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Icosahedral order in glass: Electronic properties
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Icosahedral short-range order in glass is modeled by a crystalline packing of atoms in S3, known
as polytope 120. We diagonalize realistic electronic Hamiltonians using the symmetry group of po-
lytope 120. We predict band structures for amorphous semiconductors and transition metals.
Icosahedral order in silicon produces a gap in the center of the valence band. The absence of d-level
splitting at the center of the Brillouin zone distinguishes icosahedrally ordered transition metals
from their fcc counterparts. We use the d-band density of states of polytope 120 to understand
band ferromagnetism in amorphous transition metals.

INTRODUCTION
Frank and Kasper! based a theory of crystalline
transition-metal alloys on the tendency of metal atoms to
form icosahedral clusters. Crystalline order with
icosahedral symmetry cannot? extend throughout R3,
The Frank-Kasper phases consist of regions of
icosahedral order interrupted by an ordered array of de-
fect lines. Nelson® suggested that metallic glasses are
Frank-Kasper phases in which the defect lines have be-
come entangled.

Alternatively, we can think of metallic glass as infinite,
densely packed* clusters of atoms. Hoare® observed that
small dense clusters of atoms favor icosahedral coordina-
tion. Large clusters contain defects because R 3 cannot be
tiled with icosahedra. In S3, however, we can build a
120-atom cluster in which each atom has icosahedral
coordination. Coxeter® analyzed the resulting crystal,
called polytope 120, in great detail. We describe the
structure of polytope 120 in Sec. I. ‘

Flat and curved spaces are indistinguishable at short
distances. Thus we can construct clusters in R 3 which be-
come fragments of polytope 120 when projected into S°.
We hypothesize that metallic glass consists of regions of
polytope 120 separated by regions of defects. Such a ma-
terial could be called “microcrystalline.” Microcrystalline
materials usually consist of large domains of cubic order
separated by grain boundaries, whereas our present model
consists of relatively small domains of icosahedral order
interrupted by disclination lines.

Kléman and Sadoc’ and Sadoc and Mosseri®® described
a variety of polytopes related to polytope 120. Sadoc and
Mosseri suggested that a configuration called polytope
240 could describe amorphous tetracoordinated semicon-
ductors. Polytope 120 generates polytope 240 in the same
way that the face-centered-cubic lattice generates the dia-
mond lattice.

In order to test the relevance of polytopes to real glass,
we calculate their electronic band structures: If glass con-
sists of polytope microcrystals, some properties of the po-
lytope should be observable in the bulk amorphous ma-
terial. Nelson and Widom!© showed rough agreement be-
tween the x-ray structure functions of the polytope and
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metallic glass. Sachdev and Nelson!'! found improved
agreement when they included the long-range disorder
present in RS

The situation should be similar in the electronic proper-
ties. We expect the best agreement in quantities which are
more sensitive to the short-range order than to the long-
range disorder. At low energies and long wavelengths,”
the different topologies of R> and S lead to discrepancies
in the electronic properties. We expect the best agreement
in the energy range corresponding to wavelengths of the
order of a few atomic diameters.

In the present paper, we compute the spectra of realistic
tight-binding Hamiltonians on polytope 120 and polytope
240. We begin by constructing fragments of polytope 120
in R> and describing the structure in S3. A remarkable
isomorphism exists between polytope 120 and Y'CSU(2),
the double group of an icosahedron. This isomorphism
allows us to express the symmetry group, G CSO(4), of
the polytope in terms of the direct square of Y’'. Many
problems requiring the use of the symmetry group G of
polytope 120 can be solved in terms of the symmetry
group Y’ of an icosahedron. We review the theory of rep-
resentations of Y’ and G.

Section II concerns the formal diagonalization of tight-
binding Hamiltonians. In part A, we solve an s-band,
nearest-neighbor, hopping model. Although this model
has been discussed: previously,'®!? we present its solution
here because we use the eigenfunctions to diagonalize
more complicated and realistic models. We show indirect
evidence for the existence of a reciprocal space for po-
lytope 120.

In part B, we define a Weaire and Thorpe!® Hamiltoni-
an on polytope 240. This Hamiltonian describes the hop-
ping of sp3-hybrid electrons on a tetracoordinated lattice.
Using methods of Thorpe and Weaire,'* as extended by
Straley,'® we reduce this problem to the simple model con-
sidered in part A and obtain analytic expressions for the
eigenvalues.

Finally, in part C, we define a Hamiltonian of the
Slater-Koster!® type to describe d-band electrons on po-
lytope 120. This model is relevant to transition-metal
glasses. We diagonalize this Hamiltonian using the eigen-
functions found in part A, and obtain exact expressions
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for the eigenvalues.

In Sec. III, we evaluate the eigenvalues using realistic |

values of coupling constants, and we discuss the resulting
band structures. We find discrepancies between the po-
lytope band structure and the crystalline band structure.
Discrepancies arising from the differing short-range order
interest us especially. The most striking discrepancies of
this type are the gaps in the middle of the valence and
conduction bands in polytope 240, and the absence of d-
band splitting at the center of the Brillouin zone in po-
lytope 120.

DiVincenzo et al.’ have numerically diagonalized a
realistic tight-binding model on polytope 240. They
demonstrate the existence of an indirect band gap in their

model. We apply our d-band solution to understand
trends in band ferromagnetism in amorphous transition
metals.

I. STRUCTURE OF POLYTOPE 120

Coxeter® described how 120 atoms can pack in S? in
such a way that each atom has icosahedral coordination.
We construct fragments of this polytope in R? (Fig. 1).

The sphere S is isomorphic with the group SU(2). We
give coordinates for atoms in polytope 120 in terms of
corresponding SU(2) matrices. We recognize the resulting
120-element subspace of SU(2) as Y”, the rotational sym-
metry group of an icosahedron. This fact immediately

FIG. 1. Fragments of polytope 120 in R*. (a) Coordination shell ¥; forms an icosahedron. (b) Coordination shell F, forms a

dodecahedron. (c) Coordination shell ¥; forms an icosahedron. (d) Coordination shell E, forms an icosidodecahedron.
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yields the following result: The rotational symmetry
group G of polytope 120 is homomorphic to the direct
square of Y.

In this paper, we diagonalize explicitly several Hamil-
tonians defined on polytope 120. We accomplish this
through analysis of the symmetry group G. Eigenfunc-
tions of the Hamiltonians form the bases for irreducible
representations of G, because these Hamiltonians com-
mute with every element of G. The simple relationship
between G and Y’ allows us to express the representations
of G as direct products of representations of Y’. We con-
clude Sec. I with a summary of the theory of representa-
tions of G.

We construct a fragment of polytope 120 in R3 by
packing atoms around one central atom. We assign each

coordination shell a name which describes the location of .

atoms with respect to an icosahedron centered on the cen-
tral atom. Each new coordination shell is arranged to
give atoms in previous coordination shells approximate
icosahedral coordination.

Starting with the central atom C,, we place 12 atoms in
the first coordination shell V;. These atoms sit at the ver-
tices of an icosahedron [Fig. 1(a)]. The icosahedral coor-
dination of Cj is complete.

We place the second and third coordination shells of Cy
in such a way that atoms in V; have icosahedral coordi-
nation. We accomplish this by placing 20 atoms in the
second coordination shell F,, and placing 12 atoms in the
third coordination shell V3. Atoms in F, sit on the faces
of V, [Fig. 1(b)]. Atoms in V; sit above the vertices of
V, [Fig. 1(c)]. The icosahedral coordination of ¥ is now
complete.

Finally, we complete the icosahedral coordination of F,
by placing 30 atoms in the fourth coordination shell E,.
These atoms sit above the edges of V, [Fig. 1(d)]. We
have now formed a 75-atom cluster in R® in which 33
atoms have icosahedral coordination. We cannot extend
this cluster without introducing defects, because of the
frustration®!” of tiling R 3 with icosahedra.

Frustration appears in our atomic clusters through the
gaps between surface atoms. The edge length of an

i(r/500, &

Vi={u=e : 1 points to vertices of an icosahedron]} .

The second coordination shell has 20 members,

F,={u =e"™3%%: fi points to faces of an icosahedron} .

The third coordination shell has 12 members,
Vi={u>uev,}.

The fourth coordination shell has 30 members,

E,={u =e""™/?%%: § points to edges of an icosahedron] .

icosahedron is 1.05146. .. times as large as the center-to-
vertex distance. This creates gaps between atoms in ¥V
which are 5% of an atomic diameter. With each succes-
sive coordination shell the gaps grow larger (Fig. 1).

The gaps in the fourth shell E, are large enough that
two atoms could be placed on each edge instead of just
one (atoms are ‘“soft spheres”). The 105-atom cluster
which results from this construction occurs in the Frank-
Kasper phase of Mgj,(Al,Zn),. Each aluminum and zinc
atom in this crystal has icosahedral coordination.'®

Because of the frustration, additional coordination
shells are unlikely to be physically significant. We intro-
duce a set of coordinates for S3 which help us describe
polytope 120. Every point on S° defines a unit 4-vector,

u=(w,x,y,z)ES? . (1.1)
We can also write an arbitrary u €S as
u =(cosy,isiny) , (1.2)

where ¢ is the geodesic distance between u and the north
pole (1,0,0,0), and fiES? is a unit 3-vector. An isomor-
phism!® exists between the sphere S3 and the group SU(2),

w—+iz ix +y

ix—y w—iz |ESU@). (1.3)

(w,x,y,z) ES*—

Using the coordinates of Eq. (1.2), we write
u=eocsu2), (1.4)

where o is the vector of Pauli matrices.

We interpret each point u €S* as a rotation of S? by
the angle 29 around the axis fi. This interpretation fol-
lows from the isomorphism (1.3) between S* and SU(2),
and the homomorphism'® between SU(2) and SO(3). Thus
each atom of polytope 120 corresponds to a rotation of
S2. We now list the coordination shells of polytope 120.

Begin with the central atom placed at the north pole

Co={u=1}. (1.52)
The first coordination shell has 12 members,

(1.5b)

(1.5¢)

(1.5d)

(1.5¢)
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The fifth coordination shell has 12 members,

Vs={—u>uev,}. (1.5)
The sixth coordination shell has 20 members,

F¢={—u:u€F,}. (1.5g)
The seventh coordination shell has 12 members,

Vim{—u: u€Wy} . ‘ (1.5h)

Finally, the eighth coordination shell has only one
member,

C8={u=—1} .

Consider the rotations of S? induced by the SU(2) ma-
trices in Eq. (1.5). The sets Cy and Cg correspond to the
identity in SO(3). The sets ¥, and V5 correspond to rota-
tions by 27/5 around axes pointing through the vertices
of an icosahedron inscribed in S2. The sets F, and Fg
correspond to rotations by 2m7/3 around axes pointing
through the midpoint of the faces of the icosahedron.
The sets V3 and V5 correspond to rotations by 4w/5
around axes pointing through the vertices of the icosahed-
ron. The set E, corresponds to rotations by =7 around
axes pointing through the midpoints of the edges of the
icosahedron.

We recognize that the SU(2) matrices in Eq. (1.5)
comprise the group of rotations which leave the icosahed-
ron inscribed in S? invariant. Thus polytope 120 is 1den-
tical to the icosahedral double group Y’CSU(2). Each
coordination shell comprises one conjugacy class of Y".

We now summarize the irreducible representations of
the group Y'. We also exploit the homomorphism be-
tween SO(4) and SU(2) XSU(2) in order to compute G,
the symmetry group of polytope 120. We conclude Sec. I
by summarizing the irreducible representations of G.

Irreducible representations of SU(2) contain irreducible
representations of Y’ because Y’ is a subgroup of SU(2).
Spherical harmonics Yy, ,,(0,¢) form a basis for the ir-
reducible representation of SU(2), of dimension
dy=2M +1, when M is an integer or half integer. The
character of ¥ €SU(2) in the representation M is

Xi}](l)(eiﬁ'o);sin[(zM +1)3]/siny .

(1.51)

(1.6)

We display the character table of the group Y’ in Table 1.
In Table I, we label irreducible representations of Y’ ac-
cording to the convention used by Nelson and Widom.!°
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We denote arbitrary irreducible representations of Y’ by
the lower-case Greek letters «, 3, ¥, and 8. Table I gives
the dimension d, of the representation a by X2 (Co). We

~ determine the number of times the representation M con-

tains the irreducible representation a through the formula

Ny,= - X5F
M ( Y ugY'

When M contains a, we write the basis functions for a as

¢Ma,m(6’¢): EQ#Ia,m YM,y(9a¢) . (1.8)
“ X

} XY (u) . (1.7)

The coefficients Q have been discussed extensively.20—?2?

Raynal®! showed how to obtain Q simply for any value of
M. Damhus et al.?? introduced a coordinate system in
which all Q are real. We adopt this convention. The
coefficients Q obey the following orthonormahty condi-
tions

2 Q#Ia,mQ;\//!a,myz‘Spv s (1.9a)

(1.9b)

2 Q#Ia,m Qx[ﬁ,n ZSaB(Smn .
m

We use the expression (1.8) to derive the representation
matrices and coupling coefficients for the group Y.
Spherical harmonics transform under the group SU(2)
through multiplication by the Wigner D matrix?

u: Yo m(0,8)—>D M, (1) Yy (6,6) (1.10)

Thus the irreducible representation a transforms under
the group Y’ through multiplication by the matrix

Drz’,m(u)=Q#1a,mD%y(u)Q#4’a,n\l’ s

where M is any spherical harmonic containing a.
Wigner D matrices have the Clebsch-Gordon series

Df(u)DX,, (u)

(1.11)

23

> (LI'Mm’ | Nn' sy Dpn(u){LIMm | Nn)su) »
N,n',n

(1.12)
where ( | Ysuc2) denotes the coupling coefficients of the

group SU(2). Inspecting Eq. (1.11), we derive the
Clebsch-Gordon series for the group Y’,

TABLE L. Character of table of icosahedral double group. Q=(V'5+1)/2 is the golden mean.

Y' 1Cy 12V, 20F, 12V; 30E, 12V 20F 12V, 1Cy
A 1 1 1 1 1 1 1 1 1
E, 2 Q 1 Q! 0 —-0! —1 -0 -2
E, 2 —-Q! 1 —Q 0 Q —1 Q! —2
Fy 3 Q 0 —-Q-1! —1 -0t 0 Q 3
F, 3 —Q-! 0 Q -1 Q 0 -Q-! 3
G, 4 1 —1 —1 0 1 1 —1 —4
G, 4 —1 1 —1 0 —1 1 —1 4
H 5 0 —1 0 1 0 —1 0 5
I 6 —1 0 1 0 —1 0 1 —6
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Dfy(u)DE.,,.(u)
> (al'Bm'|yn'r)yD),(w){alBm |ynr)y .
v,n',n,r
» (1.13)
The icosahedral coupling coefficient is defined by
(LaMB||Nyr)y{alBm |ynr)y
=3 0k 10kpmONy n(LAMp | Nv)sup) . (1.14)

Apv

In Eq. (1.14), we choose L, M, and N to be the lowest
spherical harmonics containing, respectively, a, /3, and y.
If the product of @ and S contains ¥ more than once, then
we must take additional values of L, M, or N. The multi-
plicity index r distinguishes between occurrences of y in
the product of @ and B. We usually suppress the index r
in complicated expressions. Pooler®® gives a complete
table of coupling coefficients for the group Y CSO(2).
Dambhus et al.?? discuss the appropriate assignment of L,
M, and N values for different 7.

The isoscalar symbol (||)y in Eq. (1.14) is chosen so
that the icosahedral coupling coefficients obey the ortho-
normality relations

> (alBm |y'n'r'Y{alBm |ynr)=38,,8,,8,,» , (1.15a)
Lm

and

> (al'Bm'|ynr){alBm |ynr)==8118,'m - (1.15b)
Y.n,r

We generalize the preceding results to G CSO(4), the
symmetry group of polytope 120. First, we note a simple
relationship between G and Y’. Consider /,r€Y’, and
transform Y’ by

(Lr): Y'—I1Y'r—1. (1.16)

Because Y is a group,

yr-'=y, (1.17)
so the transformation (1.16) is a symmetry of polytope

120. The angle!® between u,v €S 3

df(u,v):cos_l(%Truv_l) , (1.18)

is preserved under (1.16). Thus the transformation (1.16)
is orthogonal. Finally, noting that (— I/, —r) induces the
same transformation as (/,7), we obtain .

G=Y'®Y/Z, . (1.19)

We use the relation (1.19) to relate irreducible represen-
tations of G to irreducible representations of Y’. First,
consider the analogous problem of relating SO(4) and
SU(2). We have, in analogy with (1.19),

SO(4)=SU(2)@SU(2)/Z, .
11()

(1.20)

Diagonal'® irreducible representations of SO(4) are gen-
erated by the hyperspherical harmonics YM,m‘mz(u). Hy-
perspherical harmonics are related®* to the Wigner D ma-
trices by
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DM/2 (u )

mymy

M+1
2?2

Yot m m, (1) = (1.21)

The hyperspherical harmonic transforms as

(L7 Yagm,m, (u)—»DM/z (Y, (u)DM/2 (r=1.

Mmm

(1.22)

Thus we find the representation matrices of SO(4) are the

direct product of representation matrices of SU(2). The
characters of SO(4) factor into characters of SU(2)
X =X (DX (r ) . (1.23)

Hyperspherical harmonics contain irreducible represen-
tations of G. We label representations with a pair of
Greek letters. We write

e
d’MaB,mlmz (u)= 2 QMlaémlmZYM p‘,uz(u) ’
ity

(1.24)

where the Q coefficients of the group G factor!? into

products of Q coefficients of the group Y’,

Hiky
QMaﬁ ’"1’"2

MaleMﬁmz . (1.25)

It follows that basis functions transform as

(Lr): Yosapmym, (W=Dt e Dy e e D, (P

(1.26)
Characters of G factor into characters of Y’

X¥(xg .

In Sec. I, we show that the basis functions of irreduci-
ble representations of G are eigenfunctions of simple
Hamiltonians defined on polytope 120. The results
(1.24)—(1.27) allow explicit calculations of energy spectra.

ag(l r)= (1.27)

II. TIGHT-BINDING MODELS

A. Polytope 120, s orbitals

The simplest tight-binding model describes electrons
hopping between s orbitals of neighboring atoms. The
hopping matrix element has no angular dependence in this
case. The Hamiltonian takes the simple form!°

=V 3y 3 |uvu].

uEY vEV,

2.1

The hopping matrix element V is typically negative and
we normalize it to

V=-—1. (2.2)

Eigenfunctions of H fall into groups, with degeneracy
d2, which form bases for irreducible representations aa
of G:

| Mamymy) = 3, Yraa,m,m,(#) 1), (2.3)
uey’
where the basis function ¢ is defined by Eq. (1.24). Ma-

trix elements of the Hamiltonian are
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(Mamm, |H*| NBnn,)
=3 X Yyacmm, ¥npgnn,0u) . (24)

u€EY vEV,

Using the transformation property of the basis function
(1.26) we find

(Mamm, | H* | NBniny) = —8,8m,n, > Dim, (V).
vEV,

2.5)

Note that V', the set of nearest neighbors of the north
pole in Y, is a conjugacy class of Y’. This means that the
sum in (2.5) commutes with D%u) for all u €Y’. Schur’s
lemma yields the result

S Df o (0)=8, mo(VXE (V1) /dg . (2.6)
vev,

We find the spectrum of H*® is

Ef=—o(V\)X} (Vy)/dg 2.7)
with degeneracy
DS =dZ . (2.8)

Equations (2.7) and (2.8) agree with numerical results of
Warner® and semianalytical results of Mosseri and Sa-
doc.¢

The results of Mosseri and Sadoc suggest the existence
of a polytope reciprocal space.. They find an axis of
{30/11} screw symmetry and then partially diagonalize
H* using the corresponding 30-element Abelian subgroup
of G. Each eigenfunction of H® has a wave number
k=2mn /30 (n =0,1,2, .. .,29) along this axis. For each
wave number k, there are %24 associated eigenfunc-
tions.

We wish to find additional quantum numbers which
will uniquely identify eigenfunctions of H®. Crystals in
R? have two additional quantum numbers which are wave
numbers in the two additional orthogonal directions. The
three crystal wave numbers define a wave vector k for
each eigenfunction. It appears impossible to define a
wave vector, in the conventional sense, on the polytope be-
cause of the curvature of S3. Reciprocal lattice vectors,
for example, have a matrix character.!’

We associate a wave number'® k=vM (M +2) with
each degenerate block of eigenfunctions contained in the
hyperspherical harmonic M. The two additional indepen-
dent quantum numbers that uniquely identify eigenfunc-
tions are m; and m,. However, we cannot identify m,
and m, as wave numbers along independent directions in
the polytope. Thus we cannot define the angular com-
ponents of the wave vector k.

X-ray scattering probes the structure of reciprocal
space experimentally. Powder diffraction experiments
average over the angular part of the wave vector k. Thus
we identify the wave number

k=VM(M +2)=M (2.9

as a physically relevant quantity.!”!! When the hyper-
spherical harmonic M contains the unit representation of

Y’, Bragg peaks occur in the x-ray structure function.
These values of M belong to the set!°

% =1{0,12,20,24,30,32, ...} . (2.10)

We expect large deviations of the spectrum (2.7) and
(2.8) from the free electron spectrum,

Eff=M(M +2)—12, Dfj=(M +1)*,

when the wave number is one-half the wave number corre-
sponding to a Bragg peak. Such perturbations signal the
existence of Brillouin zones for polytope 120. These per-
turbations appear in the splitting of energy levels (2.11)
when 2M E A .

Figure 2 shows the energies of eigenfunctions of H?
contained in the hyperspherical harmonic M. Thus we
have an angular averaged, repeated zone spectrum. The *+
signs on the M axis identify values for which 2M € Z .
We use a + sign when M is even and a — sign when M
is odd. The first splitting®! of (2.11) occurs when M =6.
Remarkably, 2 X 6 is the first nonzero element of 4. The
second splitting occurs when M =10. Note that 23X 10 is
the second nonzero element of & .

We find that the number of irreducible representations
of Y’, contained in the hyperspherical harmonic Y,;, in-
creases by one whenever M is even and 2M € % . This
number decreases by one whenever M is odd and
2M e % . (This is not clear in Fig. 2 because often Y,
contains the same irreducible representation more than
once.) Even more striking is the minimum of the disper-
son curve at every Bragg peak. This coincidence of x-ray
scattering and electronic structure strongly suggests that
some analog of Brillouin zones exists for polytope 120.

(2.11)

B. Polytope 240, sp* hybrid orbitals

Weaire and Thorpe'? define a simple tight-binding

model for tetracoordinated semiconductors. Although
they base their model on sp® hybrid orbitals, a simple
transformation'* reduces it to an s orbital model on the
same network. When the network contains only even
numbered rings, we can subdivide it into two inter-
penetrating sublattices. Polytope 240 is such a network.

-2 L1 | [ | L |
(8] 2 4 6 8 10 12 14 6 18 20 22 24

+ + + -+ o+ + -+ 4 -
M

FIG. 2. Repeated zone spectrum of H®. Energy levels are la-
beled by irreducible representations of Y’. Even (odd) values of
M for which 2M € # are labeled with a + (—) sign.
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We relate the energy spectrum on the full network to the
spectra of its sublattices.

We construct polytope 240 as follows. Sublattice A4 of
polytope 240 consists of polytope 120. Sublattice B of po-
lytope 240 comsists of the points 7Y’ where 7€ S denotes
the center of one of the 20 tetrahedral cells surrounding
the north pole in polytope 120. If we multiply Y’ on the
right by 7 instead of on the left, we create polytope 240
with the opposite chirality. Chirality does not affect the
band structure.

One atom of sublattice 4 of polytope 240 lies at the
north pole. This atom has four neighbors which belong to
sublattice B and will be denoted {o;: i=1,...,4}. Clear-
ly, 7 is a member of this set. Any point u € 4 has neigh-
bors f{o;u}CB. Any point u€B has neighbors
foi'u}CA.

We define four orbital states'> on each site { |u,0;)]},
where u is a site of polytope 240 and o; defines the near
neighbors of u. Straley'® defines the operators

[7:% > > u,0:)u,05| ,

u€Y ij

(2.12)
and

=3
i

S w0 ou,0i |+ 3 |u,0;) o 'u,0 |

u€A u€EB
(2.13)
The Weaire and Thorpe Hamiltonian is
H? —av, 04V, T—V, . (2.14)
Eigenvalues of H * are given by
EP =V, +(4V2 LV Vye+ V2 (2.15)
where € is an eigenvalue of
H'=40TU . (2.16)

In addition, there are N localized states with energy
—V—V, and N localized states with energy — V| +V,.
The number of atoms N is 240.

Consider the new Hamiltonian H' (2.16). Using the ex-
plicit forms (2.12) and (2.13) of U and T, we rewrite (2.16)
as

>

i u€A

S luXou|+ 3 |0 o7 o |,

wEB

(2.17)

where |u) denotes an electron sitting at site u. H' is
thus an s-orbital Hamiltonian for polytope 240. We now
relate H' to H°, the s orbital Hamiltonian on polytope
120.

Just as a diamond lattice can be considered an fcc lat-
tice with two atoms per unit-cell, we can consider po-
lytope 240 as polytope 12C with two atoms per unit cell.
Associated with each atom u € 4 there is an atom Tu €B.
We use this fact to construct eigenfunctions for H' based
on the eigenfunctions for H* that we derived in part A of
this section.

Assume that the polytope 240 wave functions on sub-
lattice A4 are proportional to eigenfunctions of H*. Define
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bi= 3 volu)|u), (2.18)

u€A

where v, denotes one of the irreducible basis functions
(1.24). ¢Z lies in the null space of the first term of Eq.
(2.17). The second term in (2.17) sums ¢Z over the ver-
tices of tetrahedral cells and places the resulting ampli-
tude at the center of the cell. Thus

H'¢i=3 3 vuloi'0)|e) .

w€EB i

(2.19)

The polytope 240 wave function contains ¢ only if it

contains H'¢Z. Thus we define

dE=H'92 . (2.20)

Consider the action of H' on ¢2. ¢2 lies in the null space
of the second term in Eq. (2.17). We find

H¢g=3 S tulo7'ou)|u) . 2.21)
uEA ij
Examine the set
S={o'o;}C4, (2.22)
which occurs in the sum in Eq. (2.21). When i=j,

a,-_lajzl, so S contains the north pole four times. In

general, we note that o;~ 1aj are the vertices of tetrahedral
cells of polytope 120 containing o;. When is£j, a,-_loj
are the twelve vertices of the icosahedron surrounding the
north pole. Thus

S={1,1,1,1,V,} . (2.23)
We find
Hel=3 |4+ 3 tglou) | |u) . (2.24)

u€A vEV,

Note that the second term in Eq. (2.24) is just —H* act-
ing on ¥, Thus, H' becomes a 2X2 matrix in the basis
of ¢ and ¢Z,

0 1
H'= A_H5 0 (2.25)
Eigenvalues of H' are
€, =+(4—E$)V? . (2.26)

Equation (2.15) yields the sp® hybrid density of states
from our result (2.26). We now have an exact solution to
the sp> band structure of polytope 240. Next we solve the
d-band structure of polytope 120.

C. Polytope 120 d orbitals

Transition-metal d bands are frequently analyzed with
tight-binding models.?” Slater and Koster!® introduce a
particularly simple model based on the two-center approx-
imation. We will adapt the model of Slater and Koster to
polytope 120 and diagonalize it analytically.

Electrons in d orbitals in R3 have atomic wave func-
tions

W, (r)=Y,,(r)f(|r]) (2.27)
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where the spherical harmonic depends only on the angular
part of rER?3. The tight-binding overlap integrals form a
matrix,

V(@)= [ d*rWi(r—R)ADY,(r) (2.28)

where 7 €S? points from atom b to atom a. We assume
atomic spacing is equal to one. The potential energy A(r)
has the point-group symmetry of the site of atom b.

We adapt Eq. (2.28) to polytope 120 by defining the
overlap integral in S as the integral (2.28) in R where fi
defines the direction of v (1.2). Thus

Vap (0)= V(1) , (2.29)

where v € V. With this definition, ¥,,(v) has the correct
transformation properties.

It is instructive to study the dependence of ¥,, on 1.
Consider first

=(cosw/5,Zzsinr/5)EV, . (2.30)

Symmetries of the spherical harmonics reveal

§0000
07000
Va(w)= (00 o 00/,
000m0
00003§8

(2.31)

where the independent overlap integrals o, 7, and 6 are
phenomenological parameters. Any otheér v €V, has the
form v=wuwu~'. Let R, be the operator which rotates fi
under the homomorphism SU(2)—SO(3). Equation (2.28)
yields

Vp(uou—')= fm3d3rW2(r—Ruﬁ)A(r)\I’b(r) (2.32)

= fR3dsr\llz(Ru(r—'ﬁ))A(r)\I’b(Rur) . (2.33)

We used the symmetry of A to derive Eq. (2.33).
Atomic wave functions W, form a basis for the five di-
mensional representation H of Y’. Thus

6463

Unitarity of the D matrices, and reality of V,,(w), reveal
=D (u)V (o)D) . (2.36)

Thus V,,(v) transforms like the irreducible representation
matrix D¥, within the class V; CY". V,,(v) is undefined
outside the class V.

Our Hamiltonian,

Hi= 3 3 3 |u,a)Vupw)vu,b| ,

uEY vEV, a,b

Vo (uvu=1)

(2.37)

describes atoms hopping from orbital b at site vu to orbi-
tal a at the neighboring site u. We expand eigenfunctions
of H?in terms of eigenfunctions of H*. Define

| Mam mya) =3 Yraa,mm,(u)|u,a) . (2.38)

uey'

Matrix elements of the Hamiltonian are
(Mammya |H?|NBnn,b)
= 2 2 2 '/j’;‘\/laa,mlmz(u)Vab(v)¢NBB,n1n2(vu) s

ueY' ve v, a,b
(2.39)

which is equivalent to Eq. (2.4) with a direction-dependent
hopping matrix. Following the development of part A,
we find

(Mammya | H®|NBnn,b)
=8apBmyn, > Var(0)DF (V) .

vEV,

(2.40)

We cannot apply Schur’s lemma to Eq. (2.40) because
the product of D? with V,, is not, in general, an irreduci-
ble represcntatlon matrix. We can still dlagonahze the
Hamiltonian H?.

First, we perform much algebra. Using the conjugacy
invariance of the classes of Y’, we write

S Vaw)Df,, (v)
vEV,

o(Vy) .
=~ ugy’ Vap(uou

D, (uou='), (241

—pH .
Wa(Ry1)=Dga(u)¥(r) , (2.34)  Where  is the standard element of V; defined in Eq.
and therefore (2.30). Now, we relate the matrices in Eq. (2.41) evaluated
. " H at uou ~!, to the same matrices evaluated at ©. Equation
Vap(uwu =" )=[Dge(u)1*V () Dyrp(u) . (2.35) (2.36) yields
J
o ( V] ) H _1 B B 1 B
> Vap(v)D, B o (0)= ; > Dgy(u)D (=D . (u)DE., (u=") |V,p(0)DE, (0) . (2.42)
vEY, o oY) |, v !
We apply the Clebsh-Gordon series (1.13),
D (u)D (D (u =" DE.,, (u™")
= 3 I (HaPBn,|yc)yDk (u){Ha'Bn'|yc')y(Hb'Bm’| 8d') yDyg(u = )(HbBm | |8d )y . (2.43)
v,¢c’ 8,dd’
Noting that
S DLAuDd4(u~")=8,58.48.40(Y")/dy , (2.44)

ueyYy'
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TABLE II. Energy spectrum of HY Letters in left-hand column label irreducible representations 3
and y. The number is the degeneracy Dg,,. The right-hand column shows E ‘,’3,, evaluated by Eq. (2.48).

5 AH 2o + - 2o + 25

s Ei6) s, + 10, s 120,
12 E\T _65£0 + —12597 + —12595

6 12 12
8 E,G, L1-Q) + 22— + 2(1-0)8
6 12 12

12 E,I L1-) + L@ + 200
9 F\F, 19—5*30 ¥ £t D + 215
9 F\F, L, n Lo 1) + %95
12 F\G, LQ—1)o + Q43 + 2(50-3)5
15 FH Q-1 + (5037 + +(Q+3)8
9 F,F, L2y + 21— - izsﬂs
9 F,F, 2(4—0)0 - 128 + 2-05
12 FF, ~s + . ie-som + ta—)s
15 F,H —%‘QU + L4—Q)r + 2(2-50)8
8 G.E ésﬁa n 1(1+20)7 + 21_q)
8 G\E, L1—-0)o + —li—ﬂ + 3(3—-20)8
24 G,I +(6—5Q)0 + —(19—10Q)7 + 2(1+450)8
24 GI S (145Q) + 24— + —(17—60Q)8
12 G,F, $(Q-1o + LQ—2r - %5
12 G,F; ———65£0' ¥ —1@5?-117 _ L@+ 1o
16 G,G, —30 - 240+ )m + 1(40+5)8

20 G,H —Zo0 + 202957 - 2(3420)8
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TABLE 11. (Continued).

20 G

15

15

20

20

25

25

12

12

24

24

36

36

36

HA

HF,

HF,

HG,

150 —49
35

_2
105

1
——(145Q
15(1 5Q)0

(91+45Q)0

1
4T+ 10Q)7

2@-1r
25—
ta-2m

-3

7Q0—-2
e
5

6
5 (Q—5)7

A4—50)m

1t
2(Q—10)r
2(25Q—-29)r
(50177
%(3}59)7

15 (164 +19Q)m

2 (17-5Q)7

“+

10017

10 o

120
S8
+HOQ+1)8
2
$(4+Q)8
130-1)8

5-7Q

1)
5

5 (1+9Q)8

%(Q—20)8

109+0)8

+Q+1)8
+(12450)8
%(4+25m8

+(50-1)8

15 (614+17Q)8

250121

a5 0

we combine Eqgs. (2.42) and (2.43) to get

S Vas(DF 1, (0)

vEV,

=o(V)) [ 3 (HaPn,|yc)y{HbBm

7,6c’

We use Eq. (2.45) to diagonalize H¢. Multiply (2.45) by

(HaBn, |8d ) y{HbBm, | ee)y

ve)y(Ha'Bn' |yc') y(Hb'Bm’ |vc")y | Vap(@)Dym@) -

and sum over a, b, m,, and n,. Orthonormality of the coupling coefficients (1.15) yields the result

O(Vl)
dy

absﬁde

(Ha'Bn' | 8d )y {Hb'Bm' | €e ) yVyp(@)DEp(w) .
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(2.45)

(2.46)

(2.47)
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‘Because V(w) and DP(w) are diagonal, the spectrum of
H%is
d _ o( V])

By = dy > (HaBm |vyc Y2, Vaa(@)DE, (0)  (2.48)
. a,m,c
with degeneracy
D%, =dgd, , (2.49)

where B runs through all nine irreducible representations
of Y’, and y runs through all irreducible representations
of Y’ in the Clebsch-Gordon series of HB3. We evaluate
Eq. (2.48) in Table II.

III. DENSITIES OF STATES

In Sec. II, we exactly solved three tight-binding models
defined on polytopes. Only finite numbers of energy lev-
els occur because of the finiteness of the polytopes. Strict-
ly speaking, we can only present histograms of the energy
spectra, not densities of states. However, we can smooth
out the histograms to obtain a continuous curve. We in-
terpret this smooth curve as the density of states of an
amorphous material with short-range icosahedral order.

We refer to histograms of the energy spectra as densi-
ties of states. Figure 3(a) shows the density of states of
H?, the s band Hamiltonian on polytope 120. Compare
Fig. 3(a) with Fig. 3(b) which shows the s band density of
states of an fcc crystal®® and a metallic glass.?’ Note the
similarity between Fig. 3(a) and the density of states of
the metallic glass. Both have a peak at E >2, and both
vanish as E approaches 4. The polytope’s density of
states vanishes in the interval 3.708 - - - <E <4. In con-
trast, the fcc density of states is finite for all —12 < E < 4.
A one-parameter family of eigenfunctions with E =4
creates a divergence in the fcc density of states at E =4.

Although we performed the analysis in Sec. II B for po-
lytope 240, we can extend it to any tetracoordinated sys-
tem which can be decomposed into two sublattices. Thus,
Eq. (2.26) transforms all three densities of states in Fig. 3
into densities of states for H' and its crystalline and
amorphous counterparts. We plot the density of states of
H’ in Fig. 4(a). The gap in the spectrum of H*® near
E =4 creates a gap in the spectrum of H' around E =0.
Sadoc and Mosseri® find a similar gap in the Connell-
Temkin model. In contrast, the diamond lattice density
of states'# vanishes at a single point.

Equation (2.15) yields the sp3 density of state on po-
lytope 240 [Fig. 4(b)]. Note the gaps within the valence
and conduction bands. These gaps arise from the gap in
Fig. 4(a). Such gaps do not exist in amorphous silicon.*®
The crystalline silicon density of states vanishes at isolat-
ed points.* Polytope 240 describes the structure factor of
amorphous silicon poorly also.>! We believe that polytope
240 models silicon poorly because it contains only even
numbered rings, whereas successful models contain many
odd numbered rings.*°

Gallium arsenide strongly favors even numbered rings.
Thus, we expect polytope 240 to be a better model of
amorphous gallium arsenide than amorphous silicon.
Indeed, valence and conduction band gap are observed® in
amorphous GaAs. Unequal site energies of Ga and As

MICHAEL WIDOM , 31

create gaps'*!> in crystalline GaAs. Polytope 240
predicts a slightly increased gap width due to icosahedral
order.

Dramatic effects of icosahedral order appear in
transition-metal d bands. Recall that d orbitals form a

50 | T T

(a)

40 -

30— .

G, G,

0.5

0.0
-12 -8 -4 0] 4

FIG. 3. s-band densities of states. (a) Polytope 120. (b) fcc
crystal (dashed line) and dense random packing (solid line).
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(a)

20— -

€a

30~ ‘F ‘.‘—

5
Cd
Dﬂ

20— -

o | | 1 1 I |

8 -6 -4 -2 0 2

4
sp3
ESP

FIG. 4. Polytope 240 densities of states. (a) s band. (b) sp?
hybrid orbitals. We take ¥, =—1¢eV and V,=—3 eV.

basis for an irreducible representation of Y’. ‘This
prevents d level splitting at zero wave number. In con-
trast, the d band splits into blocks of degeneracy two and
three at the center of the fcc Brillouin zone. In polytope
120 the d band remains degenerate at wave number M =1
(see Table II). :

We plot the d-band density of states in Fig. 5. The pa-
rameters o, 7, and & are chosen to model nickel.!%2732
The values of o, 7, and 8 are universal®? up to an overall
dilation of energy. Thus Fig. 5 qualitatively depicts the
d-band density of states of both nickel and iron. Note the
peak at band center. This is due to the absence of d level
splitting in fields of icosahedral symmetry. Gaspard®® ob-
served a similar effect in a dense random packing model
of glass. _

It may be possible to measure the degree of icosahedral
coordination experimentally. Dope the glass with atoms
whose radius is comparable to nickel, but whose valence d
electrons have a high ionization potential. These localized
d electrons will be split according to their crystal field.
The degree of splitting may be observable in photoemis-
sion fine structure.

100 B

N(E)

5.0~ ’ 4

o1
E(Ry)
FIG. 5. Polytope 120 d band. We take o= —0.3563 Ry,
7=0.02091 Ry, and 6= —0.0028 Ry. Energies (2.48) are aver-
aged over 0.03 Ry. Dashed lines show 70% and 90% filling of
the band.

| |
0.0 ol 9

The shift in the transition metal density of states, from
high energies in fcc crystals to the middle of the band in
polytope 120, influences the magnetic properties of amor-
phous metals. Amorphous iron is ferromagnetic, whereas
fcc iron is not. Face-centered-cubic nickel is ferromagnet-
ic, whereas amorphous nickel is not. The Stoner criterion
states that a material is ferromagnetic at low temperatures
if ‘

N(Ep)Uee>1, 3.1

where N (Ef) is the density of states at the Fermi energy
and Uy is the effective Heisenberg exchange energy.
Thus, increasing (decreasing) the density of states at the
Fermi level increases (decreases) the probability of fer-
romagnetism. .

The dashed lines in Fig. 5 show the Fermi energy for
d’ (iron) and d° (nickel) materials. Because the Fermi en-
ergy of iron is close to the band center, amorphous iron
has a greater probability of ferromagnetism than fcc iron.
Because the Fermi energy of nickel is close to a band
edge, amorphous nickel has a lesser probability of fer-
romagnetism than fee nickel. N(Ep)=5.8
(atom Ry spin)~! in fcc nickel,*® where N(Ep)=2.5
(atom Ry spin)~! in polytope 120. Taking®? U =19
atom Ry spin we find Eq. (3.1) satisfied for fcc nickel, but
not polytope 120. Our polytope model of amorphous
nickel correctly predicts magnetic trends.
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(b)

FIG. 1. Fragments of polytope 120 in R*. (a) Coordination shell ¥, forms an icosahedron. (b) Coordination shell F, forms a
dodecahedron. (c) Coordination shell V3 forms an icosahedron. (d) Coordination shell E4 forms an icosidodecahedron.



