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Ewald summation for electro- and magnetostatic interactions with replaces the conditionally con-
vergent sum over distant charges with an absolutely convergent sum whose exact form depends on
the choice of boundary conditions at infinity. We consider the Ewald summation in systems with
periodic boundary conditions extending to infinity subject to a definite global sample shape. Our
derivation, which explicitly considers ellipsoidal shapes, shows that a shape-dependent global depo-
larization energy supplements the pairwise interactions of particles. We derive explicit formulas for
charge-charge and dipole-dipole interactions. The method is applied to Monte Carlo simulations of
dipolar hard spheres to investigate shape-dependent magnetic susceptibility. It should be especially
useful for systems in applied external fields and for systems that spontaneously polarize.

I. INTRODUCTION

Long-range electro- and magneto-static interactions
present unusual challenges for theoretical analysis and
computer simulation. In special circumstances (e.g. in
the presence of applied fields or in the absence of charge
neutrality) these systems lack conventional thermody-
namic limits. Their free energies exhibit global system
shape-dependence such as depolarization energies, and
shape-dependent susceptibilities [1–4]. Many interesting
ferrohydrodynamic behaviors of ferrofluids [5] arise from
such effects.

Even cases with proper thermodynamic limits (e.g.
charge neutrality, no applied fields [6–9]) require special
handling of the long-range interaction to ensure correct
results. For example, in the event of spontaneous polar-
ization care is needed to remove depolarization energies
from calculations. In Nature, this occurs spontaneously
through the mechanism of domain formation [10]. Exper-
imental studies achieve single-domain systems through
the use of highly elongated needle-shaped samples. Even
in analytical calculations must take proper account of
this effect [11–13]

The following analysis concentrates on the case
of Coulombic interactions between point charges.
Other long-range interactions (specifically, charge-dipole,
dipole-dipole, and charge-quadrupole) may be derived by
taking limits of charge distributions, resulting in gradi-
ents of the Coulomb interaction.

We focus on the problem of computer simulations that
utilize a small number of particles in an attempt to mimic
the thermodynamic behavior of macroscopic systems. To
avoid errors caused by large surface/volume ratios, simu-
lations usually employ periodic boundary conditions. In
a cubic box of edge length L, the interaction Hamiltonian
including periodic boundaries in the repeated image con-
vention is

H =
1

2

N
∑

i=1

N
∑

j=1

′
∑

n

qiqj
|r + Ln| (1)

where rij = ri−rj is the separation of the particles i and
j in the minimum image convention. The innermost sum

extends over all simple cubic lattice points with integer
coordinates, n = (nx, ny, nz), and the prime on the sum
indicates that n = 0 should be omitted in the case that
i = j.

Owing to the periodic boundary conditions, there is
no surface separating the simulated particles from a sur-
rounding environment. However, if the interaction φ is
long-ranged, falling off in d dimensions as 1/rd or slower,
the summations in (1) are conditionally convergent, so
we must specify the manner in which the sum over n is
to be performed. In particular, we must specify the outer
shape of the set {n}, and the nature of the surrounding
environment, even though these lie at infinity.

We consider the case in which the periodic bound-
aries are repeated throughout an infinitely large ellip-
soidal shape and surrounded by vacuum. Our chief result
rewrites the Hamiltonian in (1) as

H =
1

2

N
∑

i6=j=1

1

L
qiqjψ(

rij

L
) + ξ

N
∑

i=1

q2i +
2π

L3
P ·D ·P. (2)

which includes the usual result of Ewald summation,

ψ(r) =
∑

n

erfc(α(|r + n|)
|r + n| +

1

π

∑

n6=0

|n|−2 exp [2πin · r− π2|n|2/α2],

(3)
as well as the self-energy of a lattice of charges with

ξ = lim
|r|→0

[ψ(r)− |r|−1], (4)

and finally, the surface dipole term in which

P =

N
∑

i=1

qiri (5)

is the total system dipole moment, and D is the shape-
dependent depolarization tensor. This final term equals
the depolarization energy arising from a surface pole den-
sity σ = P · n̂, where internal polarization at the surface
has a component parallel to the surface normal n̂.

The depolarization tensor D takes special forms de-
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pending on the ellipsoid shape, such as

Ds =





1
3 0 0
0 1

3 0
0 0 1

3



 , (6)

for a sphere,

Dn =





1
2 0 0
0 1

2 0
0 0 0



 , (7)

for a needle-shape highly elongated in the z direction,
and

Dp =





0 0 0
0 0 0
0 0 1



 , (8)

respectively, for a sphere, a needle-shape highly elongated
in the z direction, and for a pancake-shape flattened in
the z direction

Our result differs from the classic result of de Leeuw,
Perram and Smith [14] only in this final surface dipole
term, which reduces to their expression in the special case
of a spherical outer boundary shape. Typical simulations
using Ewald summation drop the surface dipole term,
because it limits the susceptibility and inhibits spon-
taneous polarization, obscuring the intrinsic thermody-
namic properties. Dropping this term creates a “tin-foil”
boundary condition, which wraps the surface at infinity
in a material that neutralizes the surface pole density σ.
Our result offers an alternative, in which a needle-like
shape is taken so that one component of the depolariza-
tion tensor vanishes, eliminating depolarization fields in
this direction, while maintaining them in the perpendic-
ular directions. This choice is consistent with common
experimental practice, where needle-shaped samples are
preferred for measurements of susceptibility and polar-
ization.

The following section derives eq. (2) for charge-charge
interactions. All electrostatic and magnetostatic interac-
tions follow from this basic result, as we show explicitly
for dipole-dipole interactions in section 37. Finally, in
section IV, we apply our result to simulate the shape-
dependent susceptibility of a dipolar fluid.

II. DERIVATION

The quadratic equation

r ·E · r =
1

R2
, (9)

with

E =





1
a2 0 0
0 1

b2 0
0 0 1

c2



 (10)

defines an ellipsoid of semi-axes aR, bR, cR. We wish to
evaluate the infinite lattice sum over n in the Hamilto-
nian (1) by summing first over the set of n values con-
tained inside the ellipsoid of semi-axes a, b, c, then adding
the ellipsoidal shell extending to semi-axes 2a, 2b, 2c, then
extending to 3a, 3b, 3c, etc. Multiplying each term in the
Hamiltonian (1) by a convergence factor

f(n, s) = e−sn·E·n (11)

achieves the same effect. When s > 0, the sum over
ellipsoids becomes absolutely convergent, and the sum
in (1) corresponds to smoothly cutting off the sum at
the ellipsoid of semi-axes aR, bR, cR with R = 1/

√
s.

The limit of s→ 0 corresponds to extending the sum to
infinity within this shape.

For charge-charge interactions the energy including the
convergence factor becomes

E(s) =
1

2

N
∑

i=1

N
∑

j=1

qiqj

′
∑

n

|r + n|−1e−sn·E·n (12)

=
1

2

N
∑

i6=j=1

qiqjψ̄(r, s) +
1

2

N
∑

i=1

q2i ξ̄ (13)

where, again, the prime indicates dropping the n = 0

term when i = j. In the second line this interaction
is broken into the effective interaction between pairs of
charges at separation r (and all their periodic images),

ψ̄(r, s) =
∑

n

e−sn·E·n

|r + n| (14)

and the effective interaction of individual charges with
their own images,

ξ̄(s) =
∑

n6=0

e−sn·E·n

|n| . (15)

The main steps of our calculation follow the method
of de Leeuw, Perram and Smith [14] whose convergence

factor f(n, s) = e−s|n|2 corresponds to the special case of
spherical shape. We omit many steps that are identical
to theirs. First, replace |r+n|−1 in (14) using an integral
representation of the Gamma-function Γ( 12 ) to obtain

ψ̄(r, s) =
1√
π

∑

n

∫ ∞

0

t−
1
2 e−sn·E·n−t|r+n|2dt. (16)

Now break up the integral over t into a low t region 0 ≤
t ≤ α2 and a high t region α2 ≤ t ≤ ∞, so that

ψ̄(r, s) = ψ̄<(r, s) + ψ̄>(r, s) (17)

The high t integral

ψ̄>(r, s)
∑

n

∫ ∞

α2

t−
1
2 e−sn·E·n−t|r+n|2dt (18)
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is nonsingular and reduces to a sum of complementary
error functions in the s→ 0 limit.

The low t integral contains the singularity as s → 0
and requires additional work. Introduce matrix notation
for the exponent in ψ̄,

F (r,n) ≡ sn ·E · n + t(r + n) · I · (r + n) (19)

with I the unit matrix. Defining U = sE + tI, rewrite

F (r,n) = G(r,n) +H(r) (20)

with

G(r,n) = (n + tr ·U−1) ·U · (n + tU−1 · r) (21)

H(r) = str · (U−1
E) · r

so that

ψ̄<(r, s) =
1√
π

∫ α2

0

t−
1
2 e−H(r)

∑

n

e−G(r,n)dt. (22)

The Jacobi Imaginary Transformation transforms the
sum over n into
∑

n

e−G(r,n) = (
π

D
)3/2

∑

n

e−π2n·U−1·n+2πitn·U−1·r (23)

with D3 = (t+ s/a2)(t+ s/b2)(t+ s/c2) the determinant
of U.

The advantage of this new expression is that its n = 0

term contains the entire singularity of (23) as s → 0.
Separate this term from the others, so that ψ̄<(r, s) =

ψ̄0
<(r, s) + ψ̄ 6=0

< (r, s) and note that

ψ(r) ≡ lim
s→0

(ψ̄>(r, s) + ψ̄ 6=0
< (r, s)) (24)

takes the form given in (3).
It remains to evaluate

ψ̄0
<(r, s) = π

∫ α2

0

e−H(r)dt
√

t(t+ s/a2)(t+ s/b2)(t+ s/c2)
(25)

in the limit of small s. To do so, expand the exponential
in powers of H, change variables from t to u = t/s, then
integrate. Only the first two terms survive the s → 0
limit. In the first term,

ψ̄0(r, s) =
1

s
ψ̄0,0
< (s) + ψ̄0,1

< (r, s), (26)

where

lim
s→0

ψ̄0,0(s) =

∫ ∞

0

dt
√

t(t+ a2)(t+ b2)(t+ c2)
≡ abc

C

(27)
is inverse to the ellipsoid capacitance C [1]. In the second
term,

lim
s→0

ψ̄0,1(r, s) ≡ −2πr ·D · r (28)

where

D =
abc

2

∫ ∞

0

(tI + E)−1 ·Edt
√

t(t+ a2)(t+ b2)(t+ c2)
(29)

is the depolarization factor [1] of the ellipsoid.
Similar calculations for the self-interaction yield ξ̄ =

ξ +
ψ̄0,0
<

s , with ξ as given in (4). Now collect the mutual
and self interactions, insert into the energy equation (12),

and take the s→ 0 limit. The terms proportional to
ψ̄0,0
<

s
cancel owing to charge neutrality. Charge neutrality also
yields

−
N

∑

i6=j=1

qiqjrij ·D · rij = P ·D ·P (30)

Finally, collecting all terms and scaling lengths by L
yields the result in eq. (2). Although the first two terms
in (2) depend on the parameter α, the value of the Hamil-
tonian H does not.

III. DIPOLE-DIPOLE INTERACTIONS

Systems of particles interacting through dipole-dipole
interactions provide a fascinating range of interesting be-
havior, including chain formation at low densities [15–
18] to possible spontaneous polarization in the liquid
state [19, 20]. Spontaneous polarization is observed when
the surface dipole term is removed using tin-foil bound-
aries, otherwise polarized domains arise [21, 22]

We model the dipole-dipole interaction as a limit of
the charge-charge interaction in which each charge qi at
ri (i = 1, . . . , N) pairs with an opposite charge qi+N at
an infinitesimally close position ri+N = ri + δi, creating
a point dipole moment µi = −qiδi. The first term in
the charge-charge interaction (2) breaks into four distinct
contributions

1

2

2N
∑

i6=j=1

qiqjψ(rij) =
1

2

N
∑

i6=j=1

qiqjψ(rij) +
1

2

N
∑

i6=j=1

qiqjψ(rij + δi − δj)(31)

−1

2

N
∑

i=1

q2i ψ(δi)−
1

2

N
∑

i6=j=1

qiqjψ(rij + δi).

To this expression we must add the charge lattice self-

energy ξ
∑N
i=1 q

2
i and the surface dipole term 2πP ·D ·P,

with P =
∑N
i=1 µi.

We approximate terms in the sum (31 above using ex-
pansions for small δ. First, expand

ψ(δ) =
1

δ
+ ξ +

2π

3
δ2 + · · · (32)

The leading term in this expansion corresponds to the di-
rect interaction between charges qiqi+N/δ forming each
dipole µi. This energy should be allocated to the forma-
tion energy for isolated dipoles, and hence we remove it
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from the total energy. The next order in the expansion
contributes q2i ξ. These terms cancel against the charge
lattice self-energy. The final term in the expansion con-
tributes

−2π

3
|µi|2 (33)

to the total energy, which we identify as the dipole lattice
self-energy. Next, expand

ψ(r+δ) = ψ(r)+(δ ·∇)ψ(r)+
1

2
(δ ·∇)2ψ(r)+ · · · . (34)

The resulting terms of form qiqjψ(rij) cancel each other
in (31), as do also the terms of form qiqj(δ ·∇)ψ(r). The
quadratic term in this expansion contributes

−
N

∑

i6=j=1

(µi · ∇)(µj · ∇)ψ(r) (35)

to the total energy, which we identify as the dipole-dipole
interaction energy.

We have now fully accounted for the first two terms in
the charge-charge Hamiltonian (2). The final term, the
surface dipole, separates into a surface self-interaction
2πµi · D · µi, and a mutual interaction 2πµi · D · µj .
Collecting all terms, our final expression for the total
energy of a collection of dipole moments is

H = Hself +Hpair (36)

where

Hself = −2π
N

∑

i=1

µi · (D− 1

3
I) · µi (37)

Hpair =
1

2

N
∑

i6=j=1

[4πµi ·D · µj − (µi · ∇)(µj · ∇)ψ(rij)].

The classic result of de Leeuw, Perram and Smith [14]
deals with the case of spherical sample, for which D = 1

3I

and thus Hself vanishes.

IV. SHAPE-DEPENDENT SUSCEPTIBILITY
OF DIPOLAR FLUID

As a first application of our new Hamiltonian, we sim-
ulate the magnetic susceptibility of a dipolar fluid as-
suming a highly elongated needle-like sample shape, with
depolarization factor Dn given in (7). In a general ellip-
soidal sample, the observed magnetic susceptibility is [3]

χobs =
χint

1 + 4πDχint
(38)

where χint is an intrinsic susceptibility representing the
polarization response to an applied field in the absence of
surface depolarization effects, and D is the appropriate

element of the depolarization factor. In the special case
of a needle-like shape lying along the z axis,

χxy =
χint

1 + 2πχint
χz = χint (39)

We choose the dipolar hard sphere model as the sim-
plest representation of a dipolar fluid. Such models have
been employed to crudely describe electrically polar flu-
ids such as H2O, and magnetic fluids such as ferrofluid.
Introducing the hard sphere diameter a, a dimensionless
measure of dipolar coupling strength is λ = µ2/kBTa

3

and we define a dimensionless temperature T ? = 1/λ.
For a simulation of N particles in a box of volume V
we introduce a dimensionless density ρ? = Na3/V . The
thermodynamic properties of the fluid depend only on T ?

and ρ?.
The limit of very low density obeys a Virial expan-

sion [15, 23–25]. Here we consider the expansions of
pressure and susceptibility in powers of ρ?,

1

kBT
P (T ?, ρ?) = B1ρ

? +B2ρ
?2 +B3ρ

?3 + · · · (40)

χint(T
?, ρ?) = M1ρ

? +M2ρ
?2 +M3ρ

?3 + · · · .

Thermodynamic identities relate the susceptibility coef-
ficients Mn to magnetic field derivatives of the pressure
coefficients Bn. In the limit of low density, the pressure
and susceptibility takes the classical ideal gas values

B1 = 1 M1 =
1

3T ?
. (41)

The higher order terms have simple representations in the
limits of strong or weak coupling. We reproduce here the
strong coupling limits, because the third-order terms [24]
have not previously been published:

B2 = −πa3e2λ

18λ3 M2 = − 2
3λa

3B2

B3 = − 32768π2a6e17λ/4

7373835λ6 M3 = −λa3B3.
(42)

In the strong coupling limit, the virial coefficients reflect
the association of dipolar particles into chains [16]. For
example, the densities of two- and three-particle chains
are ρ2 = −B2ρ

? and ρ3 = − 1
2B3ρ

?2, while the number of
isolated particles ρ1 = ρ?− 2ρ2− 3ρ3. The susceptibility
coefficients then follow from treating the length-n chains
as effective dipoles of strength nµ. Namely [24, 26],

χ =
1

3T ?
ρ1 +

22

3T ?
ρ2 +

32

3T ?
ρ3 + · · · . (43)

The interesting shape-dependent effects enter as χz
grows large. Hence we focus our simulation on relatively
low temperature T ? = 0.2 and follow a sequence of in-
creasing density. At this low temperature particles tend
to associate into chains clusters of varying size. Fig. 1
illustrates a typical configuration. Simulations were per-
formed for systems of N = 100 particles in cubic boxes of
edge length L = 10 − 100. Chain formation causes slow
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evolution of moment orientations through single particle
rotations, reducing the efficiency with which we sample
configuration space. To counteract this effect, we employ
moment reversal within entire chains as one of our Monte
Carlo steps [27].

Fig. 2 illustrates our data for χxy and χz. The shape
effect is clearly observed, as χz grows without bound
while χxy saturates at 1/2π = 0.159. The first, second
and third order Virial results are included for compar-
ison, showing excellent agreement at low densities but
growing inaccurate as particles associate into long chains
and branched structures. In particular, the virial series
tends to overestimate χz because up to third order it
only includes the high susceptibility contributions of lin-
ear chains, while low susceptibility closed rings and other
structures become favorable for lengths of 5 or more par-
ticles [28].

In conclusion, we have derived the Ewald summation
formula for electro- and magneto-static interactions that

utilize periodic boundary conditions in a cubic box, but
where the periodic replicas extend to infinity within a
global ellipsoidal shape. The resulting shape-dependent
surface dipole term creates depolarization effects. In
the limit of needle-like shapes the depolarization fields
vanish parallel to the long axis. Such a sample shape
should be ideal for simulations in the presence of applied
fields or spontaneous polarization, and are more consis-
tent with actual experimental geometries than alterna-
tive approaches such as tin-foil boundary conditions.
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FIG. 1: (left) Typical configuration at T ? = 0.2, ρ? = 0.0125
projected into yz plane. Black and white dots indicate north
and south magnetic poles.
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FIG. 2: Susceptibility data versus ρ? at fixed T ? = 0.2. Top
graph illustrates intrinsic susceptibility χint = χz, bottom
graph illustrates χxy. Solid, dotted and dashed lines, respec-
tively, are first, second and third order Virial series in the
strong coupling limit.


