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Abstract

Viscous �ngering occurs in the ow of two immiscible, viscous u-

ids between the plates of a Hele-Shaw cell. Due to pressure gradients or

gravity, the initially planar interface separating the two uids under-

goes a Sa�man-Taylor instability and develops �nger-like structures.

When one of the uids is a ferrouid and a perpendicular magnetic

�eld is applied, the labyrinthine instability supplements the usual vis-

cous �ngering instability, resulting in visually striking, complex pat-

terns. We consider this problem in a rectangular ow geometry using a

perturbative mode-coupling analysis. We deduce two general results:

viscosity contrast between the uids drives interface asymmetry, with

no contribution from magnetic forces; magnetic repulsion within the

ferrouid generates �nger tip-splitting, which is absent in the rectan-

gular geometry for ordinary uids.

PACS number(s): 47.20.Gv, 47.20.Ma, 47.20.ky, 03.40.Gc



1 Introduction

The Sa�man-Taylor problem [1], in which two immiscible, viscous uids move

in a narrow space between the parallel plates of a Hele-Shaw cell, is a widely

studied example of hydrodynamic pattern formation where interfacial insta-

bilities grow and evolve [2]. The initially at interface separating the two

uids is destabilized by either a pressure gradient advancing the less vis-

cous uid against the more viscous one, or by gravity coupling to a density

di�erence between the uids.

Ferrouids, colloidal suspensions of microscopic permanent magnets, re-

spond paramagnetically to applied �elds [3]. Because they are liquids, they

ow in response to magnetic forces. Ferrouids con�ned within Hele-Shaw

cells exhibit interesting interfacial instabilities. One of the most beautiful,

the labyrinthine instability, occurs when a magnetic �eld is applied perpen-

dicular to the Hele-Shaw cell. Elements of magnetized liquid repel each other,

creating highly branched, intricately �ngered structures.

Recent experiments [4] examine the Sa�man-Taylor instability, when one

of the two uids is a ferrouid, in the presence of a perpendicular magnetic

�eld. The resulting interfacial patterns, in a rectangular Hele-Shaw cell, are

an intriguing superposition of familiar forms from ordinary viscous �ngering

and labyrinthine patterns. Two immediately striking features of the patterns:
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The pattern of low viscosity uid penetrating into high viscosity uid is

totally unlike the pattern of high viscosity uid penetrating into low viscosity

uid; Finger splitting is prevalent, while in general it is completely absent in

zero external magnetic �eld.

We explain these two phenomena within a perturbative approach known

as mode-coupling theory. Linear stability analysis explains the instability of

an initially at interface to sinusoidal perturbations known as modes. In the

initial, linear stage of pattern formation, modes grow or decay independently

of each other. One mode, which we call the \fundamental", grows faster

than all others. As these perturbations of the at interface grow, they evolve

through a weakly non-linear stage, in which modes couple with each other,

to the strongly nonlinear late stages in which a Fourier decomposition of the

interface shape becomes inappropriate.

We carry out our mode-coupling expansion to third order. Linear sta-

bility analysis explains neither interfacial symmetry breaking nor �nger tip-

splitting. At second order, we �nd the viscosity contrast A (de�ned as the

di�erence between the two uid viscosities divided by their sum) breaks the

symmetry of the interface by enhancing growth of subharmonic perturba-

tions to the fundamental mode. This mechanism occurs independently of

the applied magnetic �eld. At third order we �nd a mechanism for �nger
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tip-splitting driven by mutual repulsion of elements of magnetic uid. In the

absence of a magnetic �eld, �nger tips do not split in rectangular geometry

Hele-Shaw ow.

2 Hydrodynamics in a Hele-Shaw cell

This section begins with a discussion of basic hydrodynamic equations gov-

erning the motion of uids con�ned within a Hele-Shaw cell, considering

ferrouid in particular. We present Darcy's law in the presence of a perpen-

dicular magnetic �eld, and we discuss boundary conditions obeyed at the

two-uid interface. Since the basic equations are well established by previ-

ous investigators, we simply review the chief assumptions and results. This

section concludes by describing our perturbative approach. We introduce

a Fourier decomposition of the interface shape and derive coupled, nonlin-

ear, ordinary di�erential equations governing the time evolution of Fourier

amplitudes.

2.1 Governing equations

Consider two semi-in�nite immiscible viscous uids, owing in a narrow gap

of thickness b, between two parallel plates (see �gure 1). Denote the densities

and viscosities of the lower and upper uids, respectively as �1, �1 and �2,
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�2. Between the two uids there exists a surface tension �. Inject uid 1 at

constant external ow velocity ~v1 = v1ŷ at y = �1 and withdraw uid

2 at the same velocity at y = +1. We describe the system in a frame

moving with velocity ~v1, so that the interface may deform, but it does not

displace from y = 0 (dashed line in �gure 1) on the average. During the ow,

the interface has a perturbed shape described as y = �(x; t) (solid curve in

�gure 1) over the range 0 � x � L in the comoving frame.

In order to include the acceleration of gravity ~g, we tilt the cell so that the

y axis lies at angle � from the vertical direction. To include magnetic forces,

we apply a magnetic �eld ~H0 at right angles to the cell. By assumption, the

upper uid acquires magnetization ~M , while the lower uid is nonmagnetic.

We consider the limit L ! 1 to simplify calculations of magnetic forces.

Hydrodynamics of ferrouids di�ers from the usual Navier-Stokes equa-

tions through the inclusion of a term representing magnetic force. Let ~M

represent the local magnetization of the ferrouid, and note that the force

on ~M depends on the gradient of local magnetic �eld ~H. The local �eld

di�ers from the applied �eld by the demagnetizing �eld of the polarized fer-

rouid. Restricting our attention to small velocity ows of viscous uids, we

ignore the inertial terms and write the Navier-Stokes equation for a single

4



uid

� �r2~u = �~rp + ( ~M � ~r) ~H + �~g (1)

For the two dimensional geometry of a Hele-Shaw cell, the three dimen-

sional ow ~u, governed by equation (1), may be replaced with an equivalent

two-dimensional ow ~v by averaging over the z direction perpendicular to

the plane of the Hele-Shaw cell. Imposing no-slip boundary conditions, a

parabolic velocity pro�le and assuming constant magnetization parallel to

~H0, one derives Darcy's law for ferrouids in a Hele-Shaw cell [5, 6],

�~v = � b2

12

�
~rp� 2M

b
~r'� �(~g � ŷ)ŷ

�
: (2)

The magnetic scalar potential ' is evaluated on the top plate of the cell.

The velocity depends on a linear combination of gradients of p and ', so

may think of the magnetic scalar potential as part of an e�ective pressure.

Equation (2) describes nonmagnetic uids by simply dropping the terms

involving magnetization.

It is convenient to rewrite equation (2) in terms of velocity potentials

because the velocity �eld ~v is irrotational. Since we are interested in pertur-

bations of the velocity �eld around a steady ow, we write ~v = ~v1 � ~r �,

where � de�nes the velocity potential. Both sides of equation (2) are rec-

ognized as gradients of scalar �elds. Integrating both sides of equation (2)
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yields

�� =
b2

12

�
p� 2M

b
'+ �gy cos �

�
+ �v1y (3)

after dropping an arbitrary constant of integration.

Subtract equation (3) for one uid from the same equation for the other

uid, then divide by the sum of the two uids' viscosities. This yields an

equation for the discontinuity of velocity potentials valid at the two-uid

interface

A

 
�2 + �1

2

!
+

 
�2 � �1

2

!
=

b2

12(�1 + �2)

�
(p2 � p1)� 2M

b
's

�
+ Uy: (4)

The viscosity contrast

A =
�2 � �1
�2 + �1

(5)

will play a key role in interfacial symmetry breaking. U is a characteristic

velocity associated with driving forces,

U =
b2(�2 � �1)g cos �

12(�1 + �2)
+ Av1: (6)

The pressure jump across the interface, p1�p2 depends on �, the interfa-

cial curvature in the plane of the Hele-Shaw cell. In general this relationship

depends upon the discontinuity of the viscous stress tensor. Under the as-

sumption of low capillary number ow we neglect that dependence and write

simply

p2 � p1 = ��: (7)
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We substitute the pressure jump boundary condition (7) and also intro-

duce dimensionless variables, scaling all lengths by the gap size b, and all

velocities by the characteristic velocity �=12(�1 + �2). The �nal equation of

motion reads

A (�2jy=� + �1jy=�) + (�2jy=� � �1jy=�) = 2 [Uy + ��NBI] jy=�: (8)

NB is the dimensionless magnetic Bond number

NB =
2M2b

�
; (9)

and the integral

I =
R1
�1 dx0

R1
�(x0) dy

0

2
4 1q

(x� x0)2 + (y � y0)2

� 1q
(x� x0)2 + (y � y0)2 + 1

3
5 (10)

is proportional to the magnetic scalar potential. Equation (8) governs the

ow for a given interface shape �.

2.2 Mode-coupling analysis

We begin by representing the net perturbation �(x; t) in the form of a Fourier

series

�(x; t) =
X
k

�k(t) exp(ikx); (11)
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where �k(t) denotes the complex Fourier mode amplitudes. Expansion (11)

includes a discrete (rather than continuous) set of modes k because we focus

on the interaction of three particular modes in the subsequent discussion.

The k = 0 mode vanishes since we are in a comoving frame. The wavevectors

are constrained to lie on the x axis, but can be either positive or negative.

Now de�ne Fourier expansions for the velocity potentials �i, which must

obey Laplace's equation r2�i = 0, the boundary conditions at y ! �1, and

include the discrete modes k entering the Fourier series (11). The general

velocity potentials obeying these requirements are

�1 =
X
k 6=0

�1k(t) exp(jkjy) exp(ikx); (12)

and

�2 =
X
k 6=0

�2k(t) exp(�jkjy) exp(ikx): (13)

In order to substitute expansions (12) and (13) into the equation of mo-

tion (8), we need to evaluate them at the perturbed interface. For example,

expand the lower uid velocity potential �1jy=� , evaluated at the perturbed

interface, to third order in �. Its Fourier transform is

�̂1(k) = �1k(t) +
X
k0

jk0j�1k0(t)�k�k0 +
1

2

X
k0;q

(k0)2�1k0(t)�q�k�k0�q: (14)

A similar expression for �2jy=� can be easily obtained. These results de�ne

the Fourier transform of the left-hand-side of equation (8).
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Now we must evaulate the Fourier transform of the right-hand-side of

equation (8). The curvature in the x� y plane is [7]

� =

 
@2�

@x2

!2
41 +

 
@�

@x

!2
3
5
� 3

2

: (15)

We expand this up to third order in � and Fourier transform,

�̂(k) = �k2�k � 3

2

X
k0;q 6=0

(k0)2q[k � k0 � q]�k0�q�k�k0�q: (16)

The expansion to third order in powers of �, of the integral (10) related

to magnetic scalar potential, is

I(x) =
Z 1

�1

"
1

[(x� x0)2]1=2
� 1

[(x� x0)2 + 1]1=2

#
[�(x0)� �(x)]dx0 (17)

� 1

6

Z 1

�1

"
1

[(x� x0)2]3=2
� 1

[(x� x0)2 + 1]3=2

#
[�(x0)� �(x)]3dx0:

When Fourier transformed, the integrals in (17) can be solved in terms of

modi�ed Bessel functions [8]

K�(k�) =
�(� + 1=2)

k��(1=2)
(2�)�

Z 1

0

cos kx

(x2 + � 2)�+1=2
dx: (18)

We de�ne the functions

J(k) � log

 jkj
2

!
+K0(jkj) + C (19)

with C the Euler constant, and

T (k) � 3jkj
h
jkj(4 log 2� 3 log 3) + 2K1(3jkj) (20)

� 4K1(2jkj) + 2K1(jkj)� 2

3

i
;
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and write the Fourier transform

Î(k) = �2J(k)�k + 1

6

X
k0;q

T (k � k0 � q)�k0�q�k�k0�q: (21)

For nonzero k, J(k) is positive and T (k) is negative. The expansion in powers

of � can easily be extended to arbitrarily high order. Tsebers [9] presents

Î(k) up to the �fth order term.

To close equation (8) we need additional relations expressing the velocity

potentials in terms of the perturbation amplitudes. To �nd these, consider

the kinematic boundary condition relating the interface shape back to the

uid ow. The condition that the interface move according to the local uid

velocities is written

@�

@t
=

 
@�

@x

@�i

@x

!
y=�

�
 
@�i

@y

!
y=�

: (22)

Expand this to third order in � and then Fourier transform. Solving for �ik(t)

consistently to third order in � yields

�1k(t) = �
_�k
jkj +

X
k0

sgn(kk0) _�k0�k�k0 (23)

� X
k0;q

kq

jkjsgn(k
0q) _�k0�q�k0�k�q +

X
k0;q

k0

jkj

 
k � q � k0

2

!
_�k0�q�k�k0�q

and a similar expression for �2k(t). The sgn function equals �1 according to

the sign of its argument. The overdot denotes total time derivative.

Substitute this last expression for �1k(t) into equation (14) for the Fourier

transform of �1jy=�, and again keep only cubic terms in the perturbation
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amplitude. Repeat the same procedures for uid 2. The velocity potentials

have now been eliminated from Darcy's law (8), and the di�erential equation

of the interface is

_�k = �(k)�k + AjkjX
k0 6=0

[1� sgn(kk0)] _�k0�k�k0 (24)

+
X
k0;q

jkjjqjsgn(k0q) [1� sgn(kq)] _�k0�q�k0�k�q

+
X
k0;q

k0
"
k � q � k0

2
� jk0jjkj

2k0

#
_�k0�q�k�k0�q

� X
k0;q

�
1

6
NBT (k � k0 � q) +

3

2
jkj(k0)2q[k � k0 � q]

�
�k0�q�k�k0�q:

Here

�(k) = jkj[U + 2NBJ(k)� k2] (25)

is the dimensionless linear growth rate multiplying the �rst order term in �.

The second term in equation (24) is second order in �, and the remaining

terms constitute the third order contribution.

3 Weakly nonlinear evolution

This section analyzes the evolution of an interface under the mode-coupling

equation (24) derived in section 2.2. We systematically examine terms in

order of their strength at the onset of the instability. Thus, we begin by

describing the �rst order term, which captures the well known linear insta-

bility leading to viscous �nger growth. Driving forces causing the instability
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include magnetic repulsion within the ferrouid. We move on to the second

order term, noting the interesting coupling of a fundamental mode and its

own subharmonic. This term is responsible for �nger competition. Magnetic

forces do not contribute to this, or any even order, term. Rather, �nger com-

petition depends upon the viscosity contrast A. We conclude our discussion

at third order. Here, we show that �nger tips may split due to coupling

of a fundamental mode with its own harmonic. The process depends upon

the presence of magnetic repulsion within the ferrouid. It does not occur

without a magnetic �eld.

3.1 First order

First order in the mode-coupling expansion reproduces conventional linear

stability analysis. Each mode grows or decays independently of all others,

with exponential growth rate �(k) given in equation (25). Positive values

of �(k) make a mode unstable to growth of an initially small perturbation.

Figures 2 - 4 plot this function for three distinct cases: U = �1, U = 0 and

U = +1 respectively. For each value of U we graph �(k) for three values of

the magnetic Bond number, NB = 0; 2; 4.

In general these plots display a range of wavenumbers over which �(k) >

0. We de�ne two special wavenumbers: k?, the wavenumber of the fastest
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growing mode, maximizes �(k); kc, the threshold wavenumber beyond which

all modes are stable, is the largest wavenumber for which �(k) vanishes.

When U = 1 and NB = 0 we have kf = 1=
p
3 and kc = 1. The magnetic

�eld is destabilizing. As the magnetic Bond number grows, k? and kc shift to

the right and modes of higher wavenumber become unstable. Likewise, for

any particular mode k, the growth rate �(k) increases, causing perturbations

to grow more rapidly.

To analyze mechanisms of pattern selection, we will focus our attention

on the interaction of one large amplitude perturbation, which we call the

\fundamental", with small amplitude perturbations of its own harmonic and

subharmonic. We take the fundamental wavenumber kf = k? of the fastest

growing mode. The harmonic mode kh = 2kf always lies to the right of

the threshold wavenumber kc, so the harmonic mode is always linearly stable

against growth. The subharmonic mode ks = kf=2 usually lies in the unstable

regime. If present in the initial conditions it will grow, but less quickly than

the fundamental.

Growth of the fundamental mode creates a sinusoidal oscillation of the

initially at interface, forming �ngers of each uid penetrating into the region

previously occupied by the other uid. The interface is symmetric, with up-

wards and downwards �ngers having identical length and width. Depending
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upon the phase of the subharmonic relative to the fundamental, either the

upwards-pointing �ngers, or the downwards pointing �ngers may have their

length modulated. The subharmonic can break the up-down symmetry of

the growing pattern. However, within the linear stability analysis, no unique

phase of the subharmonic is favored. Assuming the relative phase is deter-

mined by random perturbation of the at interface, the growing pattern will

retain statistical up-down symmetry. For any given initial condition, sym-

metry will be broken, but averaged over all initial conditions, symmetry will

remain.

Splitting of �ngers is not predicted by linear stability analysis, because

the harmonic mode is required to split �ngers, and the harmonic mode is

linearly stable.

3.2 Second order

Inspecting the mode coupling equation (24), we note that the second order

term does not involve magnetic �eld. We have previously [10] analyzed the

role of the second order term in rectangular ow geometry for non-magnetic

uids. The results are unchanged, so we will simply recall two essential

facts: the second order term generates �nger competition dependent upon

the viscosity contrast A; the second order term does not generate �nger tip-
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splitting. We explain these two points briey.

Finger competition is linked with the amplitude and phase of the sub-

harmonic mode. Coupling of the fundamental kf to the growth of its sub-

harmonic ks accelerates growth of the subharmonic, and selects a preferred

phase. The selected phase varies the relative lengths of �ngers of the less

viscous uid penetrating into the more viscous uid. Fingers of more viscous

uid penetrating into the less viscous uid tend toward equal lengths. The

subharmonic therefore breaks the statistical up-down symmetry of the linear

stability theory.

Finger tip-splitting requires the harmonic mode. In the radial ow geom-

etry [11], second order terms drive growth of the harmonic mode kh despite

its linear stability. These terms are absent due to the rectangular ow ge-

ometry. As we explain in the following section, one must examine the third

order terms to understand growth of the harmonic.

We conclude this discussion with an explanation for the absence of mag-

netic �eld e�ects at second order. Although the basic equation of motion (2)

is written in terms of forces, it is simplest to carry out the discussion in terms

of energies. Consider the magnetic energy for a given interface shape �(x).

The magnetic energy is una�ected by rotation of the entire experiment (Hele-

Shaw cell and magnet) by 180� around the x axis. Because the ferrouid is
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paramagnetic, the magnetic energy is invariant under reversing the direction

of the applied �eld. The combination of the two symmetries, rotation of the

experiment followed by reversal of the applied �eld, amounts to reversing the

sign of the interfacial displacement �(x). Since the magnetic energy cannot

be a�ected by this change, it must be an even function of �(x). The magnetic

force is given by the change in magnetic energy with respect to variation in

interfacial shape, so it must be an odd function of �(x).

3.3 Third order

This section shows how the magnetic �eld qualitatively alters the mecha-

nism for splitting of �nger tips. We �rst review previous results explaining

the general absence of tip splitting in rectangular geometry ow of ordinary

uids [10]. Then we describe a new mechanism for splitting �nger tips in the

presence of a magnetic �eld.

We consider the inuence of the fundamental and sub-harmonic modes

on the growth of the �rst harmonic. Finger tip-splitting is associated with

the magnitude and phase of the harmonic mode 2kf . It is convenient for

the subsequent discussions to consider sine and cosine modes, rather than

the complex modes employed in equation (24). Describing the fundamental

as a cosine mode with positive amplitude, we only need to examine the
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subharmonic and harmonic cosine modes to analyze �nger competition and

tip-splitting. Let ak denote the amplitude of the cosine mode of wavenumber

k.

Earlier papers considered �nger tip-splitting for Hele-Shaw ow of non-

magnetic uids in the radial [11] and rectangular [10] geometries. Of course,

the same results hold for ferrouids in the absence of applied magnetic �elds.

The principal results are as follows. In the radial geometry, a term pro-

portional to a2kf drives growth of the harmonic with the phase appropriate

to split �nger tips. In the rectangular geometry, this second order term is

missing. Instead, there is a third order driving term proportional to akfa
2
ks .

This term is expected to be too small to split �nger tips. There is also a

reduction in the e�ective stability of the harmonic mode for large amplitude

of the fundamental, but this e�ect cannot make the harmonic linearly un-

stable. Consequently, �nger tips do not split under normal circumstances in

the rectangular geometry.

Now we investigate the connection between the applied magnetic �eld and

the occurrence of �nger tip-splitting observed in Hele-Shaw cell experiments

with ferrouids. For consistency with experimental results [4] we consider

the case U = 1. The equation of motion for the harmonic mode (neglecting
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terms of order O(a3kh)) is

_akh = �effakh (26)

�
�
3

8
khk

2
skf [kf + 2ks] +NBkh

�
1

12
T (ks) +

1

24
T (kf)

��
akfa

2
ks:

We incorporate certain third order terms into the e�ective linear growth rate

�eff = �(kh) (27)

+

(
k2fkh

2

��
k2f +

3

2
k2h

�
� 1

�
�NBkh

�
1

6
T (kf) +

1

12
T (kh)

�)
a2kf

+

(
k2skh
2

��
k2s +

3

2
k2h

�
� 1

�
�NBkh

�
1

6
T (ks) +

1

12
T (kh)

�)
a2ks :

In equations (26) and (27) some terms are explicitly multiplied by NB and

others are not. We refer to the former as \magnetic" terms, and the latter as

\nonmagnetic". The nonmagnetic terms reproduce the known mode coupling

equation for nonmagnetic uids [10].

Our mechanism for splitting �nger tips focuses on �eff . Initially, this

quantity is close to �(kh), which is strongly negative because the harmonic

mode is stable in the linear theory. However, �eff is increased by the presence

of the modes kf and ks, because the coe�cients multiplying their squared

amplitudes are positive. To verify this point, recall that kf � 1=
p
3, making

the nonmagnetic contribution manifestly positive. Also, the values of T (k)

are negative, making the magnetic contribution manifestly positive. Since we

consider the case in which akf is considerably larger than aks, the dominant
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corrections to the e�ective growth rate come from the terms multiplying a2kf .

In the following, we concentrate our discussion on those terms.

Nonmagnetic terms make the e�ective growth rate less negative but can-

not make it go positive. The physical reason that these terms do not make

�eff positive can be understood by considering the contour length of the inter-

face. Introducing the harmonic always increases the contour length, although

the larger the amplitude of the fundamental, the smaller the increase upon

introducing the harmonic. Multiplying the contour length by the surface

tension yields surface energy that favors minimum contour length. Mathe-

matically, the nonmagnetic term of order a2kf makes �eff less negative, but if

higher orders in perturbation theory were included it would be evident that

akf cannot drive �eff positive without assistance from the magnetic terms.

The terms in �eff that are multiplied by NB allow �eff to eventually

go positive, permitting growth of the harmonic. The e�ective growth rate

remains negative up to a threshold value of akf for which �eff = 0. When akf

grows beyond this threshold value, akh grows rapidly. The threshold value of

akf should vary as the inverse square root of the magnetic Bond number, so

tip splitting emerges sooner in strong magnetic �elds.

The harmonic mode enters spontaneously through the third order driving

term proportional to akfa
2
ks in equation (26). As long as �eff remains nega-

19



tive, this small driving force should be of little consequence. After �eff goes

positive, however, this term can introduce a harmonic even if none is present

in initial conditions. The existence and phase of the spontaneously generated

harmonic depends on interplay of the fundamental and the subharmonic.

To illustrate the occurrence of �nger tip-splitting when an external mag-

netic �eld is applied, we consider the interaction of modes kf and kf=2 with

the forced modes 2kf and 3kf=2. Mode 3kf=2 behaves similarly to the sub-

harmonic kf=2 and induces more �nger competition. In �gure 5 we plot the

interface evolution using the full solution to third order of equation (24). We

examine the case in which U = 1, assuming that uid 2 is a ferrouid. An

external magnetic �eld is applied (NB = 1:0) normal to the cell plates. The

initial condition is akh = 0:145 and aks = �1=5 akf . The harmonic mode is

absent initially. Times shown are t = 0; 1; 2; 3.

The e�ective harmonic growth rate �eff starts being strongly negative

at t = 0. It increases with time, goes through zero t � 2:16, and become

positive. This process leads to �nger tip-splitting by t = 3, as shown in

�gure 5. Finger tip-splitting only occurs after the fundamental has grown

su�ciently that �eff goes positive. The selected phase of the harmonic splits

the tips of �ngers whose length is variable, the less viscous �ngers.
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4 Conclusion

Several features of the patterns formed in Sa�man-Taylor experiments with

ferrouids can now be explained. First of all, there is the striking asymmetry

of the interface. Since the dense upper uid is a glycerine-based ferrouid

with high viscosity, and the less dense lower uid is white spirit, we can

understand the initial asymmetry of the interface purely on the basis of

the viscosity contrast A, as discussed in section 3.2. Indeed, with the �eld

turned o� the interface is quite asymmetric, with short and wide upwards

�ngers of the less viscous uid and long, thin downward �ngers of the more

viscous uid. Magnetic �eld e�ects can exaggerate an already asymmetric

interface, but they cannot break the symmetry by themselves. It would be

of considerable interest to perform the experiment with immiscible viscosity-

matched uids.

Next, there is the splitting of �nger tips which is not normally observed

in rectangular geometry ow. Both upwards and downwards �ngers are split,

consistent with a positive value of �eff permitting the growth of harmonics of

any phase. The upwards �ngers are more strongly split, however, consistent

with the phase preferred by the driving force in equation (26). Both are

predictions of our third order analysis in section 3.3. It would be of interest

to examine the relationship between the onset of tip splitting and the strength
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of applied magnetic �eld experimentally.

The above features are explained by our mode coupling theory. Another

notable feature of the patterns is the nearly constant width and regular spac-

ing of downward pointing �ngers of high viscosity uid. The constant width is

probably the known �eld-dependent preferred �nger width of the labyrinthine

instability [3], proportional to the plate spacing b. Given a directed set of

thin �ngers, magnetic forces will drive them towards maximal spacing, re-

sulting in a regularly spaced array. These issues lie beyond the scope of our

low order mode coupling approach, but may be amenable to more general

forms of weakly nonliner analysis.
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Figure 1: Schematic con�guration of the rectangular ow geometry. The

upper uid is a ferrouid.
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Figure 2: Plot of �(k) for U = �1.
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Figure 3: Plot of �(k) for U = 0.
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Figure 4: Plot of �(k) for U = 1.
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Figure 5: Plot of an evolving interface with an applied magnetic �eld.
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