl.~. This is necessary because we 
interpret z(x.x') as the intermediate point 
through which the trajectory must pass in 
travelling from x to x' in tw~ steps. It is not 
possible, however, to travel from x0.t to xt.I in 
two steps, so z(x, x') cannot be defined for too 
large a grid. Now we follow eqs. (18) through 
(21) to compose this action. Note that this 
composed action, AI, has a polynomial 
representation whose linear terms vanish since 
the origin i: a fixed point of the composed 
m~.pping~ 

At this point we begin to look for the uni- 
~rsai action. If we shift coordinates so that the 

four-cycle element x0.2 lies at the origin, rescale 
as discussed above, and perform the com- 
position, we find that the new action A2 is 
"close" to the old action A~. Aside from the 
unimportant constant term, A2 is approximately 
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Table 1 
The negative of the coefficients A~ in the polynomial for the action A*(x. x') = ~aj A,tx'x 'j 

i l l l  

3 0 

0 0.00000 
I 0;00000 
2 0.63588 
3 -0.76529 
4 0.00161 
5 0.00025 

1 2 3 
• _ , . . . .  

0,00144 
0.00027 

0i00315 
... .  0.00101 

0,00073 0.00031 
0.00018 0.00009 

4 

0,00004 

5 

o.o0002 

proportional to AI. Thus we have an ap- 
proximate solution of 

A*(x, x') = [3a { A*(uo + X, uo + ~) 

+ A*(uo + a:-, uo+ ~ ) }  

~" ~t [A*(x, x')]. (22) 

To improve our solution we varied uo,/3, a, and 
the coefficients of the action polynomial to 
minimize the difference between the left- and 
right-hand sides of eq. (22). We achieved 
agreement of at least 10 -I° in all quantities. In 
agreement with ref. 1, we find a - -4.018076704 
and / 3 -  16.36389688. Low order terms in our 
action are biven in table I. 

Shifting by uo---0.286849 is a nonuniversal 
feature of our renormalization equation (22). 
This can easily be eliminated through the use of 
a coordinate system with zo,® at the origin. Thus 
A'(x, x ' )=  A*(s  + x, s + x') with s = Uo/(l- l /a )  
obeys the renormalization equation 

$. Perturbations of the action 

It is important to know what happens if we 
have an action slightly different from A*. Some 
perturbations are relevant and grow under 
iteration so that their presence will destroy the 
universal period-doubling behavior. Other per- 

turbations are irrelevant and vanish under itera- 
tion so that their presence will not alter the 
universal behavior. Still others neither grow "nor 
vanish and are called marginal. Universality 
follows from observing that there are a small 
number of relevant perturbations and no non- 
trivial marginal perturbations. Thus all mappings 
converge to the universal mapping provided a 
small number of parameters are adjusted to 
eliminate the relevant perturbations. 

We assume that all perturbations can be des- 
cribed in terms of a complete set of eigen- 
perturbations which have the property 

(A*(x, x') + ~E(x. x ' ) ) -  ~t(A*(x, x') 

+ ,a'~(x, x')) = - , ~ E ( x ,  x'). (23) 

For small perturbations eq. (23) reduces to 

E(x'x')- Oa[E( u°+ xa ' u°+ Z) 

(+_z 9] + E Uo a '  Uo + = -X~E(x, x'), (24) 

where z is the extremal point defined in eq. (22). 
Several perturbations and eigenvalues can be 

identified easily. 
1. The trivial perturbation P(x, x ' ) =  constant 

g: 9ws with eigenvalue ~, = 2/3a. 
2. If we consider A*(x- ' -eg(x) ,  x ° +eg(x')),  

with g(x)ffi x N, we find that 

P , (x ,  x') - x ~ OA*(x, x') + xa, aA*(x, x') 
8x aX' 
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Table II 
Leading eisenvalues A, 
which define the growth 
rate for perturbations of A* 

Eigenvalues 

Table II lists several of the  eigenvalues 
obtained from linearizin$ R around the fixed 
point A* and only considering perturbations for 
which P(x, x') = P(x ' ,  x). 

- 131.502785728 
8.721097206 

-4.018076706 
1.0000000~ 

-0.248875288 
-0.116629426 

0.072984281 
0.06193893 I 

-0.015415103 
0.003836360 

2 ~  
8 
{z 

e 
Q 

- I  ¢z 

is an eigenperturbation with eigenvalue AN = 
i - N  a . Note that ;~0 = a is relevant and cor- 

responds to a shift in x. 
3. There are two marginal perturbations with 

~, = !. One of these is Pl(x,x ' )  which cor- 
responds to a dilation of the x-coordinate. There 
is a corresponding dilation of the y-axis which is 
also marginal. These marginal perturbations are 
a consequence of the fact that we can replace 
A*(x. x °) with bA*(ax, ax) and still solve eq. 
(22). 

4. The perturbation Ql(x, x') = x - x' breaks 
the symmetry of the action A*(x, x') = A*(x', x), 
and corresponds to a shift in y with eigenvalue 
h=/3.  

5. If we were to start with p #  p~ we could 
only see a fraction of the bifurcation series. 
Therefore there must be a relevant perturbation 
with eigenvalue 8 corresponding to a change in 
parameter. The exact form of this perturbation 
cannot be determined a priori but emerges as a 
result of the perturbation analysis. 

6. The eigenvalue ~ = - 0 . 1 1 7  is observed in 
the convergence of the residue [I] to its uni- 
versal .... h,o r 111 

• , qxmu~. L J .  
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