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Randomly positioned dipoles tend to align at low temperatures due to interactions with a mean field.
Random dipolar positions lead to flactuations which can inhibit ordering, even at T'=0. We show fluc-
tuations dominate the mean field at low densities of dipoles, preventing order at any temperature. At
high densities, in contrast, the mean field dominates and ordering is possible.

I. INTRODUCTION

Randomly positioned dipolar solids arise in many con-
texts and offer the possibility of important applications.
In partially occupied crystal lattices of LiHo,Y,_,F,,
randomly positioned magnetic holmium ions interact pri-
marily through their dipoles.! Giant magnetoresistance
materials? place magnetic cobalt or iron nanocrystals
within a pure copper environment. Room-temperature
transparent ferromagnets® consisting of magnetite nano-
crystals in a polymer matrix hold promise as a com-
ponent in inks for printers. Dipole interactions may
influence magnetic properties of cobalt- or gadolinium-
filled Bucky onions* embedded in an amorphous carbon
soot. Ferrofiuid, a coloidal suspension of magnetic grains
in a liquid solvent, may be cooled below the solvent freez-
ing temperatures.® Likewise, electric®’ dipoles may oc-
cupy random positions.

Two characteristics of dipoles lead to unusual
difficulties in analyzing these systems: long range and an-
isotropy. The field at point r==7% due to a dipole moment
u at the origin is

i B

The r 3 falloff leads to conditional convergence of the lo-
cal field due to a distribution of dipoles at remote loca-
tions. With proper treatment of boundary effects® that
problem may be resolved. The anisotropy leads to frus-
tration in aligning favorably with nearby dipoles. We be-
lieve a dipolar glass state arises as a result of such frustra-
tion.?

Conventional mean-field theory
system spontaneously magnetizes at a critical tempera-
ture T which is proportional to the density of dipoles.
Consequently, the system is ferromagnetic for any density
at T=0. However, Luttinger and Tisza!? prove that at
zero temperature, dipoles on a face- or body-centered-
cubic lattice order ferromagnetically while those on a
simple-cubic lattice order antiferromagnetically. In other
words, orientational order in a dipole system depends on
the positional arrangements of the dipoles. The absence
of ferromagnetic order in frozen ferrofluids® consisting of
randomly positioned dipoles also suggests the need to
refine conventional mean field theory. This paper focus
on the effect of random dipole positions on spontaneous

8,10,11

0163-1829/95/51(14)/8951(7)/806.00 31

predicts a dipole

magnetic order. Random positions induce local field fluc-
tuations,'> which tend to suppress magnetic order.” Un-
like thermal fluctuations, which vanish at zero tempera-
ture, local fluctuations arising from positional random-
ness prevent magnetic order in dilute dipole systems even
at T=0."1 ,

Klein et al.® pioneered a self-consistent theory of ran-
domly positioned point dipoles to study polar impurities
on randomly chosen lattice sites. Vugmeister and Glin-
chuk’ employed this theory to study orientational order-
ing in randomly positioned point dipoles. They conclud-
ed that local field fluctuations due to positional random-
ness prevent the emergence of long-range orientational
order even at T =0. We note that the closeness of neigh-
boring dipoles is limited by the hard-sphere diameter in
the case of ferrofluids and by the lattice constant in the
case of lattice impurities. Since the dipole-dipole interac-
tion diverges rapidly at zero distance, neglecting this
minimum separation greatly exaggerates local fluctua-
tions due to positional randomness and alters the qualita-
tive behavior of the system.

Two key dimensionless parameters characterize a sys-
tem of dipolar hard spheres. For sphere diameter a, we
define the volume fraction

¢:——_167-pa3 , 2)

which is a dimensionless measure of density. The dimen-
sionless reduced temperature

kpTa®
L : - (3)
u
reflects the thermal energy as a fraction of dipole energy
at contact.
Magnetic interactions depend on relative positions of
the dipole moments. The complete pair correlation func-

tion in a dipole system can be expanded in the form

glrppp)= 3 g™ (NO™P i 0,) , )

mni

where [I; are the orientations of their dipole moments g,
? is the orientation of their separation r, and
®™"(%,12,,f1,) are orientational invariants.’”!* The pro-
jection g%®(r) is the usual radial distribution function.
Both conventional and generalized mean-field theories
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decouple orientational and spatial degrees of freedom,
and use the positional correlation function g(r). We con-
sider a fixed, random, distribution of particles and set the
positional correlation function g(r)=g%(r)=1 outside
the hard-sphere diameter. This approximation is reason-
able for the frozen ferrofluid experiments and very dilute
dipolar defects occupying randomly chosen sites of a reg-
ular lattice.

Each type of these randomly positioned dipole systems
has its own peculiarities relevant to magnetic order. Di-
polar defects on a lattice assume discrete dipole orienta-
tions dictated by the crystal field. Uniaxial anisotropy re-
stricts moments to £2 directions. We call these Ising di-
poles.”” In frozen ferrofluid, the frozen solvent immobi-
lizes the dipolar particles, but imposes no field to
influence dipole orientations. In many cases, the dipole
moment of a particle rotates freely, even though the par-
ticle itself is held rigidly. However, each magnetic parti-
cle may have an easy axis® created by a combination of
crystal fields and a spherical particle shape. The magnet-
ic moment of a particle prefers to point along the easy
axis to lower energy, as in the case of Ising dipoles.
These easy axes are locked in random orientations since
the particles cannot rotate. We therefore call these parti-
cles random axis Ising dipoles.

This paper first reviews conventional mean-field
theory, then Klein’s generalization to include local fluc-
tuations. We then apply the generalized theory, succes-
sively, to freely rotating dipoles, Ising dipoles, and ran-
dom axis Ising dipoles. Preliminary results for freely ro-
tating dipoles are reported in an earlier paper.**

II. CONVENTIONAL MEAN FIELD THEORY

In conventional mean-field theory, each dipole u; feels
a mean field Hy which is identical for all dipoles. This
mean field H; determines the thermal average of u; at site

() p=2t )
3™
which is also identical for all dipoles. The subscript T in-

dicates a thermal average. We define the magnetic order
parameter as the magnetization per unit volume,

ME,D(ﬂ)T s (6)

where p is the dipole number density. Treating the sys-
tem as a continuum, we obtain the mean field H; as a
function of the order parameter M,

Hy= [ deg(n ZMII=M 47

The integral is calculated for positional correlation func-
tion

M. N

1 ifr>a,

0 if r<a ®

gl(r)=

contained within an infinitely prolate spheriod® with ma-
jor axis in the direction of magnetic order M.
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Equations (6) and (7) constitute a self-consistent mean-
field theory. Hy,=M =0 always solves the equation.
Spontaneous order emerges when a nonzero solution for
M and H, bifurcates from the zero solution. For the
phase boundary of a continuous phase transition, we need
only to examine the limit of weak mean field Hy and
small order parameter M. Expanding Eq. (5) for weak
field H,, Eq. (6) gives

M=pBH( (2%, , ©)

where the average is performed over all allowed I, and 2
is unit vector in the direction of both M and H,,.

For Ising dipoles, p is confined in the 2 directions, so
Eq. (9) gives the order parameter in terms of the mean
field

M=pBuH, , (10)

which along with Eq. (7) for the mean field in terms of the
order parameter gives the phase boundary

%Epﬁy2=1 . (11)

The continuous magnetization phase boundary in the
¢—T* plane is therefore

T*=8¢ . (12)

For freely rotating dipoles and random axis Ising di-
poles, {2 points in all directions with equal probably. Asa
result, Eq. (9) for the order parameter gives

M=1pBu’H, , (13)

which yields the continuous magnetization phase bound-
ary in the ¢ —T'* plane,

T*=$4 . (14)

As expected, Ising dipoles magnetize more readily than
dipoles that can point in all directions. We also note that
conventional mean-field theory makes no distinction be-
tween freely rotating dipoles and random axis Ising di-
poles.

III. GENERALIZED MEAN-FIELD THEORY

When dipoles assume random positions, each dipole u;
feels a different field H;, giving rise to a thermal average
{p;)r which varies from dipole to dipole. Klien’s
theory®” considers the probability distribution P(H) of
the field on any dipole, with mean Hj, just as in conven-
tional mean-field theory, and nonvanishing width 8§ (con-
ventional mean-field states =0).

The thermal average {u) captures only one aspect of
the thermal state of an individual dipole. Instead, define
the dipole orientation distribution Q(2) which depends
on the field distribution P(H),

ePwH -
‘H M
zﬂe Bp

We express the long-range magnetic order parameter M
in terms of Q(f1)

Q@)= [d*HP(H) (15)



M=p [d*pQ(R)2 .
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(16)

This orientation distribution Q(f) in turn determines the field distribution P(H). In the following we derive this link in

the self-consistency loop.

The field distribution P (H) due to N randomly positioned particles

N ' N

PD)= [ [T %, d® D68 [H— S 13,0 2)—1 | » an

j=1 ji=1 rj

where D({r,[1}) is the probability distribution of the positions and dipole orientations of all dipoles from 1 to N. We:
decouple the probability distribution 2({r,22}) into single-particle distributions D (r,{2),

D{r,p})= ﬁlD(rj,ﬂj) . (18)
This approximation simplifies the Fourier transform of the field distribution P (H),

F(q)= [d°HP(H)e~"aH (19)

= [fd3r 420D (r,)e 11/ 3@ p =g p] ]N , (20)

Now rewrite Eq. (20) as

F(q)= [1— I d3r d*pD(r,p)(1—e ~H/rIBEN LD =g ] ]N @1)
and use the identity

N

Jim J1—- | =e i (22)
to obtain

Flq)=e~ %9, (23)
where

W(q)=(Wg +iW;)=N fd3rd2,iw(r,i2)( {—e —iW/P3aM P —guly | (24)

Next we decouple the spatial and orientational degrees of freedom in the single-particle distribution D (r,2), and set

D(r,ﬁ)=ng(r)Q(ﬂ) )

(25)

where g (r) is the positional pair correlation function given by (8). Now,

wel@)=p [dno@ [ d* ll—cos l—lg[3(q-’?)(u-?)—q-ﬁ]
r>a r

Wz(q)=Pfd2ﬂQ(ﬂ)f,”d:’rsin [;1;[3(@?)(#-?)—(1-#]

Inverse Fourier transforming F(q) yields

_ (21 : J-d3qei[q-H—W,<q>]—WR(q> ‘ 28)
T

Equations (15) for Q(f) in terms of P(H) and (28) for
P(H) in terms of Q(fi) constitute a self-consistent formu-
lation for randomly positioned dipoles.

In calculating P (H) from Eq. (28), the small-g region is
most important, since the magnitude of the integrand

Flq) is close to a Gaussian for small g, and is exponen-

P(H)=

} > (26)

. 27

r

tially small for large g. It is therefore sensible to expand
Wg(q) and W;(q) in powers of g. Equation (26) yields

2.2
Weta)=2TEE0 [ apo@3+@-nY]

’ 29)

which controls the shape and with of the field distribu-
tion P(H). In the limit @ —0, Wx(q) =g, corresponding
to a P(H) of Lorentzian form consistent with Vugmeister
and Glinchuk.” For finite a, however, Wx(q)=g? to
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leading order, corresponding to P(H) of Gaussian form
with width

s<Vpit/a® . - 6o

The field distribution P(H) has mean Hy=(47/3)M ex-
actly as in conventional mean-field theory, dictated by
Eq. (27) for

W,(q)=i3"—,aq-M+o

3.3
fi{—] (31)
a

Conventional mean-field theory sets the spread §=0
and predicts ferromagnetic order for all densities at
T =0. At the other extreme, Vugmeister and Glinchuk’
consider randomly positioned point dipoles. Because the
dipole-dipole interaction diverges rapidly for closely
spaced pairs, the field distribution P(H) is Lorentzian,
with a spread proportional to the dipole density. Orien-
tational order does not occur at any density, even at
T =0.

Hard-sphere repulsion limits the closeness of dipoles,
so the true field distribution P(H) resembles a Gaussian
with spread proportional to the square root of dipole den-
sity. The spread thus grows rapidly at small volume frac-
tion ¢, but more slowly for larger volume fraction. Our
study shows that long-range orientational order emerges
when the dipole volume fraction exceeds a certain critical
value ¢,. We now explore this phenomenon in detail for
several classes of random dipolar solid.

IV. FREELY ROTATING DIPOLES

In the absence of orientational order,

o= - (32)
and
_ 4mpu? ,
WR(q)— 9a3 q . (33)

The correction in Wy (q) due to magnetic order is ~M2.
An inverse Fourier transform [see Eq. (28) for P(H) and
Eq. (31) for W;(q)] leads us to

1 —(H—H,)? /48

PH)= ms—e , (34)
where the Gaussian spread

8=V'4mu% /9a> 35)
is isotropic plus anisotropic corrections of order H3.

For any field H, the thermal average

(p)r=uL(BuH)A , (36)
where

L(BuH)=coth(BuH ) — —— @37

BuH’

is the well-known Langevin function. Averaging over
fields yields the magnetic order parameter

M=pu [ d°*HP(H)L(BuH)A . (38)

For weak mean field H,, in the z direction, expanding (34)
gives
1 H OHz
11+
(2vV78) 282

At the onset of magnetic order, self-consistency for mean
field H, is

P(H)= e ~HS (39)

—4m
H, 3 M
4 H, |H,H, | ,~H* /4 -
=_— d*H L(BuH)
3 puf BuH)— l 28 | (2vV78)>
(40)
Let
y=BuH (41)
and
A=Bud=V'84¢/3T*%. 42)
The self-consistent condition (40) becomes
® 1y p3 —y2nant_ 64 3 :
[y L (e = a3 43)

Examine the high- and low-temperature limits of this
condition: (i) High T* corres onds to small A. The fast
decaying Gaussian factor e ¥ /*A" means only the small-y
regime contributes significantly to the integral. For small

Vs

3
~2L 2
L(y) 7 45 (44)
giving the high-T* phase boundary
T*=%(¢—1), (45)

where the constant term is a correction to the mean-field
prediction [see Eq. (14)]. (i) Low T* correspondzs tg
large A. The slowly decaying Gaussian factor e > /42
means the large-y regime contributes significantly to the
integral. For large y,

1
L(y)zl—; y (46)
which gives the low-T'* phase boundary
32 3
* — — ——
T 3 (] P 47
At T*=0, magnetic order persists for
37
2¢.,=—=0.295. 48
24, ) 0.295 (48)

Figure 1 shows the phase diagram of freely rotating di-
poles over a range of temperature and volume fraction in-
cluding the limits analyzed above.



FIG. 1. Phase diagram for freely rotating dipoles. PM indi-
cates paramagnet and FM indicates ferromagnet. The solid line
is from generalized mean-field theory. The dotted line is con-
ventional mean-field theory.

V. ISING DIPOLES

For Ising dipoles,
p==z. (49)
Equation (29) implies '
2
Wel@)=2TPE (3424 42)
15¢°
2
= 2MOL (302 4342 4442) (50)

1543

independent of order parameter M. An inverse Fourier
transform [see Eq. (28) for P(H) and Eq. (31) for W;(q)]
gives the field distribution

P(H)=P,(H,)P,(H,), (51)

where P, (H, ) concerns the components in the xy plane,
Py(H))= 7:8} st
- 47:8% —(H2+H2)/48} (52)
and P,(H,) concerns the z component,
P,(H,)=> V% 5 U H 45 (53)
The widths
5,=V2miPp/5a> ' (54)
and
8, =V 8mu’p/15a° . (55
The mean field Hy=(4#/3)M as in Eq. (7).
Ising dipoles point only in the 2 directions. Follow-
ing Eq. (15),
e TBuH,
Q(x2)= . a’l‘I‘.{PZ(Hz)————-—2 cosh(Bu) - (56)
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Note the order parameter
M=pu[Q(+2)—Q(—2)]
=pu [ _+ “dH,P,(H,)tanh(BuH,) , (57)

and the mean field

4
3

The onset of magnetic order corresponds to small Hj,
where

H, M=4T'”pu [ " aH,P,(H, tanh(BuH,) . (58)

P,(H,)~~ 1/177 ;. [1+ b;"g’ —H /5 (59)
Let

y=PBuH, (60)
and

A, =Bus,=V'164/5T**. 61)
The self-consistent condition (58) becomes

J."dyy tanhye s 4A3=5—1T6*7 w$/5. (62)

Examine the high- and low-temperature limits of this
condition: (i) At high T*, use

3
tanhy =~y — 13— (63)

in the self-consistent equation (62) to yield the phase
boundary for spontaneous magnetization:

r=gg—4 (64)

5 -

The correction to conventional mean-field prediction [Eq.
(12)] is a constant shift toward greater density. (ii) At low
T*, use

tanhy =~1—2e¢ %, (65)

yielding the low-temperature phase boundary for spon-
taneous magnetization

T*=V(64/5)¢—7/20). (66)
At T*=0, magnetic order persists for
>¢ = ~0. .
0=, 20 0.157 (67)

Figure 2 shows the complete phase diagram for Ising di-
poles.

VI. RANDOM AXIS ISING DIPOLES

These dipoles point only along their easy axes which lie
in all directions with equal probability. Therefore,

2
WR(q)=5i;§§‘—q2 , (68)

independent of magnetic order parameter M. The field
distribution P(H) has the same form as for freely rotat-
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0.2 0:4 * 0:6 0.8

FIG. 2. Phase diagram for Ising dipoles. PM indicates
paramagnet and FM indicates ferromagnet. The solid line is
from generalized mean-field theory. The dotted line is from
conventional mean-field theory.

ing dipoles [Egs. (34) and (35)].
Relating Q(,iZ) to P(H) by Eq. (15),
ePuH

3 ______ﬁ_d_‘“
fd HP(H)

Q(IZ)_ ~(69)

For magnetic order parameter M in the +2 direction,
Eq. (69) implies

M=2L- [ PHP(H) [ d’R(p-2)tanh(Bu-H) . (70

At the onset of magnetic order, self-consistency for the
mean field H, implies

H? /452

1=—P~ d°H d 0 tanh(Bu-H)
o )

g (H2)p?) .

(71)

Note that the integral does not depend on 2. We can
therefore make the substitution

(H-2Mp-2)—>ju-H, (72)

reached by averaging over all 2 directions holding the an-
gle between p and H fixed. Let

y=pBuH , (73)
A=Bud=V38$/3T*, (74)
x=p-H . (75)
The self-consistent equation becomes
f ow dyy’e 2 /3
(76)
The critical volume fraction at T*=0is
¢C(T*=0)=3—;T~z1.18. a7
At T*>0,
SAT*)> ¢ (T*=0)>1. (78)

Since, realistically, ¢ <1, spontaneous magnetization is
forbidden in a system of random axis Ising dipoles.

"VII. CONCLUSIONS

This paper studies spontaneous magnetic order in dipo-
lar hard spheres having fixed, random positions. Conven-
tional mean-field theory!® describes a bulk continuum
and neglects local fluctuations'> due to dipole positional
randomness, which tend to suppress magnetic order.” By
incorporating a minimum dipole separation a, we estab-
lish the possibility of magnetic order in the presence of
positional randomness for Ising dipoles and freely rotat-
ing dipoles at moderate and high volume fractions. At

low volume fractions, the particle size becomes less

relevant, the field distribution approaches a Lorentzian
form, and the system should not magnetize even as
T —0. We also study the effect of randomly oriented uni-
axial anisotropy, finding that random axis Ising dipoles
do not magnetize at realistic volume fractions (¢ <1). In
contrast, the conventional mean-field result does not
differentiate between random axis Ising dipoles and freely
rotating dipoles.

Several generalizations and improvements of our
theory are possible. If the particles are aspherical, g (r)
becomes anisotropic at small r. Among other things, this

- affects the mean field,® which is weaker for needle shapes

and stronger for pancake shapes. For mobile dipoles,
correlation between the r and I degrees of freedom may
invalidate our separation of the two variables. While
fine-tuning the pair correlation function may improve
quantitative accuracy, our simple expression already
suffices for qualitative insights. A serious deficiency of
our theory is omission of the dipole glass state. It is ex-
pected that a replica analysis® will reveal a glassy state at
low temperatures near our current ferromagnetic phase
boundary.

We can compare our theory with results of some exper-
iments. In the case of frozen ferrofluids, the particle easy
directions are randomly oriented. At very low tempera-
tures, competition between interparticle magnetic cou-
pling and particle random anisotropy determines equilib-
rium magnetic ordering. Spherical particles having uni-
axial crystalline anisotropy can be viewed as freely rotat-
ing dipoles if the ratio of anisotropy energy to dipole in-
teraction energy is small, and as random axis Ising di-
poles when the ratio is large. The magnetite particles in
experiments® by Luo et al. have uniaxial anisotropy ener-
gy ~1.5X107" erg and dipole energy at constant
~4X 10713 erg, clearly in the limit of freely rotating di-
poles. We note that these experiments® are conducted in
the range ¢ <0.233, which falls in the regime where we
predict no magnetization even in freely rotating dipoles.
The absence of magnetic order they find is therefore con-
sistent with our predictions. We hope these experiments
can be repeated at higher volume fractions.

Our study assumes the system is in equilibrium. How-
ever, at low temperatures equilibration time may far
exceed measurement time. In frozen ferrofluids, indivi-
dual magnetic particles must overcome barriers of anisot-
ropy energy while rotating their dipole moments (Néel re-



laxation). The Néel relaxation time®

KV/kgT
TN =To€

> . (79)
where 7,=107° sec, and K and ¥ are anisotropy constant
and particle volume. The magnetite particles used in the
frozen ferrofluid experiments® have diameter 50 A and
anisotropy constant K ~2.3X10* ergs/cc. At T=4.5K,
their Néel relaxation time 7,~1.0X107% sec. Aside
from anisotropy energy barriers in individual particles,

interparticle interactions can also slow down equilibra- -

tion. In the frozen ferrofluid experiments,’ nonexponen-
tial decay of thermoremanent magnetization at T=15 K
yields a relaxation time of order 10* sec, far greater than
the Néel relaxation time of individual particles. This in-
dicates that collective effects are a chief source of the
glassy behaviors observed in frozen ferrofluids.” We do
not address the glassy phase.

Liquid dipolar fiuids correspond to freely rotating di-
poles. In the computer simulations of dipolar hard
spheres'> !¢ the lowest volume fraction for the magnet-
ized phase was found at ¢=0.157, T*=0.0816.1¢ This
point is outside the ferromagnetic region predicted by our
study. Our study does not incorporates the effect of par-
ticle mobility, and therefore only sheds indirect light on
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the phase diagram of liquid ferrofluids. However, since
particle mobility provides an additional degree of free-
dom to accommodate magnetic order, we believe liquid
ferrofluids have a stronger tendency to spontaneously
magnetize.

Experiments on randomly distributed Ising spins! yield
a phase diagram in good agreement with our prediction,
with a continuous phase boundary consistent with con-
ventional mean field result at high and moderate temper-
atures and bending toward higher density at lower tem-
peratures. The constant offset which our theory predicts
[see Eq. (64)] vanishes when dipoles occupy random lat-
tice sites rather than arbitrary positions in space. Again,
the experiment observes a glassy phase at extremely low
temperature, which we do not address.
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