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Abstract: We present experiments showing the Rayleigh-Taylor instability at the interface between a dense magnetic liquid and an immiscible less dense liquid. The liquids are confined in a Hele-Shaw cell and a magnetic field is applied perpendicular to the cell. We measure the wavelength and the growth rate at the onset of the instability as a function of the external magnetic field. The wavelength decreases as the field increases. The amplitude of the interface deformation grows exponentially with time in the early stage, and the growth rate is an increasing function of the field. These results are compared to theoretical predictions given in the framework of linear stability analysis. 

PACS number(s): 47.20.Ma, 75.50.Mm

1 Introduction

When a dense fluid lies above a less dense fluid, a gravitational instability causes fingering at the interface between the fluids. Rising fingers of the lighter fluid penetrate the heavier fluid and, conversely, fingers of the heavier fluid fall into the lighter one. In three dimensions, the fingers of each fluid take place at the vertices of a hexagonal lattice on the two dimensional interface. In a Hele-Shaw cell, modeling a quasi-two dimensional system, the one dimensional interface is destabilized by the growth of fingers regularly spaced on a line with a well defined wavelength. This wavelength results from the competition between the stabilizing capillary force, and the destabilizing gravitational force. At the threshold of the instability, the wavelength, is proportional to the capillary length, 

, with 

 where is  the surface tension,is the density difference between the two fluids, and g is the gravitational acceleration. This instability, called the Rayleigh-Taylor instability (RTI) [1,2], plays an important role in subjects like astrophysics, fusion and turbulence [3,4,5]. Although the phenomenon has been studied for decades, much remains to be learned about it.


The development of patterns resulting from the RTI can be divided in three stages: the early linear stage, where the lengths of the rising and falling fingers are small compared to the wavelength, the middle, weakly non-linear stage, and the strongly nonlinear late stage. The linear stage is well described theoretically and experiments seem to be in good agreement. The nonlinear stages are not fully understood.


Several theoretical studies start from the Navier-Stokes equation and perform a linear analysis of the instability [6,7]. Particular issues studied address the compressibility of the fluids [8,9], density gradients [6,10], and viscosity effects [6,7,11,12,13]. In the non-linear regime, Ott [14], Baker and Freeman [15] and Crowley [16], describe the motion of the fingers. Studies using miscible fluids, performed by Petitjeans and Kurowski [17] observe similarities with immiscible fluids in the development of the instability, even though the wavelength and the growth rate differ greatly. They believe the similarity arises because the density gradient between the two fluids acts like an equivalent surface tension at the onset of the instability. Authelin, Brochard and de Gennes [18] describe the interface melting of two miscible fluids by the RTI. This instability generates micron-sized drops which then dissipate by diffusion.

One of us [19], used a mode-coupling analysis of Darcy’s law to describe the weakly nonlinear evolution of the viscous fingering patterns obtained in a Hele-Shaw cell. This study, describing the RTI, is also applicable for the Saffman-Taylor instability (STI) [20], with a low viscosity fluid pushing a more viscous one in a Hele-Shaw cell.


Recent works [21] determine the length scale of the fingers, show a difference between the width of the rising fingers and the width of the falling fingers, and explain their amalgamation in terms of spatial modulations. For miscible fluids, the turbulent mixing zone is numerically studied by Youngs in 2D [22] and 3D [23], and experimentally by Read [24]. Ratafia [25] studied the non-linear regime, and described the destabilization of fingers by the presence of Kelvin-Helmoltz instability (KHI) [26], resulting from the jump of the tangential velocity between the two fluids at the edges of the fingers. This interpretation can explain the fractal structure obtained after nonlinear evolution, which is the result of a KHI cascade.


Recent Rayleigh-Taylor experiments using a mixture of water and sand [27], modeled as a Newtonian fluid, determine the viscosity of the suspension, and find results in agreement with other experimental measurements. To our knowledge, this Rayleigh-Taylor experiment is the only experiment that uses complex fluids.


Magnetic fluids (MF, also called ferrofluids) are colloidal suspensions of magnetic nanoparticles. An applied magnetic field provides a new external parameter that can stabilize or destabilize the fluid interface, causing interesting hydrodynamic instabilities. One can distinguish two kinds of instabilities in ferrofluids: static instabilities caused by the magnetic field, which are not present in ordinary fluids; dynamic instabilities that occur even in the absence of magnetic fields, but are modified by applied fields..

The first static instability observed in MF is the peak instability [28]. A static magnetic external field, Hext, applied tangent to a free surface, generally stabilizes the surface. However, Hext applied normal to a horizontal surface causes the peak instability above a critical value of Hext A line (in 2D) or a lattice (in 3D) of spikes arises from the competition between the destabilizing magnetic forces and the stabilizing capillary and gravitational forces. 

Now, let the MF be confined in a two-dimensional Hele-Shaw cell. Another instability can appear if the external field is applied in the direction perpendicular to the cell. This phenomenon, called the labyrinthine instability [29,30], occurs above a critical value of the applied field and with a critical wavelength. The threshold value of Hext results from a balance between the destabilizing magnetic dipole-dipole repulsion and the stabilizing surface tension (and possibly gravity in a vertical cell).


MF can be used as a dynamic system if a time-dependent magnetic field is applied. Different surface phenomena are observed like surface waves [31,32], the Faraday instability [33], or a period doubling in the case of the peak instability [34].


Hydrodynamic instabilities may occur when the MF flows. For example, Saffman-Taylor fingering has been studied, both experimentally and theoretically, with a MF. In this configuration, the external magnetic field can be applied normal to, or within, the plane of the cell. The situation is stabilizing if Hext is tangent to the interface within the plane of the cell [35]. Experiments performed with a field applied in a direction perpendicular to a circular Hele-Shaw cell show a destabilizing behavior [36].

The aim of this article is to study the influence of a homogeneous magnetic field applied perpendicular to a vertical Hele-Shaw cell filled with a dense ferrofluid above a lighter oil. In a recent paper [37], one of us describes theoretically the general viscous fingering pattern obtained in this configuration. In this dynamic situation, the magnetic force is added to the gravitational force to destabilize the interface, while the capillary effects stabilize it.
2 Linear stability analysis


Consider a vertical Hele‑Shaw cell of gap h filled with oil of density -and viscosity - at the bottom and an immiscible MF of density +and viscosity + on top. We use a coordinate system in which the Hele‑Shaw cell lies parallel to the xy plane, the y axis is vertically upwards, and the z axis is perpendicular to the Hele‑Shaw cell. Gravity acts downwards parallel to the y axis and a uniform external magnetic field, 

, is parallel to the z axis (see Figure 1). We present equations of motion and boundary conditions then we perform a linear stability analysis of these equations. We show that both gravitational (provided +>-) and magnetic instabilities deform an initially flat interface.


To begin, we derive Darcy's law for the flow of magnetic fluids. The analysis begins with the basic equation governing the 3‑dimensional fluid flow 

, the Navier‑Stokes equation







(1)

From this equation we derive Darcy's law assuming sufficiently high viscosity that the flow velocity is small so the inertial term on the left‑hand side may be neglected. The idea is to average equation (1) over the gap, resulting in a 2‑D flow equation for the gap‑averaged velocity 

. The gap average of the three‑dimensional pressure gradient yields a two‑dimensional gradient of the gap‑averaged pressure, which we continue to represent as 

. As is usual in derivations of Darcy's law, the gap average of the viscous drag force, subject to no‑slip boundary conditions imposed at z=±h/2, is ‑(12/h2) 

.


The final term in equation (1), 

, represents the magnetic body force on a fluid element, neglecting compressibility and self‑induction of the fluid [38]. In this approximation, 

 is constant and parallel to z, and the gap average of fm reduces to (0M/h)(H(x,y,h/2)‑H(x,y,‑h/2)). Because the applied field 

 is spatially uniform, it drops out of this difference and the magnetic force arises entirely from the demagnetizing field 

caused by the surface magnetic poles. Express the demagnetizing field as the gradient of a magnetic scalar potential, 

, and take  as an odd function of z. The gap average of magnetic force is 

 where now the gradient acts only on x and y coordinates [39].


Collect all averaged terms and isolate the velocity 

 on the left‑hand side, 



.


(2)

Here all vectors lie in the xy plane, and the scalar potential (x,y)(x,y,h/2) is evaluated at the top plate. Further simplification of Darcy's law eq. (2) occurs if we exploit the irrotational flow to introduce the velocity potential 

 so that 



 



(3)


Now we apply Darcy's law (3) within each fluid evaluated at the interface between the two fluids, y=(x). Subtract equation (3) for the oil (fluid -) from the same equation for MF (fluid +) and find 
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(4)
The viscosity contrast A =(+‑-)/(++-),. The pressure jump across the interface, p+‑ p-, is the surface tension  times the mean interface curvature . For a thin gap h, we need only consider the curvature of (x), which we may approximate 2/x2 for the purpose of linear stability analysis [37].

Represent the net perturbation (x, t) in the form of a Fourier mode 






.




(5)

The velocity potentials ±must obey Laplace's equation 2±=0, because the fluids are incompressible. The boundary conditions at y±, so that ±=0. We give ± the appropriate wavevector and phase to be consistent with the perturbation . The general velocity potentials obeying these requirements are 
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(6)

In order to substitute expansions (6) into the equation of motion (4), we need to evaluate them at the perturbed interface. To first order in the perturbation it suffices to simply set y=0 in eq. (6).


To close equation (4) we need additional relations expressing the velocity potentials in terms of the perturbation amplitudes. To find these, consider the kinematic boundary condition that the interface moves according to the local fluid velocities. To first order in  we simply note /t = ‑i/y   [    ]. Substituting equation (6) for ± and Fourier transforming yields 

. Then equation (4) reads 
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(7)


To obtain k, the Fourier transform of the magnetic scalar potential, we write the magnetic scalar potential 
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(8)

The expansion of (x,(x)) to first order in  is 
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(9)

and its Fourier transform k=2 M J(kh)k where 







(10)

with K0 a Bessel function and CEuler=0.5772…  is the Euler constant [40].


Inserting k into equation (7) for the growth of the cosine mode, the differential equation of the interface is 









(11)

where 
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is the linear growth rate multiplying the first order term in  with
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 the magnetic Bond number An asymptotic expression for kh << 1 which is more convenient for the data analysis can be obtained by expanding J(kh) for small kh [41]:
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with 
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 the gravitational Bond number

3 Experimental set-up


The experimental geometry is sketched in Figure 1. The cell is located in a gap between two coils in the Helmholtz configuration to achieve good axial homogeneity for the magnetic field, 

. The radial homogeneity of the field is better than 3%. The amplitude of the external field is nearly constant. The cell is mounted so it can be rotated around the x axis, which passes through the middle of the gap.


We use an ionic magnetic fluid made of cobalt ferrite particles (Co Fe2 O4) dispersed in a mixture of water and glycerol. This MF is synthesized by S. Neveu [42] following the Massart’s method [43]. The magnetization of the MF as a function of Hext is obtained by the use of a calibrated fluxmeter. 


The rectangular cell consists of two parallel plates made of altuglass (plexiglass) with a spacing between the two plates of h = 500 m. The cell is initially filled with an oil (White Spirit or WS) of low density (compared to the MF) which wets the altuglass walls. A thin film (of micron width) of WS separates the MF from the walls, avoiding pinning of the MF-WS contact line on the walls.


The mass density of MF is + = (1686 ± 85) kg m-3, compared to - = 800 kg m-3 for WS. The dynamic viscosity of the MF is + = 0.14 kg m-1s-1 at room temperature. The viscosity of the WS is two orders of magnitude lower, so we may take 

.

Image processing is used to measure the wavelength and the growth increment. The images are recorded by a CCD camera (charge couple device) and digitized by an acquisition card in a computer. We use the public domain software NIH Image [44] to analyze the images.
4 Results

4.1 Wavelength measurements


The experiments are conceptually simple: the cell is placed vertically with the heavier liquid (MF) below. We rotate the cell by 180 degrees around the x axis and apply the magnetic field. The selected wavelength depends on how and when the magnetic field is applied. If Hext is applied during the rotation, we get a different measurement than if Hext is switched on at the end of the rotation. The response of the MF-WS interface to the magnetic field is usually much faster than its response to a gravitational field. That is, a longer time is needed to observe the classical RTI without external magnetic field than to observe the labyrinthine instability [29,30]. If Hext is applied during rotation when the cell is momentarily horizontal, the normal field instability [28] appears before the RTI. To avoid these difficulties we apply the field only after the rotation is complete, but before the RTI appears. The duration of rotation is about 1 second, and the time constant for ramping up the magnetic field is about 1 second.


We collected data for thirteen different values of Hext, with two independent runs for each value of Hext. The wavelength, 0=2/k0, is measured at the onset of the instability until the amplitude, , of the interface deformation remains small: k0 < 0.1. We compared two different methods: an FFT of the interface gives the fundamental mode k0; a direct measurement of the average peak to peak distance gives 0. In the second approach, we reject the peaks located close to the edges of the cell, and we omit certain peaks which are dominated by others (« finger competition »). Both methods give similar results within the errors bars.


Figure 2 displays a sequence of pictures of the destabilizing MF-WS interface for Hext = 7.9 kA/m. A comparison of interfaces for different values of the external field is shown in Figure 3. Both the wavelength and the width of the MF fingers decrease as Hext increases. The experimental values of 0 as a function of the magnetic Bond number, 
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, are reported in Figure 4.
To determine the value of BM for a given value of Hext, we need to know the MF-WS surface tension, . The value of  can be deduced from the wavelength at the onset of the RTI with Hext = 0 using formula (12). We find  = (11.7 ± 3.4) mN m-1 (REPLACE WITH 8.6+-???) by this method. We can also determine the value of  from the wavelength 
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 at the threshold of the normal field instability, which is linked with the capillary length [45]. This method yields  = (12.0 ± 1.3) mN m-1, which is consistent with the previous value. The value of the magnetization M(Hext) is directly deduced from the magnetization curve of the MF. Taking the latter value of , we deduce a capilary length 
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To compare experimentally observed wavelengths with the linear stability analysis, consider the growth rate, k. Maximizing expression (13) for k versus the wavevector, gives the fastest growing mode k0:



.

We get the following non-algebraic equation:
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with, 
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, and x0 = 0/h. The roots of the equation (14) for different values of  BM are reported in Figure 4 for comparison with the experimental data. Both are qualitatively coherent. We get a good agreement for low values and high values of BM The discrepancy for the intermediate values should result from the omission of the demagnetizing effect in the magnetic forces (MAYBE NCLUDE THIS EFFECT AND SEE WHAT HAPPENS).

THE FOLLOWING DISCUSSION MIGHT BE REMOVED IF THE PLOT OF WAVELENGTH USING THE DEMAGNETIZING EFFECT LOOKS PROMISING. IF WE DO NOT REMOVE THE DISCUSSION, I WILL REVISE IT.

A better way to evaluate magnetic forces is to performed experiments with the same device (
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 always remain perpendicular to the cell) but with different orientations. In the first one, the labyrinthine experiment, we eliminate the gravitational term in (14) putting the cell in a horizontal position. Measuring the obtained wavelength l, we obtain a deduced value for the magnetic Bond number, and thus a better estimation of the magnetic forces :
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with xl=l/h

In the second one, the labyrinthine-gravitational experiment, we put the cell vertically, with the ferrofluid below. This situation (changing the sign of gravity, so the sign of BG in (14)) leads to
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with xlg=lg/h where lg is the measured wavelength. Combining (15) and (16), we obtain :
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Including (15) and (17) in (14), we obtain a theoretical value of x0 :
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(18)

In the inset of Figure (4), we show a comparison between the experimental results obtained in the Rayleigh-Taylor experiments and wavelengths deduced from (18). A good agreement between both is observed. It is important to notice that, if the situation is always unstable in the Rayleigh-Taylor experiment, a threshold value of the magnetic field exists in the labyrinthine [30] and the labyrinthine-gravitational [38] experiments, below which no wavelength are measured. This results from the competition between destabilizing magnetic effects and stabilizing effects (surface tension and gravity in the second experiment).

4.2  Growth rates


Now, let us study the growth rate, , of the instability. We measure the length  of the falling fingers, and divided by (t=t0); t0 corresponds to the first time where the interface deformation is detectable and is actually given by the resolution of the video recorder. Plotting this relative depth to which the instability penetrates the lighter fluid as a function of time, we can clearly separate two distinct stages (Figure 5)

Just after the onset of the instability, when the amplitude of the growth (the length of the spikes) is small compared to the wavelength, we see an exponential growth over time. This occurs for all values of the external applied field. We observe an augmentation in the growth rate values as the field increases, as is predicted by the linear analysis given by the formula (13). In this equation, the growth rate is a function of Hext, and also a function of x0. As we have seen in the previous part, x0 is an implicit function of Hext, and we can not find an explicit expression of (Hext ). Nevertheless, the equation (13) can be written
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with the growth rate for the mode of wavelength =h x0  in the absence of magnetic field
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If we insert the theoretical values of the wavelength, x0th, in the expressions of 

 and 

, we can compare the theoretical linear analysis to the experimental measurements of exp.
These experimental results of the growth rate exp measured near the onset of the instability for different values of the external applied field are shown in Figure 6, where we plot 

 versus the magnetic Bond number. The theoretical continuous line results from the linear analysis and is the first bisectrix of the Figure 6. We observe a linear behavior in agreement with this theory. The experimental results are below the theoretical curve, but are included in the error bars. These experimental uncertainties are large due to the difficulty of measuring the amplitude .
The systematic discrepancy between the two curves can be explain by the fact that the calculation does not take into account the demagnetizing field effect. The demagnetizing factor of an infinite plane with an external field applied perpendiculary to the plane is equal to D = 1. Consequently, the local field is: 

. The magnetization, 

, is linked to the local field by the relation: 

, it leads to 

. A local susceptibility can be determined by the use of the magnetization curve: 

 [46] , and subsequently a magnetic Bond number including the demagnetizing effect is 
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. The plot of 

 versus BM’ is also reported in Figure 6. In contrast to the previous case, the data are above the first bisectrix. Since we have crudely included the demagnetizing fields through a demagnetizing factor D=1, the demagnetizing effects are naturally over-estimated. An exact a calculation would have to deal with the nonuniform fringe fields at the edge of a paramagnetic slab. Experimentally, we could approach the limit of uniform demagnetizing fields with D=1 by using a thinner cell gap h.

After the initial exponential growth of the disturbances, we enter a new growth regime shown in the inset of Figure 5. A linear growth is observed for each value of the applied magnetic field. This behavior is observed for long times, up to the secondary instabilities, where the finger tips split and start to compete with each other. As magnetic field increases, we observe an increase in the linear coefficient. For example, for Hext = 0, we get:  = 0{1.9+2.0(t-to)}, and for Hext = 39.3 kA/m, we get:  = 0{10.8+20.1(t-to)}. Saturation of the exponential growth is predicted by weakly nonlinear analysis [37]. Crossover from exponential to linear has been found in numerical simulations for nonmagnetic fluids [50].
4.3 Far from the threshold


This study emphasized the downwards propagating MF fingers, but upward fingers made of WS also exist. (SENTENCES REMOVE DUE TO CONCERNS DESCRIBED IN 6/2/00 E-MAIL. ENTIRE PARAGRAPH COULD GO IN PREVIOUS SECTION). As a matter of fact the heavier liquid, i.e. the MF, falls down due to the buoyancy forces and consequently, the lighter liquid which is the less viscous fluid has to penetrate into the viscous one. A finger of WS grows between each spikes of MF. These WS fingers rise like the ST finger propagating in a narrow channel [20]. In fact, both instabilities (RTI or STI) can be described by the same set of equations [37]. The width of the WS fingers is greater than the MF fingers, but a common feature is that the width is a decreasing function of the external magnetic field. Such a symmetry-breaking of the interface is related to the viscosity contrast between MF and WS [37].

The tip of the WS fingers splits into two fingers (the so-called tip-splitting phenomenon) and the angle between these new fingers is roughly equal to 90 degrees. The evolution of the system exhibits a cascade of tip-splitting: each new finger divides itself into two fingers which destabilize themselves while they remain upward. Let us notice that the finger changes slightly its direction after each tip-splitting: it seems to undulate like a narrow finger confined in a channel in the oscillating tip regime [47]. No other secondary instability like the side-branching phenomenon is observed. The tip-splitting cascades acting on a finger give a pattern which looks like a tree as it is illustrated in Figure 7. This pattern is somewhat similar to the radial viscous fingering obtained with the STI [36] with the difference that the system is anisotropic due to the gravity field.


The MF fingers always remain stable because the viscosity contrast is opposite (a viscous fluid penetrating a less viscous one is stable situation). When the MF fingers are sufficiently far from each other and for high values of the magnetic field, a bending instability occurs [48]. When the distance between the fingers is comparable to the finger width, long range magnetic interactions between fingers are visible: they undulate together for high magnetic field in the same manner than the MF parallel stripes in the bending instability [49]. Finally, the pattern is very non-symmetric (Figure 7b) because of all these features. For high amplitudes of the external field and at long times the top of the cell becomes a labyrinthine and the bottom is rather well organized as the MF smectic [49].

At very long times, the MF accumulates in the bottom of the cell, displacing the WS to the top (figure 8). Presumably the limiting pattern will be a conventional MF labyrinth [38] with a reservoir MF at the bottom of the cell. However, long bifurcated fingers of WS initially are trapped in this region and the dynamics of the pattern evolution becomes dramatically slow. A hierarchical dynamical behavior [51] emerges because of the tree-like structure of highly bifurcated fingers of WS. Retraction of a bifurcated finger of WS cannot occur because its point of bifurcation represents a point of force balance and is therefore immobile. To undo a bifurcation requires retraction of at least one of the branches. However, each branch may itself be bifurcated, further slowing down the pattern evolution. Only at finger tips are forces unbalanced and dynamics unfrozen. Hierarchically constrained dynamics leads to glassy behavior [51]. A Kohlrausch stretched exponential law should govern the evolution in this regime.
5 Conclusion
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Figure captions

Figure 1: the experimental set-up consists in a cell located vertically between two coils. The external magnetic field obtained is horizontal and perpendicular to cell. The cell which contains the both liquids can be rotated around a horizontal axis.

Figure 2: several pictures of the destabilizing MF-WS interface for different times (a: t = 0; b: t = 5s; c: t = 8s; d: t = 11s) for Hext = 7.9 kA/m. The grey bar equals 1 cm.

Figure 3: several destabilizing interfaces for different values of the applied field (a: Hext = 4.1 kA/m; b: Hext = 11.9 kA/m; c: Hext = 17.8 kA/m; Hext = 27.7 kA/m). BETTER TO QUOTE THE ACTUAL TIMES FOR EACH FIELD. The grey bar equals 1 cm.

Figure 4: Wavelength as a function of the magnetic Bond number 

. Experimental data are measured by the FFT method, at the onset of the instability.

Figure 5: growth rates for Hext = 23.6 kA/m in the exponential regime and in the linear regime (shown in the inset)

Figure 6: magnetic field dependence of the growth rate; black circles represent the experimental data (see text) without demagnetising effects; white squares maximize the demagnetising effects in the expression of the magnetic Bond number

Figure 7: pictures of the RTI far from the threshold (see text) and for high value of the applied field: Hext = 40 kA/m. The black bar equals 1 cm.
Figure 8: Late stage evolution of the RTI at high fields Hext = 40 kA/m. (a) Arrow points to branched finger about to disappear. (b) ??? seconds later, one branch has retracted. (c) ??? seconds later, the entire finger disappears.
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