Tile-decoration model of a Co-rich AlCoNi quasicrystal derived from the W-AlCoNi approximant

M. Mihalkovič Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia

M. Widom

Department of Physics, Carnegie Mellon University

Pittsburgh, PA 15213

(Dated: May 15, 2005)

We use ab-initio total energy calculations to refine chemical ordering of the W-AlCoNi approximant structure, and calculate its stability relative to other ternary and binary competing compounds. This approximant structure has 8 Å stacking periodicity along its pseudo-5-fold axis and can be interpreted as stacking of two identical adjacent 4 Å slabs with stacking vector inclined relative to the pseudo-5-fold axis. We generalize this stacking motif to model the 8 Å quasicrystal. Starting with 4 Å slabs forming a "binary" (3-level) decagonal tiling, we introduce tile flips between adjacent slabs analogous to the "octagon" tile-reshuffling update move for binary Penrose tiling. These tile flips lower the total energy, implying 8 Å superorder for the quasicrystal at low temperatures, consistent with experiment

PACS numbers:

I. INTRODUCTION

The alloy system Al-Co-Ni is widely studied because it contains thermodynamically stable five- and ten-fold quasicrystals [1], some of which can be grown as single crystals, suitable for study by electron microscopy [2–4] or X-ray diffraction [5, 6]. The quasicrystal-forming region of the phase diagram turns out to be extremely complicated, containing at least 8 distinct variants [7]. Of special interest are the "basic Ni-rich" phase (bNi), around composition Al70Co09Ni21, and the "basic Co-rich" phase (bCo), around composition Al72Co17Ni11. These phases are named "basic" because their diffraction patterns contain only basic reflections, while the other modifications contain superlattice peaks.

The bNi phase has a 4 Å stacking periodicity, while the remaining phases all have 8 Å or higher. Even the 4 Å structure exhibits layers of diffuse scattering suggesting short-range disorder characteristic of an 8 Å modulation. Our discussion of structures utilizes 2 Å slabs consist of a layer of atoms together with the 1 Å spaces above and below. Depending on reflection symmetries across these at layers, the atoms may be coplanar (forming a flat layer) of slightly displaced off the plane (forming a puckered layer). For example, $Al_{13}Co_4$ is an 8 Å periodic structure which alternates flat and puckered 2 Å layers. Two 2 Å layers form a 4 Å bilayer. For example, the bNi phase can be described as a periodic stacking of idntical 4 Å bilayers, while a single period of $Al_{13}Co_4$ consists of two adjacent inequivalent bilayers.

In addition to the quasicrystal phases, some other ternaries exist [8, 9]. Most of these are extensions of binaries into or across the ternary composition space (e.g. β -phase with structure Al(Co,Ni).cP2) which we consider as pseudo-binaries. Two intrinsic ternaries exist which have no binary counterparts. These are the X-phase [10] with 4 Å periodicity and the W-phase [11] with 8 Å periodicity. We are fortuntate that they lie close to the quasicrystal phase in composition and that each of their structures has recently been determined.

For complex structures such as quasicrystals, diffraction-data-derived models with mixed/fractional occupancies may hide energetically important occupancy correlations. It becomes essential to discover plausible specific low-energy configurations representative of the ensemble averages accessible to diffraction—data experiments. Given such a low-energy structure we wish to derive an "idealized" model that would be transferrable from one approximant to another, yielding reasonable energies for all these structures. In the tile-decoration approach atomic motifs are bound to space-filling tiles according to a decoration rule. From this viewpoint, the refined structure of the W-AlCoNi phase provides a unique insight into the detail of the QC structure, because it was possible to solve the structure by means of classical crystallographic approach, the amount of apparent disorder is tolerably small, and because total energy calculations confirm its plausibility.

Efforts to model the quasicrystals and related approximants rely on planar tilings. Tile vertices can be assigned "levels" ν in perpendicular space with five allowed values $(0, \pm 1, \pm 2)$. Two important types of tiling are (i) hexagon-boat-star (HBS) tilings [12] and (ii) binary rhombus tilings [13]. HBS tilings are also known as 2-level tilings because the can be formed by starting with a Penrose rhombus tiling, where all vertices occupy just four ν levels, then deleting

all rhombus vertices lying on two of the levels. The remaining vertices lie on just two levels (e.g. $\nu=0,+1$) and form H, B, and S tiles. Binary rhombus tilings are subsets of 4-level tilings in which the vertex ν levels are restricted to 3 values (e.g. $\nu=-1,0,+1$). Binary tiling are so-named because their vertices can be grouped into two sets, type A (36 and 108°, all at $\nu=0$) and type B (54 and 72° divided among $\nu=0,-1$).

A plausible model of the bNi phase has been predicted using first-principles derived interatomic pair-potentials [14] to distribute Al, Co and Ni atoms among sites of an ideal quasilattice [12], leading to decoration rules for HBS tilings of 4 Å bilayers based on 11-atom decagonal cluster as a fundamental structural unit. Similar methods applied to the Al-Co binary [15] also obtain HBS tilings, but with the pentagonal bipyramid (PB) as a basic structural unit. Recent investigations of Co-rich ternaries provide insight into the link between these two motifs [16] which will be discussed further below.

These clusters play an important role in the following discussion, so we describe them now in detail. The 11-atom decagonal cluster consists of two pentagonal rings of atoms in adjacent 2 Å layers, rotated by 36° with respect to each other. One pentagon contains only Al atoms, while the other layer contains some TM (TM=Co,Ni) atoms. The TM-containing pentagon is centered by a single Al atom. Because it consists of two 2 Å layers, this cluster stacks with 4 Å periodicity. Likewise, the PB is centered by an Al atom in a flat layer, surrounded by a pentagon of TM atoms. This TM pentagon has a 4 Å edge length and forms the equator of the PB. The puckered layers 2 Å above and below feature PB caps that consist of an Al pentagon centered by a TM atom. Because the height of the PB is 6 Å, it is stacked with 8 Åperiodicity by inserting an intervening junction layer containing two or three Al atoms at highly variable positions.

The following section presents our first-principles calculation method. Then, we apply this method to the experimentally reported W-phase structure. We find most reported atomic positions are reasonable but a small number are not. Using Monte Carlo simulation we optimize the pattern of Al and TM (transition metal, i.e. Co or Ni) occupancy in mixed occupancy sites. We make initial progress on the allocation of TM sites to Co or Ni. Even our most highly optimized structure is high in energy, suggesting it cannot occur as a stable phase at low temperatures. However, we show the entropy associated with chemical disorder may be sufficient to stabilize the structure at high temperature. Similar conclusions apply to the X-phase and the β -phase.

Our structure model for the W-phase (see Fig. 1) can be interpreted as tilings of 4 Å bilayer units that are simultaneously 2-level HBS tilings and 3-level binary tilings. 8 Å periodicity is achieved by introduction of tile flips between adjacent bilayers. Our structure model fills a "missing link" between PB-based models of binary Al-Co, and HBS models of the 4 Å bNi phase.

II. FIRST-PRINCIPLES CALCULATIONS

We perform first-principles calculations of electronic structure and total energy using the program VASP [17, 18], which is based in electronic density functional theory and uses a plane-wave basis for electronic states. We model exchange and correlation potentials via the GGA approximation [19]. Calculational efficiency is achieved through the use of PAW potentials [20], an all-electron generalization of pseudopotentials.

We calculate total energies of every known structure in the Al-Co-Ni ternary system, including its binary and pure elemental subsystems. Each structure is fully relaxed, both in atomic coordinates and lattice parameters. From the resulting total energies we subtract from the energies of the pure elements in their lowest energy form, to predict the enthalpy of formation ΔH_{for} at temperature T=0K. The convex hull of enthalpy versus composition corresponds to the lowest enthalpy structures. Convex hull vertices correspond to pure phases, while edges and facets indicate regions of two- or three-phase coexistence. For structures whose energy places them above the convex hull, the corresponding energy difference $\Delta E > 0$ indicates their degree of instability. If the unfavorable enthalpy is balanced by an entropic term TS then their free energy G = H - TS may be sufficiently low that they become stable at high temperature T > 0.

Table I presents our data for selected binary and ternary structures. Notice we find no stable ternaries. They all are predicted to decompose into mixtures of various binaries, in apparent contradiction to experimental observation of their formation. We believe this can be resolved by invoking the entropy of chemical substitution between Co and Ni atoms. We estimate S/Nk_B as: $2 \log 2/2$ for Al(Co,Ni).cP2 (assuming free Co/Ni substitution on 1/2 of all sites); $0.3 \times (2 \log 3/2/3 + \log 3/3)$ for W-AlCoNi (assuming free Co/Ni substitution on all TM sites at composition Al70Co20Ni10); $\log 16/26$ for X-Al9(Co,Ni)4 (assuming free substitution of Co and Ni on TM(1) sites [10]. In each case the substitutional entropy is sufficient to stabilize the structure at high temperature.

Note that the substitutional entropy cannot stabilize the $Al_{13}Co_4$ phase. Rather, we believe that a combination of Al vacancy entropy together with vibrational entropy of low frequency phonons is needed to stabilize this binary compound [21].

	Compound	Pearson	Atoms/cell (%)			Energies (meV/atom)		
	Name	Symbol	Al	Со	Ni	ΔH_{for}	ΔE	-TS
	Al_9Co_2	mP22	18 (82)	4 (18)	0	-350	stable	0
	$Al_{13}C0_4$	mC102	74 (76)	24(24)	0	-421	+5.6	0
	Al_5Co_2	hP28	20 (71)	8 (29)	0	-483	stable	0
	AlCo	cP2	1 (50)	1 (50)	0	-629	stable	0
	Al_3Ni	oP16	12 (75)	0	1 (25)	-428	stable	0
	AlNi	cP2	1 (50)	0	1 (50)	-677	stable	0
	Al(Co,Ni)	cP2 (cF16)	8 (50)	4 (25)	4 (25)	-632	+20.9	-34.6
	W-AlCoNi	mC534	190 (72)	55 (21)	20 (8)	-471	+12.7	-19.1
	X-Al9(Co,Ni)4	mC26	18 (69)	3 (12)	5 (19)	-510	+6.1	-10.7

TABLE I: Data. Energies are meV/atom. TS values are at T = 1160K and include only Co/Ni substitutional entropy.

III. W-PHASE

The experimentally determined W-phase structure is centered monoclinic, with 534 atomic sites per unit cell. Its lattice parameters are $39.67 \times 8.15 \times 23.39$ Å³, angle $\beta = 90.5^{\circ}$, identifying it as close to an orthorhombic quasicrystal approximant of type H4B4. It has low symmetry (space group Cm, #8) and a correspondingly large number of independent orbits. In all there are 131 Al orbits, 11 mixed-occupancy orbits and 57 TM orbits. All sites are claimed to be fully occupied except for one TM orbit which was reported about half-occupied, resulting in a total of ~265 atoms distributed over 267 sites in each primitive cell. The experimentally reported composition is Al(71.8)Co(21.1)Ni(7.1).

Applying pair potentials [14] to the experimental structure, all sites appear to be energetically plausible except one class of Al positions, which has a short interatomic distance ~ 2.1 Å . We resolved this short distance by relaxing this problematic site using pair potentials.

Fixed-site Monte-Carlo simulations [12, 15] swap different chemical species (or vacancies) to select candidate realizations of chemical order on the diffraction-data structure. We examined three variant atomic densities containing 265-267 atoms per primitive cell (the site list contains 267 sites). We allow slight variation of the composition around the experimentally reported values. In addition we considered variants at 50-50 CoNi, plus a couple of binary Al-Co variants. The problematic site mentioned above was a favored location for a vacancy in structures of less than 267 atoms.

The pair potentials and the diffraction-data structure are superbly consistent with each other. All sites identified by experiment as Al remained Al during Monte Carlo annealing, all TM as TM, with the exception of the half-occupied TM site, that Monte Carlo proposes as fully-occupied Al (diffraction cannot easily distinguish between these alternatives). Even more surprisingly, the mixed Al/TM sites were resolved by Monte Carlo in exact agreement with the majority species reported by diffraction. When applied to the X-phase, the pair potentials reproduce the patterns of Co/Ni order obtained from full ab-initio calculations [10]. We are impressed, both with the apparent accuracy of the diffraction refinement and with the realism of the pair potentials.

Each optimal structure produced by Monte Carlo simulation was then relaxed with VASP and their energies ΔE compared. Our to-date lowest–energy model has 265 atoms (ρ =0.071 at./ų), composition Al₃₈₀Co₁₁₀Ni₄₀. Chemical ordering preserves the reported Cm symmetry with the exception of a single Wyckoff site that we refine as mixed Al/Ni (broken mirror). (This also means that all other mixed-occupancy sites resolve to a unique chemical identity at T=0). RMS displacements during relaxation are 0.07, 0.04 and 0.07 Å for Al, Co and Ni respectively, with a maximum displacement of 0.3 Å . Table I and figure 1 present the best structure. As mentioned previously, although $\Delta E > 0$ it is sufficiently low that disorder in the distribution of Co/Ni on TM sites creates enough entropy that thermodynamic stability is expected at high temperatures.

Two different HBS tilings of edge length 6.5 Å, one in blue the other in red, are inscribed on a 4 Å bilayer of our optimal W-phase structure in figure 1. The $\nu=0$ sites are simultaneously vertices of the blue and red tilings. PB clusters [15, 21] are centered on all these sites, and they are all oriented identically, resulting in 5-fold symmetry. The remaining vertices of the blue tiling, at $\nu=+1$, frequently are centers of 4 Å 11-atom decagonal clusters [12]. The remaining vertices of the red tiling are at $\nu=-2$, and are also frequently centers of 11-atom decagonal clusters.

Evidently, the union of the two tilings (blue+red edges) constitutes a binary rhombus tiling [13], a tiling that was introduced to model decagonal quasicrystal-forming two-dimensional binary Lennard-Jones alloy. In the W-phase, each alternate vertex holds a PB or a non-PB cluster, rather than large and small atomic species as in the original binary tiling. A crucial feature of the binary tiling is the existence of a locally flippable region of three thin and three fat rhombi known as an "octagon" because it is bounded by 8 edges. Only octagons whose boundary coincide between octagon one bilayer up and down are considered as "flippable".

When the translation is applied to the first 4 Å bilayer of the W-phase to produce the second bilayer, completing

the 8 Å stacking period, we find many vertices and edges in the second bilayer coincide with positions in the first bilayer. In fact, the net effect of the translation is to introduce tile flips within the shaded octagon regions illustrated in Fig. 1.

Thus the 8 Å periodicity is achieved by introducing tile flips between adjacent 4 Å bilayers. Our first-principles calculations verify that these tile flips lower the total energy, as is expected since they occur in the experimentally determined structure. Indeed, energy reduction by period-doubling tile flips has been demonstrated in many decagonal structures [22, 23]. In these cases, short-period structures occur as a result of disorder in the period doubling - instead of occuring with strict regularity, tile flips occur at random. One signature of this is that diffuse scattering layers replace the Bragg peaks associated with the longer period. The structure of the W-phase contains many overlapping octagons, not only the ones that actually flip in the experimentally observed structure, and is indeed a maximal density covering by flippable octagons (four octagons per cell).

The energies and specific structures of other W-phase realizations are available online at [24]. We found that certain Ni/Co and Al/Ni substitutions resulted in fairly low energy costs, of order 0.1 eV/atom (i.e. K_BT at typical quasicrystal formation temperatures). Other TM sites, especially those with high Al coordination, have distinct preference for Co occupancy.

IV. RELATIONSHIP TO OTHER PHASES

TM atoms in the flat layers form a pentagonal network similar to that in ortho and mono-Al13Co4. In Al13Co4 connecting centers of these clusters forms tiling of Hexagons with 6.5 Å edge length. In the W-phase, they form an analogous tiling, containing 4 hexagons and 4 boats (no stars). Due to the higher TM content of W-phase, there are some TM atoms also inside the pentagons.

Our preliminary attempt to model this structure deterministically starts from this binary-HBS tiling. We place the semi-PB motifs at every $\nu=+1$ node. This rule works accurately up to the orientations of the PB caps (2 Al-s). The vertical rule is that these Al atoms orientations never coincide. The odd-node motif is rather variable cluster with Al majority occupancy which we handle by "context-sensitivity" in which we bind all atoms in the tile interiors to the tiles. Pairs of Boats and Hexagons have very similar decorations, but there are significant differences between unlike pairs. This can be attributed to two symmetry-breakings. The 5-fold HBS vertex has a special symmetrized motif reminiscent of a PB cluster. The second kind of symmetry breaking is invisible when we display 4A slabs - and it corresponds to flipped-over octagons.

There is clearly a significant link between the W-phase structure and the bNi-phase. For example, 11-atom decagonal clusters, consisting of a central Al atom, an Al pentagonal ring and a mixed Al/TM pentagonal ring are a fundamental building block of bNi and occur frequently in W.

One of the prominent features of the structure are pentagonal columns with 13 Å diameter built from 11-atom decagonal Al₆Co₅ cores surrounded by a shell of 10 Al, and outer ring of 10 TM. These clusters have essentially 4A periodicity, and they also emerged from Monte Carlo simulation attempting to optimize Co-rich bCo quasicrystal structure from minimal assumptions using pair potentials [16].

V. DISCUSSION

At present we only have an ensemble specific W-phase configurations for which we know the energy of a few variants. To complete our study we need to propose an idealized model specifying the position and identity of each atom. We would identify the chief structural degrees of freedom and quote an energy cost for each. Hopefully this model could be generalized to describe the Co-rich quasicrystal phase as well. As noted above, the numerous symmetry-breakings make it difficult to propose a simple rule. Similarly, the patterns of chemical occupancy are closely tied to the details of the local tiling, with Ni atoms able to substitute either for Co or for Al in certain circumstances.

Although our understanding of W-AlCoNi remains incomplete, we find it provides a link between Al-Co binary structures of 8 Å periodicity and the bNi quasicrystal phase of 4 Å periodicity. Specifically, the 8 Å periodicity allows binary-tiling flips between adjacent bilayers. When these flips occur regularly 8 Å periodicity results and both PB and 11-atom decagonal clusters are observed. When they occur randomly the PB clusters are broken, while the 11-atom decagons are preserved, and 4 Å periodicity results.

Acknowledgments

This work was supported in part by NSF grant DMR-0111198. We acknowledge useful discussions with C.L. Henley. M. M. also acknowledges support from grants No. VEGA-2/5096/25, APVT-51021102, APVT-51052702 and SO-51/03R80603. Part of the ab-initio calculations were carried out under EC-funded project HPC-Europa, contract number 506079.

- [1] A.-P. Tsai, A. Inoue, and T. Masumoto, Mat. Trans. JIM 30, 463 (1989).
- K. Hiraga, F. J. Lincoln, and W. Sun, Mat. Trans. JIM 32, 308 (1991).
- [3] E. Abe, K. Saitoh, H. Takakura, A.-P. Tsai, P. Steinhardt, and H.-C. Jeong, Phys. Rev. Lett. (2000).
- [4] Y. Yan, S. J. Pennycook, and A.-P. Tsai, Phys. Rev. Lett. 81, 5145 (1998).
- [5] H. Takakura, A. Yamamoto, and A.-P. Tsai, Acta Cryst. A 57, 576 (2001).
- [6] A. Cervellino, T. Haibach, and W. Steurer, Acta Cryst. B (2002).
- [7] S. Ritsch, C. Beeli, H.-U. Nissen, et al., Phil. Mag. Lett 78, 67 (1998).
- [8] T. Godecke, M. Scheffer, R. Luck, S. Ritsch, and C. Beeli, Z. Metallkd. 89, 687 (1998).
- [9] M. Scheffer, T. Godecke, R. Luck, S. Ritsch, and C. Beeli, Z. Metallkd. 89, 271 (1998).
- [10] S. Katrych, M. Mihalkovic, V. Gramlich, M. Widom, and W. Steurer, in *Proceedings of ICQ9* (2005).
- [11] K. Sugiyama, S. Nishimura, and K. Hiraga, J. Alloys and Comp. (2002).
- [12] M. Mihalkovič, I. Al-Lehyani, C. Cockayne, C. L. Henley, N. Moghadam, J. A. Moriarty, Y. Wang, and M. Widom, Phys. Rev. B 65, 104205 (2002).
- [13] M. Widom, D. P. Deng, and C. L. Henley, Phys. Rev. Lett. 63, 310 (1989).
- [14] I. Al-Lehyani, M. Widom, Y. Wang, N. Moghadam, G. M. Stocks, and J. A. Moriarty, Phys. Rev. B 64, 075109 (2001).
- [15] E. Cockayne and M. Widom, Phil. Mag. A 77, 593 (1998).
- [16] A. Student, M. Mihalkovic, and C. L. Henley, Henley student (2005).
- [17] G. Kresse and J. Hafner, Phys. Rev. B 47, RC558 (1993), Kresse and Furthmuller [18].
- [18] G. Kresse and J. Furthmuller, Phys. Rev. B **54**, 11169 (1996).
- [19] J. Perdew and Y. Wang, Phys. Rev. B **45**, 13244 (1992).
- [20] G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
- [21] M. Mihalkovic and M. Widom (2005), to be published.
- [22] C. L. Henley, M. Mihalkovič, and M. Widom, J. Alloys and Comp. 342, 221 (2002).
- [23] M. Mihalkovic and M. Widom, Phys. Rev. Lett. 93, 095507 (2004).
- [24] Structure and energy data is available on the WWW at http://al lov.phys.cmu.edu.

FIG. 1: Optimal realization of the W-phase. We show only a single 4 Å bilayer. The other is obtained by a translation of (a/2,0,c/2). (top) red and blue HBS tilings together outline binary rhombus tiling. Shaded regions are "octagons" that flip in the adjacent bilayer. (middle) PB clusters in violet centered on shared vertices of blue and red tilings. Black pentagons are alternate vertex type of blue tiling. (bottom) 13 Å decagonal clusters of Co-rich decagonal quasicrystal model.